Page 1,480«..1020..1,4791,4801,4811,482..1,4901,500..»

Puma Biotechnology announces positive trial results – Seeking Alpha

Posted: June 7, 2017 at 6:48 am

Puma Biotechnology (NYSE:PBYI) presents at ASCO thepositive results from an ongoing Phase II clinical trial of Puma's investigational drug PB272 for the treatment of HER2-positive metastatic breast cancer that has metastasized to the brain.

The multicenter Phase II clinical trial enrolled patients with HER2-positive metastatic breast cancer who have brain metastases. The trial is being performed by the TBCRC and enrolled three cohorts of patients.

We are very pleased with the activity seen in this trial with the combination of neratinib plus capecitabine, sys Puma CEOAlan Auerbach.

As a small molecule that can cross the blood brain barrier, neratinib potentially offers patients with HER2-positive metastatic breast cancer that has metastasized to the CNS a novel HER2 targeted treatment option. We look forward to working with TBCRC on future trials of neratinib in patients with HER2-positive disease metastatic to the CNS," he adds.

Source: Press Release

#ASCO

Go here to see the original:
Puma Biotechnology announces positive trial results - Seeking Alpha

Posted in Biotechnology | Comments Off on Puma Biotechnology announces positive trial results – Seeking Alpha

Does the sex of a cell matter in research? – News from Tulane

Posted: June 7, 2017 at 6:48 am

Dr. Franck Mauvais-Jarvis is a leading voice in the debate to bring sex parity to pre-clinical research. Photo by Paula Burch-Celentano.

Over the last decade, many drugs that have been pulled from the market due to toxicity were withdrawn because they affected women more than men. It turns out, the studies that brought the drugs to market were designed using only male cells and animal models, a common flaw a Tulane endocrinologist is working to help correct. We really need to study both sexes, says Dr. Franck Mauvais-Jarvis, a leading voice in the debate to bring sex parity to pre-clinical research. The focus on a single sex threatens to limit the impact of research findings as results may be relevant to only half of the population. Mauvais-Jarvis, a professor of endocrinology at Tulane University School of Medicine, is the lead author of a newly published article in the journal Cell Metabolism to help scientists who study obesity, diabetes or other metabolic diseases better account for inherent sex differences in research. While the National Institutes of Health recently mandated researchers consider sex as a biological variable by including both sexes in pre-clinical research, there is little guidance in designing studies to fully consider sex differences in underlying biological mechanisms. The article outlines the causes of sex differences in research models and the methods for investigators to account for these factors. Mauvais-Jarvis goal is to help investigators better understand that sex differences are not simply a superficial aspect of research that only account for different sets of hormones. He maintains that male and female are two different biological systems. Sex differences are at the core of the mechanism for biological traits and disease, Mauvais-Jarvis says. We believe that the incorporation of appropriately designed studies on sex differences in metabolism and other fields will accelerate discovery and enhance our ability to treat disease. This is the fundamental basis of precision medicine. The article is co-authored by Drs. Arthur Arnold and Karen Reue, two experts in the genetics of sex differences at the University of California, Los Angeles.

Read the original:
Does the sex of a cell matter in research? - News from Tulane

Posted in Cell Medicine | Comments Off on Does the sex of a cell matter in research? – News from Tulane

Ask a Vail Sports Doc: The future of regenerative sports medicine – Vail Daily News

Posted: June 7, 2017 at 6:48 am

There is a great deal of interest and research in the field of regenerative medicine, especially as it relates to sports performance and the treatment of sports injuries. The future of regenerative sports medicine is bright and its usage and indications are bound to expand.

The term regenerative medicine and the use of "biologics" broadly refer to natural products that are harvested and used to supplement healing. In orthopedic sports medicine, the use of biologics entails the use of growth factors, cells or tissue.

Researchers have performed throughout 500 clinical trials evaluating mesenchymal stem cells and there have been more than 180 trials evaluating platelet rich plasma, which is a testimony to the level of interest in biologics and the hope of treating or modulating various disease processes. Unfortunately, the scientific approach to studying these therapies and interventions has been quite disordered, with little standardization of the biologic preparation being studied. This lack of standardization has made it difficult to compare study outcomes and validate conclusions of disparate studies.

The use of biologics is highly regulated by the Food and Drug Administration, and currently the FDA does not allow orthopedists in the U.S. to harvest mesenchymal stem cells from bone and expand these cells in culture for injection into an arthritic knee, for example.

There are several types of stem cells: embryonic, which are omnipotent and can give rise to an entire organism, and adult stem cells, which are multipotent and can differentiate into certain types of cells. The use of embryonic stem cells is highly regulated, there is ethical considerations, and there is some risk of tumor growth. For these reasons, adult stem cells are currently used in orthopedic sports medicine treatments.

Defining stem cells

Stem cells have four defining qualities: they can reproduce; they can differentiate into a number of different cell types; they can mobilize and they can turn on or off other cells in their local environment. Mesenchymal stem cells can be obtained from bone, fat, synovial tissue and periosteum.

There are several types of stem cells: embryonic, which are omnipotent and can give rise to an entire organism, and adult stem cells, which are multipotent and can differentiate into certain types of cells. The use of embryonic stem cells is highly regulated, there is ethical considerations, and there is some risk of tumor growth. For these reasons, adult stem cells are currently used in orthopedic sports medicine treatments.

As for current orthopedic applications, platelet rich plasma injections have been shown to be more effective than hyaluronate injections for the treatment of mild to moderate arthritis in younger and middle aged patients. Unfortunately, insurance companies still consider platelet rich plasma injections experimental and therefore do not cover them.

There have been numerous studies assessing whether there is a benefit to injecting platelet rich plasma at the time of rotator cuff repair and most studies to date have not shown a functional benefit or better healing rates. There are even fewer studies looking at injecting BMA at the time of rotator cuff repair and again no benefit has been demonstrated to date.

However, there have been some animal studies in which stem cells have been further manipulated and utilized (which the FDA does not currently allow in humans) that have shown some improved bone tendon healing. As for meniscal repair, the results of animal studies have been mixed. Some studies have shown that BMA loaded onto a scaffold can even regrow meniscal like repair tissue, but others have not demonstrated a difference in healing in animal models.

Dr. Richard Cunningham, M.D. is a board-certified, fellowship-trained orthopedic surgeon and knee and shoulder specialist with Vail-Summit Orthopaedics. For more information, visit http://vailknee.com.

Read more:
Ask a Vail Sports Doc: The future of regenerative sports medicine - Vail Daily News

Posted in Cell Medicine | Comments Off on Ask a Vail Sports Doc: The future of regenerative sports medicine – Vail Daily News

Type of sugar may treat atherosclerosis, mouse study shows – Washington University School of Medicine in St. Louis

Posted: June 7, 2017 at 6:48 am

Visit the News Hub

Trehalose triggers cellular housekeeping in artery-clogging plaque

A new study shows that a type of natural sugar called trehalose triggers an important cellular housekeeping process in immune cells that helps treat atherosclerotic plaque. The image shows a cross section of a mouse aorta, the main artery in the body, with a large plaque. Straight red lines toward the upper left are the wall of the aorta. Yellow areas are where housekeeping cells called macrophages are incinerating cellular waste.

Researchers have long sought ways to harness the bodys immune system to treat disease, especially cancer. Now, scientists have found that the immune system may be triggered to treat atherosclerosis and possibly other metabolic conditions, including fatty liver disease and type 2 diabetes.

Studying mice, researchers at Washington University School of Medicine in St. Louis have shown that a natural sugar called trehalose revs up the immune systems cellular housekeeping abilities. These souped-up housecleaners then are able to reduce atherosclerotic plaque that has built up inside arteries. Such plaques are a hallmark of cardiovascular disease and lead to an increased risk of heart attack.

The study is published June 7 in Nature Communications.

We are interested in enhancing the ability of these immune cells, called macrophages, to degrade cellular garbage making them super-macrophages, said senior author Babak Razani, MD, PhD, an assistant professor of medicine.

Macrophages are immune cells responsible for cleaning up many types of cellular waste, including misshapen proteins, excess fat droplets and dysfunctional organelles specialized structures within cells.

In atherosclerosis, macrophages try to fix damage to the artery by cleaning up the area, but they get overwhelmed by the inflammatory nature of the plaques, Razani explained. Their housekeeping process gets gummed up. So their friends rush in to try to clean up the bigger mess and also become part of the problem. A soup starts building up dying cells, more lipids. The plaque grows and grows.

In the study, Razani and his colleagues showed that mice prone to atherosclerosis had reduced plaque in their arteries after being injected with trehalose. The sizes of the plaques measured in the aortic root were variable, but on average, the plaques measured 0.35 square millimeters in control mice compared with 0.25 square millimeters in the mice receiving trehalose, which translated into a roughly 30 percent decrease in plaque size. The difference was statistically significant, according to the study.

The effect disappeared when the mice were given trehalose orally or when they were injected with other types of sugar, even those with similar structures.

Found in plants and insects, trehalose is a natural sugar that consists of two glucose molecules bound together. It is approved by the Food and Drug Administration for human consumption and often is used as an ingredient in pharmaceuticals. Past work by many research groups has shown trehalose triggers an important cellular process called autophagy, or self-eating. But just how it boosts autophagy has been unknown.

In this study, Razani and his colleagues show that trehalose operates by activating a molecule called TFEB. Activated TFEB goes into the nucleus of macrophages and binds to DNA. That binding turns on specific genes, setting off a chain of events that results in the assembly of additional housekeeping machinery more of the organelles that function as garbage collectors and incinerators.

Trehalose is not just enhancing the housekeeping machinery thats already there, Razani said. Its triggering the cell to make new machinery. This results in more autophagy the cell starts a degradation fest. Is this the only way that trehalose works to enhance autophagy by macrophages? We cant say that for sure were still testing that. But is it a predominant process? Yes.

The researchers are continuing to study trehalose as a potential therapy for atherosclerosis, especially since it is not only safe for human consumption but is also a mild sweetener. One obstacle the scientists would like to overcome, however, is the need for injections. Trehalose likely loses its effectiveness when taken orally because of an enzyme in the digestive tract that breaks trehalose into its constituent glucose molecules. Razani said the research team is looking for ways to block that enzyme so that trehalose retains its structure, and presumably its function, when taken by mouth.

This work was supported by grants from the National Institutes of Health (NIH), grant numbers K08 HL098559 and R01 HL125838; the Washington University Diabetic Cardiovascular Disease Center and Diabetes Research Center, grant number P30 DK020579; The Foundation for Barnes-Jewish Hospital; and the Wylie Scholar Award from the Vascular Cures Foundation.

Sergin I, Evans TD, Zhang X, Bhattacharya S, Stokes CJ, Song E, Ali S, Dehestani B, Holloway KB, Micevych PS, Javaheri A, Crowley JR, Ballabio A, Schilling JD, Epelman S, Weihl CC, Diwan A, Fan D, Zayed MA, Razani B. Exploiting macrophage autophagy-lysosomal biogenesis as a therapy for atherosclerosis. Nature Communications. June 7, 2017.

Washington University School of Medicines 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Childrens hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation, currently ranked seventh in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Childrens hospitals, the School of Medicine is linked to BJC HealthCare.

Here is the original post:
Type of sugar may treat atherosclerosis, mouse study shows - Washington University School of Medicine in St. Louis

Posted in Cell Medicine | Comments Off on Type of sugar may treat atherosclerosis, mouse study shows – Washington University School of Medicine in St. Louis

Cancer cells send signals boosting survival and drug resistance in other cancer cells – Medical Xpress

Posted: June 7, 2017 at 6:48 am

June 6, 2017 In this image of a human breast tumor, a cluster of malignant cells that have become resistant to chemotherapy are shown in red. Credit: NCI

Researchers at University of California San Diego School of Medicine report that cancer cells appear to communicate to other cancer cells, activating an internal mechanism that boosts resistance to common chemotherapies and promotes tumor survival.

The findings are published online in the June 6 issue of Science Signaling.

Six years ago, Maurizio Zanetti, MD, professor in the Department of Medicine at UC San Diego School of Medicine and a tumor immunologist at Moores Cancer Center at UC San Diego Health, published a paper in PNAS suggesting that cancer cells exploit an internal mechanism used by stressed mammalian cells, called the unfolded protein response (UPR), to communicate with immune cells, notably cells derived from the bone marrow, imparting them with pro-tumorigenic characteristics.

The UPR is activated in response to unfolded or misfolded proteins accumulating in the endoplasmic reticulum (ER)an organelle that carries out several metabolic functions in the cells and the site where proteins are built, folded and sent for secretion. The UPR can often decide cell death or survival.

In their new paper, Zanetti and colleagues say cancer cells appear to take the process beyond just affecting bone marrow cells, using transmissible ER stress (TERS) to activate Wnt signaling in recipient cancer cells. Wnt is a cellular signaling pathway linked to carcinogenesis in many types of cancer.

"We noticed that TERS-experienced cells survived better than their unexperienced counterparts when nutrient-starved or treated with common chemotherapies like bortezomib or paclitaxel," said Jeffrey J. Rodvold, a member of Zanetti's lab and first author of the study. "In each instance, receiving stress signals caused cells to survive better. Understanding how cellular fitness is gained within the tumor microenvironment is key to understand cooperativity among cancer cells as a way to collective resilience to nutrient starvation and therapies."

When cancer cells subject to TERS were implanted in mice, they produced faster growing tumors.

"Our data demonstrate that transmissible ER stress is a mechanism of intercellular communication," said Zanetti. "We know that tumor cells live in difficult environments, exposed to nutrient deprivation and lack of oxygen, which in principle should restrict tumor growth. Through stress transmission, tumor cells help neighboring tumor cells to cope with these adverse conditions and eventually survive and acquire growth advantages."

Importantly, he said the research may explain previous findings by other groups showing that individual tumor cells within a uniform genetic lineage can acquire functionally different behaviors in vivo. In other words, some cells acquire greater fitness and extended survivalanother way to generate intra-tumor heterogeneity, which currently represents one of the major obstacles to cancer treatment. This implies that mutations peppered throughout the cancer genome of an individual are not the only source of intra-tumor heterogeneity.

Zanetti said researchers and physicians need to consider these changing cellular dynamics in the tumor microenvironment in developing both a better understanding of cancer and more effective treatments.

Explore further: Cancer cells co-opt immune response to escape destruction

More information: Science Signaling (2017). DOI: 10.1126/scisignal.aah7177

Researchers at the University of California, San Diego School of Medicine report that tumor cells use stress signals to subvert responding immune cells, exploiting them to actually boost conditions beneficial to cancer growth.

A new study has identified a mechanism used by tumors to recruit stem cells from bone and convert them into cancer-associated fibroblasts (CAFs) that facilitate tumor progression. This work, which pinpoints the specific biochemical ...

A very high mortality rate is associated with ovarian cancer, in part due to difficulties in detecting and diagnosing the disease at early stages before tumors have spread, or metastasized, to other locations in the body.

Researchers from Oregon Health and Science University and Oregon State University have found that aspirin may slow the spread of some types of colon and pancreatic cancer cells. The paper is published in the American Journal ...

Tumor growth is dependent on interactions between cancer cells and adjacent normal tissue, or stroma. Stromal cells can stimulate the growth of tumor cells; however it is unclear if tumor cells can influence the stroma.

Researchers at University of California San Diego School of Medicine report that cancer cells appear to communicate to other cancer cells, activating an internal mechanism that boosts resistance to common chemotherapies and ...

A research study led by University of Minnesota engineers gives new insight into how cancer cells move based on their ability to sense their environment. The discovery could have a major impact on therapies to prevent the ...

The chemotherapy drug capecitabine gives patients a better quality of life and is as effective at preventing breast cancer from returning as the alternative regimen called CMF, when given following epirubicin. These are the ...

When you dine on curry and baked apples, enjoy the fact that you are eating something that could play a role starvingor even preventingcancer.

Scientists at Karolinska Institutet in Sweden report that cancer cells and normal cells use different 'gene switches' in order to regulate the expression of genes that control growth. In mice, the removal of a large regulatory ...

Doctors are reporting unprecedented success from a new cell and gene therapy for multiple myeloma, a blood cancer that's on the rise. Although it's early and the study is small35 peopleevery patient responded and all ...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Read more from the original source:
Cancer cells send signals boosting survival and drug resistance in other cancer cells - Medical Xpress

Posted in Cell Medicine | Comments Off on Cancer cells send signals boosting survival and drug resistance in other cancer cells – Medical Xpress

Cancer Gene Therapy and Cell Therapy | ASGCT – American …

Posted: June 7, 2017 at 6:47 am

Cancer is an abnormal growth of cells the proximate cause of which is an imbalance in cell proliferation and death breaking-through the normal physiological checks and balances system and the ultimate cause of which are one or more of a variety of gene alterations. These alterations can be structural, e.g., mutations, insertions, deletions, amplifications, fusions and translocations, or functional (heritable changes without changes in nucleotide sequence). No single genomic change is found in all cancers and multiple changes (heterogeneity) are commonly found in each cancer generally independent of histology. In healthy adults, the immune system may recognize and kill the cancer cells or allow a non-detrimental host-cancer equilibrium; unfortunately, cancer cells can sometimes escape the immune system resulting in expansion and spread of these cancer cells leading to serious life threatening disease. Approaches to cancer gene therapy include three main strategies: the insertion of a normal gene into cancer cells to replace a mutated (or otherwise altered) gene, genetic modification to silence a mutated gene, and genetic approaches to directly kill the cancer cells.

Furthermore, approaches to cellular cancer therapy currently largely involve the infusion of immune cells designed to either (i) replace most of the patients own immune system to enhance the immune response to cancer cells, (ii) activate the patients own immune system (T cells or Natural Killer cells) to kill cancer cells, or (iii) to directly find and kill the cancer cells. Moreover, genetic approaches to modify cellular activity further alter endogenous immune responsiveness against cancer.

Currently, multiple promising clinical trials using these gene and cell based approaches are ongoing in Phase I through Phase III testing in patients with a variety of different types of cancer.

Cancer is a process in which cells grow aberrantly. The growth of cancer cells leads to damage of normal tissues, causing loss of function and often pain. Many types of tumors shed cells that migrate to other distant sites in the body, establish a base there, and grow continuously. These secondary cancer sites, called metastases, cause local destruction, loss of normal tissue function and can acquire an even greater propensity to shed. Multiple cumulative genetic and/or epigenetic changes are needed to cause cancer. Those genes on which the maintenance of the cancer process depends are called driver genes which, unlike passenger genes, are key targets although non-driver genes can also contribute to cancer growth.

A number of gene therapy strategies are being evaluated in patients with cancer and these include manipulating cells to gain or lose function. For example, half of all cancers have a mutated p53 protein that interferes with the ability of tumor cells to self-destruct by a process called apoptosis. To this end, investigators are currently testing in clinical trials the ability to genetically introduce a normal p53 gene into these cancer cells. Introduction of a normal p53 gene renders the tumor cells more sensitive to standard chemotherapy and radiation treatments compared to tumor cells expressing the abnormal protein. Furthermore, other tumor suppressor genes are being placed in gene cassettes for expression in tumor cells, which can similarly render them more sensitive to apoptosis, or the process of programmed cell death. Other investigators are utilizing gene therapy approaches to induce expression of immune stimulating proteins called cytokines which in turn may increase the ability of the patients own immune system to recognize and kill these cancer cells. Another immune modulating alternative entering the clinic is the use of RNA interference (RNAi) silencing of endogenous cancer intracellular immune suppressor proteins, e.g., TGF beta, as a component of immunotherapy.

Along this line, gene silencing has been designed to inhibit the expression of specific genes which are activated or over expressed in cancer cells and can drive tumor growth (with particular attention to presumptive driver genes), blood vessel formation, seeding of tumor cells to other tissues, and allow for resistance to chemotherapy. Several such genes, termed oncogenes, are often expressed continuously at high concentrations in cancer cells and express proteins that increase cell growth and/or division. Alternatively, tumor growth requires new blood vessel formation to survive, a process known as angiogenesis, which is mediated by an array of interacting proteins. A number of approaches to gene silencing have been or are being explored in the clinic including anti-sense oligonucleotides (ASO), short interfering RNA (siRNA) and short hairpin RNA (shRNA) that target post-transcription mRNA, and bi-functional shRNA which has both post-transcriptional silencing and translation-inhibitory effects.

Furthermore, tumor cells can loose intercellular cohesion, enter the bloodstream and seed other tissues, enabled by epithelial-mesenchymal transition, where they can undergo mesenchymal-epithelial transition and grow at the newly seeded site; once again mediated by a different set of genes. Finally, scientists have identified genes in tumor cells, which allow for these tumor cells to escape killing by chemotherapy. Therefore, an alternative gene therapy approach for cancer is to target one or more of these genes in order to suppress or silence their expression resulting in an inability of these tumor cells to either maintain cell growth, inhibit metastases, impair blood vessel formation, or reverse drug resistance. Mesenchymal stem cells, which have cancer-trophic migratory properties, are being engineered to express anti-proliferative, anti-EMT, and anti-angiogenic agents.

Alternatively, gene therapy approaches may be designed to directly kill tumor cells using tumor-killing viruses, or through the introduction of genes termed suicide genes into the tumor cells. Scientists have generated viruses, termed oncolytic viruses, which grow selectively in tumor cells as compared to normal cells. For example, an expanding number of human viruses such as measles virus, vesticular stomatitis virus, reovirus, adenovirus, and herpes simplex virus (HSV) can be genetically modified to grow in tumor cells with consequent cell kill, but very poorly in normal cells thereby establishing a therapeutic advantage. . Oncolytic viruses spread deep into tumors to deliver a genetic payload that destroys cancerous cells. Several viruses with oncolytic properties are naturally occurring animal viruses (Newcastle Disease Virus) or are based on an animal virus such as vaccinia virus (cow pox virus or the small pox vaccine). A few human viruses such as coxsackie virus A21 are similarly being tested for these properties. In addition, oncolytic viruses can be genetically modified (i.e. GM-CSF DNA transfer)so as to enhance immunogenicity (e.g., HSV). The combination of selective oncolytic cell death with release of danger-associated molecular-patterns and tumor-associated antigens with heightened immunogenicity has been shown both enhanced local and spatially additive effects. Currently, multiple clinical trials are recruiting patients to test oncolytic viruses for the treatment of various types of cancers.

Suicide genes encode enzymes that are produced in tumor cells to convert a nontoxic prodrug into a toxic drug. Examples of suicide enzymes and their prodrugs include HSV thymidine kinase (ganciclovir), Escherichia coli purine nucleoside phosphorylase (fludarabine phosphate), cytosine deaminase (5-fluorocytosine), cytochrome p450 (cyclophosphamide), cytochrome p450 reductase (tirapazamine), carboxypeptidase (CMDA), and a fusion protein with cytosine deaminase linked to mutant thymidine kinase. Significantly, prior pilot studies suggested that the treatment of the prostate cancer cells with the suicide genes introduced by the oncolytic virus increased cancer cell sensitivity to radiation and chemotherapy.

Most of the above approaches have the limitation that they require delivery of a "corrective" gene to every cancer cell, a demanding task. An alternative is to harness the immune system, which may have an ability to actively seek out cancer cells. In healthy adults, the immune system recognizes and kills precancerous cells as well early cancer cells, but cancer progression is an evolutionary process and results in large part from an immune-evasive adaptive response to the cancer microenvironment affecting both the afferent and efferent arms of the immune response arc. This results in inhibition of the ability of a patients immune system to target and eradicate the tumor cells. To this end, investigators are developing and testing several cell therapy strategies to correct impairment of the host-cancer immune interaction and as a consequence, to improve the immune systems ability to eliminate cancer.

Cell therapy for cancer refers to one or more of 3 different approaches: (i) therapy with cells that give rise to a new immune system which may be better able to recognize and kill tumor cells through the infusion of hematopoietic stem cells derived from either umbilical cord blood, peripheral blood, or bone marrow cells, (ii) therapy with immune cells such as dendritic cells which are designed to activate the patients own resident immune cells (e.g. T cells) to kill tumor cells, and (iii) direct infusion of immune cells such as T cells and NK cells which are prepared to find, recognize, and kill cancer cells directly. In all three cases, therapeutic cells are harvested and prepared in the laboratory prior to infusion into the patient. Immune cells including dendritic cells, T cells, and NK cells, can be selected for desired properties and grown to high numbers in the laboratory prior to infusion. Challenges with these cellular therapies include the ability of investigators to generate sufficient function and number of cells for therapy.

Clinical trials of cell therapy for many different cancers are currently ongoing. More recently, scientists have developed novel cancer therapies by combining both gene and cell therapies. Specifically, investigators have developed genes which encode for artificial receptors, which, when expressed by immune cells, allow these cells to specifically recognize cancer cells thereby increasing the ability of these gene modified immune cells to kill cancer cells in the patient. One example of this approach, which is currently being studied at multiple centers, is the gene transfer of a class of novel artificial receptors called chimeric antigen receptors or CARs for short, into a patients own immune cells, typically T cells. Investigators believe that this approach may hold promise in the future for patients many different types of cancer. To this end, multiple pilot clinical trials for a variety of cancer types using T cells genetically modified to express tumor specific CARs are ongoing, some of which are showing promising results.

See the rest here:
Cancer Gene Therapy and Cell Therapy | ASGCT - American ...

Posted in Cell Therapy | Comments Off on Cancer Gene Therapy and Cell Therapy | ASGCT – American …

Scientists set to trial new stem cell therapy to ‘reawaken’ the brain … – The Sun

Posted: June 7, 2017 at 6:47 am

A US company has revealed it will start tests in an unidentified country in Latin America later this year

ATTEMPTS to bring people back from the dead could start in a few months, its been reported.

A US company has revealed it will start new stem cell therapy trials in an unidentified country in Latin America later this year.

Getty Images

In the majority of countries, to be officially declared dead requires an complete and irreversible loss of brain function.

But Bioquark says it has developed a series of injections that can reboot the brain and bring people back to life, according to MailOnline.

CEO Ira Pastor revealed the firm will begin testing itsmethod on humans and have no plans to try it out on animals first.

Pastor and orthopaedic surgeon Himanshu Bansal initially hoped to carry out tests in India last year.

Butthe Indian Council of Medical Research pulled the plug on their plans and asked them to to take the trials elsewhere.

In details published on a clinical trials database, scientists plan to examine individuals aged between 15 and 65 who have been declared brain dead from a traumatic brain injury.

They intend to use MRI scans to look for possible signs of brain death reversal before carrying out the trial, which will happen in three stages.

The first step involves harvesting stem cells from the patients own blood before injecting them back into their body.

Then the patient would be given a dose of peptides injected into their spinal cord.

Getty Images

Lastly they would undergo a 15-day course of laser and median nerve stimulation while monitoring the patient with MRI scans.

Consent is likely to be an issue for the researchers as technically all of the patients will be brain dead.

However the study detail states that it can accept written informed consent from the legally acceptable representative of the patient.

The Bioquark trials are part of a broader project called ReAnima, of which Pastor is on the advisory board.

The project explores the potential of cutting edge biomedical technology for human neuro-regeneration and neuro-reanimation.

Speaking to MailOnline last year, Pastor said: The mission of the ReAnima Project is to focus on clinical research in the state of brain death, or irreversible coma, in subjects who have recently met the Uniform Determination of Death Act criteria, but who are still on cardio-pulmonary or trophic support a classification in many countries around the world known as a living cadaver.

We pay for your stories! Do you have a story for The Sun Online news team? Email us at tips@the-sun.co.uk or call 0207 782 4368

Read the original post:
Scientists set to trial new stem cell therapy to 'reawaken' the brain ... - The Sun

Posted in Cell Therapy | Comments Off on Scientists set to trial new stem cell therapy to ‘reawaken’ the brain … – The Sun

Doctors Targets Stem Cell Therapy Launch – Bahamas Tribune

Posted: June 7, 2017 at 6:47 am

ByNEIL HARTNELL

Tribune Business Editor

nhartnell@tribunemedia.net

DOCTORS Hospital plans to launch stem cell therapy and enter the primary healthcare market during its current financial year, after profits for the year to end-January 2017 increased five-fold.

The BISX-listed healthcare provider said it planned to launch both initiatives at its Bahamas Medical Centre facility on Blake Road, having received the necessary approvals for one stem cell programme and another in its final stages.

Doctors Hospitals 2017 annual report did not identify the types of stem cell treatment involved, but said: It is envisioned that stem cell therapy will occur at the facility [Bahamas Medical Centre] in fiscal 2018, with one programme already receiving the necessary approvals and the second programme in its final stages of assessment and approval......

We anticipate that in fiscal 2018 we will launch one of our primary care centres at this location, supported by increased specialist services to best serve the neighbouring communities.

Joe Krukowski, Doctors Hospitals chairman, told shareholders via the annual report that the launch of primary care services will be a vital component in the continuum of care we provide.

We will seek to provide our customers with multiple entry points for this level of care, he added.

Doctors Hospitals stem cell initiatives, in particular, represent a potential boost to the Bahamas national effort to make greater inroads into the medical tourism market while also exploiting legislation passed by the former Christie administration.

The healthcare providers move into primary care will effectively create a fully-integrated model, combining with its core business in secondary and tertiary care provision to potentially make Doctors Hospital almost a one-stop shop for all medical needs.

The expansion comes after Doctors Hospital saw total comprehensive income for the year to end-January 2017 grow by 409 per cent or more than five-fold, from $702,790 to $3.578 million year-over-year.

The growth was driven entirely by the companys main Collins Avenue facility, where profits more than doubled, increasing by 157.4 per cent to $4.778 million compared to $1.856 million the year before. The Bahamas Medical Centres net loss increased slightly compared to the prior year, rising from $1.153 million to $1.2 million.

An improved top-line drove Doctors Hospitals improved profitability, with patient services revenue up $3.65 million or 7.4 per cent at $52.713 million.

Patient days increased by 6 per cent from the previous year, the annual report said of the main Collins Avenue hospital. Increases in the Intensive and Intermediary Care Units accounted for 37per centof the change, and the balance in medical surgical and maternity.

Total admissions to the facility were 4,114 in fiscal 2017 compared to 4,063 in fiscal 2016. The continued flat admission numbers and increased patient days are indicative of the trend toward a rising severity of illness. The average daily census increased to 33 patients per day from 31.2 in the previous year.

Doctors Hospitals total expenses grew by $818,452 or 1.7 per cent year-over-year, with salaries and benefits rising by $1.176 million or 5.6 per cent to $23.209 million. Due to the top-line growth, these fell as a percentage of patient net revenue from 44.3 per cent to 43.5 per cent.

At Bahamas Medical Centre, revenues rose by $28,015 or 1.9 per cent to $1.462 million. This slightly outpaced the increase in expenses, which jumped by 1.5 per cent or $43,479 to $2.819 million as a result of rising medical supplies costs.

Doctors Hospital is budgeting $7 million for capital spending projects in its financial year to end-January 2018, a sum more than double the prior years $3.1 million, as it bids to upgrade facilities and replace equipment.

Bad debt expense, as a percentage of patient service revenues, decreased to 2.6per centfor the year ended January 31, 2017, compared to 3.4per centthe previous year, Doctors Hospital said.This represented a decrease of $316,808, or 18.8per cent. This decrease is a result of a write-off of third-party receivables.

The number of days revenue in accounts receivable at year-end (AR Days) for fiscal 2017 stand at 51 compared with fiscal 2016 at 43 days, and net receivables as a percentage of net patient revenue increased to 14.1per centfrom 11.8per cent. These increases area result of high activity in the months of December and January, and payments not received until after year-end.

Read the original:
Doctors Targets Stem Cell Therapy Launch - Bahamas Tribune

Posted in Cell Therapy | Comments Off on Doctors Targets Stem Cell Therapy Launch – Bahamas Tribune

Celgene updates on two T cell therapy collaborations – The Pharma Letter (registration)

Posted: June 7, 2017 at 6:47 am

As the annual meeting of the American Society of Clinical Oncology enters its final day, US biotech major

To continue reading this article and to access exclusive features, interviews, round-ups and commentary from the sharpest minds in the pharmaceutical and biotechnology space you need to be logged into the site and have an active subscription or trial subscription. Please loginorsubscribe in order to continue reading. Claim a week's trial subscriptionby signing up for free today and receive our daily pharma and biotech news bulletin free of charge, forever.

ASCObb2121Biotechnologybluebird bioCelgeneConference RoundupDrug TrialImmuno-oncologyJuno TherapeuticsResearchUSA

Access The Pharma Letter's latest news free for 7 days

PLUS... you can receive the Pharma Letter headlines and news roundup email free forever

Click here to take a free trial

Unlimited access to The Pharma Letter site for a whole year Only 77 per month or 820 per year

Click here to subscribe

Read more from the original source:
Celgene updates on two T cell therapy collaborations - The Pharma Letter (registration)

Posted in Cell Therapy | Comments Off on Celgene updates on two T cell therapy collaborations – The Pharma Letter (registration)

Column: Stem Cell Therapy A medical revolution – Current in Carmel

Posted: June 7, 2017 at 6:47 am

Commentary by Dmitry M. Arbuck, MD, President and Medical Director, Indiana Polyclinic

We are at a truly revolutionary time in health and medicine. The introduction of stem cell technology represents innovation on the same level as the development of antibiotics or the invention of modern imaging (MRIs, etc.). Stem cells are already changing the way medicine is delivered, increasing lifespans and saving countless lives.

Arbuck

Scientists and researchers have been studying the benefits of stem cells for more than 30 years. They have found that these special cells provide great benefits all over the body, from muscles and joints to chronic diseases, to growing new teeth. You may have read about athletes treated with stem cells to speed healing after an injury or about burn victims who use stem cell therapy to minimize scarring.

Stem cells used to be associated with embryos, but this is no longer the case. Today, live cells for treatment are either adult stem cells or umbilical cord blood stem cells. Adult stem cells are most likely extracted from tissue, like bone marrow or fat, which can be a painful and invasive process. Additionally, as we age, so do our stem cells, which become less potent and productive over time. Like every other tissue in our bodies, they are exposed to the toxins, radiation and other pollutants in the environment. Umbilical cord blood stem cells are collected from the donated cord blood and placenta of healthy newborns. The cells are then screened for disease and genetic problems. These umbilical stem cells are vibrant, vital and healthy.

When umbilical cord stem cells are infused, they carry a whole host of immune stabilizing factors throughout the body and work to repair the immune system. This is likely why stem cells are so helpful in the treatment of autoimmune diseases such as rheumatoid arthritis, Crohns disease, dermatitis and myasthenia gravis. Other things that may be successfully treated with this therapy include MS, lupus, graft vs. host disease and other immune conditions.

The future is today. For more, visit StemCellsIndy.com.

See the original post:
Column: Stem Cell Therapy A medical revolution - Current in Carmel

Posted in Cell Therapy | Comments Off on Column: Stem Cell Therapy A medical revolution – Current in Carmel

Page 1,480«..1020..1,4791,4801,4811,482..1,4901,500..»