Search Results for: www stemcell tv

Stell Cell Genetics | Stem Cell TV | Page 4

Posted: September 10, 2019 at 7:44 pm

The potential therapeutic benefits of HESC research provide strong grounds in favor of the research. If looked at from a strictly consequentialist perspective, its almost certainly the case that the potential health benefits from the research outweigh the loss of embryos involved and whatever suffering results from that loss for persons who want to protect embryos. However, most of those who oppose the research argue that the constraints against killing innocent persons to promote social utility apply to human embryos. Thus, as long as we accept non-consequentialist constraints on killing persons, those supporting HESC research must respond to the claim that those constraints apply to human embryos.

In its most basic form, the central argument supporting the claim that it is unethical to destroy human embryos goes as follows: It is morally impermissible to intentionally kill innocent human beings; the human embryo is an innocent human being; therefore it is morally impermissible to intentionally kill the human embryo. It is worth noting that this argument, if sound, would not suffice to show that all or even most HESC research is impermissible, since most investigators engaged in HESC research do not participate in the derivation of HESCs but instead use cell lines that researchers who performed the derivation have made available. To show that researchers who use but do not derive HESCs participate in an immoral activity, one would further need to establish their complicity in the destruction of embryos. We will consider this issue in section 2. But for the moment, let us address the argument that it is unethical to destroy human embryos.

A premise of the argument against killing embryos is that human embryos are human beings. The issue of when a human being begins to exist is, however, a contested one. The standard view of those who oppose HESC research is that a human being begins to exist with the emergence of the one-cell zygote at fertilization. At this stage, human embryos are said to be whole living member[s] of the species homo sapiens [which] possess the epigenetic primordia for self-directed growth into adulthood, with their determinateness and identity fully intact (George & Gomez-Lobo 2002, 258). This view is sometimes challenged on the grounds that monozygotic twinning is possible until around days 1415 of an embryos development (Smith & Brogaard 2003). An individual who is an identical twin cannot be numerically identical to the one-cell zygote, since both twins bear the same relationship to the zygote, and numerical identity must satisfy transitivity. That is, if the zygote, A, divides into two genetically identical cell groups that give rise to identical twins B and C, B and C cannot be the same individual as A because they are not numerically identical with each other. This shows that not all persons can correctly assert that they began their life as a zygote. However, it does not follow that the zygote is not a human being, or that it has not individuated. This would follow only if one held that a condition of an entitys status as an individual human being is that it be impossible for it to cease to exist by dividing into two or more entities. But this seems implausible. Consider cases in which we imagine adult humans undergoing fission (for example, along the lines of Parfits thought experiments, where each half of the brain is implanted into a different body) (Parfit 1984). The prospect of our going out of existence through fission does not pose a threat to our current status as distinct human persons. Likewise, one might argue, the fact that a zygote may divide does not create problems for the view that the zygote is a distinct human being.

There are, however, other grounds on which some have sought to reject that the early human embryo is a human being. According to one view, the cells that comprise the early embryo are a bundle of homogeneous cells that exist in the same membrane but do not form a human organism because the cells do not function in a coordinated way to regulate and preserve a single life (Smith & Brogaard 2003, McMahan 2002). While each of the cells is alive, they only become parts of a human organism when there is substantial cell differentiation and coordination, which occurs around day-16 after fertilization. Thus, on this account, disaggregating the cells of the 5-day embryo to derive HESCs does not entail the destruction of a human being.

This account is subject to dispute on empirical grounds. That there is some intercellular coordination in the zygote is revealed by the fact that the development of the early embryo requires that some cells become part of the trophoblast while others become part of the inner cell mass. Without some coordination between the cells, there would be nothing to prevent all cells from differentiating in the same direction (Damschen, Gomez-Lobo and Schonecker 2006). The question remains, though, whether this degree of cellular interaction is sufficient to render the early human embryo a human being. Just how much intercellular coordination must exist for a group of cells to constitute a human organism cannot be resolved by scientific facts about the embryo, but is instead an open metaphysical question (McMahan 2007a).

Suppose that the 5-day human embryo is a human being. On the standard argument against HESC research, membership in the species Homo sapiens confers on the embryo a right not to be killed. This view is grounded in the assumption that human beings have the same moral status (at least with respect to possessing this right) at all stages of their lives.

Some accept that the human embryo is a human being but argue that the human embryo does not have the moral status requisite for a right to life. There is reason to think that species membership is not the property that determines a beings moral status. We have all been presented with the relevant thought experiments, courtesy of Disney, Orwell, Kafka, and countless science fiction works. The results seem clear: we regard mice, pigs, insects, aliens, and so on, as having the moral status of persons in those possible worlds in which they exhibit the psychological and cognitive traits that we normally associate with mature human beings. This suggests that it is some higher-order mental capacity (or capacities) that grounds the right to life. While there is no consensus about the capacities that are necessary for the right to life, some of the capacities that have been proposed include reasoning, self-awareness, and agency (Kuhse & Singer 1992, Tooley 1983, Warren 1973).

The main difficulty for those who appeal to such mental capacities as the touchstone for the right to life is that early human infants lack these capacities, and do so to a greater degree than many of the nonhuman animals that most deem it acceptable to kill (Marquis 2002). This presents a challenge for those who hold that the non-consequentialist constraints on killing human children and adults apply to early human infants. Some reject that these constraints apply to infants, and allow that there may be circumstances where it is permissible to sacrifice infants for the greater good (McMahan 2007b). Others argue that, while infants do not have the intrinsic properties that ground a right to life, we should nonetheless treat them as if they have a right to life in order to promote love and concern towards them, as these attitudes have good consequences for the persons they will become (Benn 1973, Strong 1997).

Some claim that we can reconcile the ascription of a right to life to all humans with the view that higher order mental capacities ground the right to life by distinguishing between two senses of mental capacities: immediately exercisable capacities and basic natural capacities. (George and Gomez-Lobo 2002, 260). According to this view, an individuals immediately exercisable capacity for higher mental functions is the actualization of natural capacities for higher mental functions that exist at the embryonic stage of life. Human embryos have a rational nature, but that nature is not fully realized until individuals are able to exercise their capacity to reason. The difference between these types of capacity is said to be a difference between degrees of development along a continuum. There is merely a quantitative difference between the mental capacities of embryos, fetuses, infants, children, and adults (as well as among infants, children, and adults). And this difference, so the argument runs, cannot justify treating some of these individuals with moral respect while denying it to others.

Given that a human embryo cannot reason at all, the claim that it has a rational nature has struck some as tantamount to asserting that it has the potential to become an individual that can engage in reasoning (Sagan & Singer 2007). But an entitys having this potential does not logically entail that it has the same status as beings that have realized some or all of their potential (Feinberg 1986). Moreover, with the advent of cloning technologies, the range of entities that we can now identify as potential persons arguably creates problems for those who place great moral weight on the embryos potential. A single somatic cell or HESC can in principle (though not yet in practice) develop into a mature human being under the right conditionsthat is, where the cells nucleus is transferred into an enucleated egg, the new egg is electrically stimulated to create an embryo, and the embryo is transferred to a womans uterus and brought to term. If the basis for protecting embryos is that they have the potential to become reasoning beings, then, some argue, we have reason to ascribe a high moral status to the trillions of cells that share this potential and to assist as many of these cells as we reasonably can to realize their potential (Sagan & Singer 2007, Savulescu 1999). Because this is a stance that we can expect nearly everyone to reject, its not clear that opponents of HESC research can effectively ground their position in the human embryos potential.

See the original post:Stell Cell Research Stem Cell Clinic

Go here to see the original:
Stell Cell Genetics | Stem Cell TV | Page 4

Posted in Stell Cell Genetics | Comments Off on Stell Cell Genetics | Stem Cell TV | Page 4

Connecticut Stem Cells | Stem Cell TV

Posted: September 10, 2019 at 7:44 pm

Connecticut Stem Cell Research Grants-in-Aid Program

The Connecticut Stem Cell Research Grants-in-Aid Program was established by the Connecticut General Assembly in June 2005 when it passed Connecticut General Statutes 19a-32d through 19a-32g. This legislation appropriates $20 million dollars to support embryonic and human adult stem cell research through June 30, 2007. In addition, for each of the fiscal years ending June 30, 2008 through June 30, 2015, the legislation specifies that an additional $10 million dollars should be disbursed to support additional research. In total, at least $100 million in public support will be available over the next ten years for stem cell research.

Lay Summary Example

Below is an example of a lay summary excerpt from a technical report required of all grantees that meets the expectations of the Stem Cell Research Advisory Committee:

5. Detailed lay language summary:

There is great promise in embryonic stem cell-based therapies to treat a variety of neurological disorders. It is key that we understand how the transplanted cells may interact with the host brain to guarantee the safety of this approach. We observe that robust transplants of embryonic stem cell-derived neural progenitors in the hippocampus are richly vascularized, associated with multiple blood vessels. In addition, the transplanted cells can migrate on these blood vessels some distance away from the initial transplant site. We are now studying how interactions with the blood vessels may nurture the transplant and support its successful integration into the host. We are also examining the factors that might promote or inhibit the migration of transplanted cells on the surface of existing blood vessels. This interaction could be used to target grafted cells to a specific site. Alternatively this could be a dangerous process we would like to block, as it could lead to cells present in undesirable places.

Significance of recent findings: When embryonic stem cell-derived neural progenitors are transplanted to the central nervous system, the general expectation is that they will remain where transplanted, or perhaps migrate short distances. Our observation that these cells can migrate on blood vessels long distances sets up a red flag: cells may well end up a great distance from where they were intended to be. By understanding the molecular basis for this migration, we hope to be able to control it, specifically inhibit it when the desire is to keep a transplant in place. Alternatively, it may be desirable to use this blood vessel highway to target cells to specific distant sites.

Frequently Asked Questions

How did Connecticuts Stem Cell Research Program come about?

The Connecticut Stem Cell Research Grant Project is the direct result of legislation passed by the General Assembly in 2005 (Connecticut General Statutes 19a-32d through 19a-32g.). This legislation provides public funding in support of stem cell research on embryonic and human adult stem cells. This legislation also bans the cloning of human beings in Connecticut.

Back to Questions

What kinds of research will be eligible for funding?

The Stem Cell Research Fund supports embryonic and human adult stem cell research, including basic research to determine the properties of stem cells.

Back to Questions

Where is the money coming from for this research?

Stem cell research fundscome from the Stem Cell Research Fund. This Fund will receive a total of $100 million dollars of state money over ten years. The General Assembly had set aside $20 million of state money for the purpose of stem cell research through June 2007. An additional $10 million dollars a year over the subsequent eight years will come from the Connecticut Tobacco Settlement Fund. The Stem Cell Research Fund may also contain any funds received from any public or private contributions, gifts, grants, donations or bequests.

Back to Questions

Who oversees the Stem Cell Research Fund?

The Commissioner of the State Department of Public Health (DPH) may make grants-in-aid from the fund. The Connecticut Stem Cell Research Advisory Committee (Advisory Committee), a legislatively appointed committee established by Connecticut General Statutes 19a-32d through 19a-32g, directs the Commissioner with respect to the awarding of grants-in-aid, and develops the stem cell research application process. The Stem Cell Research Advisory Committee is also required to keep the Governor and the General Assembly apprised of the current status of stem cell research in Connecticut through annual reports commencing June 2007.

The legislation further established a Connecticut Stem Cell Research Peer Review Committee (Peer Review Committee) to review all applications with respect to the scientific and ethical meritsand to make recommendations to the Advisory Committee and the Commissioner of DPH.

Back to Questions

How are the members of the Stem Cell Research Advisory Committee determined?

The Stem Cell Research Advisory Committee is made up of 17 members. By statute, the Advisory Committee is chaired by the Commissioner of the Connecticut Department of Public Health (DPH). Other members of the committee are appointed by the Governor and by various leaders of the General Assembly from the fields of stem cell research, stem cell investigation, bioethics, embryology, genetics, cellular biology and business. Committee members commit to a two-year or four-year term of service.

Back to Questions

Who evaluates the merits of the grant applications and decides how the grants are distributed?

The Stem Cell Research Peer Review Committee reviews all grant applications for scientific and ethical merit, guided by the National Academies Guidelines for Human Embryonic Stem Cell Research. The Stem Cell Research Peer Review Committee makes its recommendations on grants to the Stem Cell Research Advisory Committee for consideration. The members of the Stem Cell Peer Review Committee must have demonstrated and practical knowledge, understanding and experience of the ethical and scientificimplications of embryonic and adult stem cell research. The DPH Commissioner appoints all committee members for either two or four-year terms. The Stem Cell Research Advisory Committee directs the Commissioner of the Department of Public Health with respect to the awarding of grants-in-aid.

Back to Questions

Who may apply for the stem cell research grants?

Any non-profit, tax-exempt academic institution of higher education, any hospital that conducts biomedical research or any entity that conducts biomedical research or embryonic or human adult stem cell research may apply for grants from the Connecticut Stem Cell Research Fund.

Back to Questions

What efforts are being made to assure the people of the state of Connecticut that all committee dealings and any research are ethically conducted?

The State of Connecticut is committed to implementing the Stem Cell Research Program according to the highest ethical and scientific standards, and committed to conducting all business activities in a transparent and consumer friendly manner. Meetings of the committee where decisions are being made will comply with Freedom of Information Act requirements for public meetings and public records. Proceedings of all scheduled meetings of the Advisory Board will be transcribed and made available to the public, and when possible, meetings will be televised via local public access television.

Members of the Stem Cell Research Advisory Committee are considered to be public officials and are subject to state ethics laws, which require full accountability and transparency. Both the Peer Review and Advisory Committees are responsible for overseeing the standards of research funded from this grant program. Reports on scientific progress are required of grant recipients. Annual financial disclosures are required for all members of the Stem Cell Research Advisory Committee.

Back to Questions

Who else is involved with overseeing this project?

The State of Connecticut Department of Public Health, working in conjunction with the legislatively mandated Advisory and Peer Review Committees, is responsible for the overall implementation of the stem cell legislation.Withinthe DPH, the Office of Research and Development is the organizational unit tasked with managing the stem cell research project components.

In addition, the stem cell legislation names Connecticut Innovations as the administrative staff of the Stem Cell Research Advisory Committee, assisting the Advisory Committee in developing and implementing the application process, including application reviews and execution of agreements.

Back to Questions

What is the timeline for the application process?

The Advisory Committee developed and issued the first Request for Proposals on May 10, 2006. As of the July 10, 2006 deadline, 70 applications for public funding were received. Applications were made available for peer review on August 4, 2006.On November 21, 2006, the Stem Cell Research Advisory Committee awarded almost $19.8 million for 21 stem cell research proposals.

The second Request for Proposals was issued on July 25, 2007. As of the November 1, 2007 deadline, 94 applications for public funding were received. The Peer Review Committee completed their review and reported by teleconference on March 5, 2008. On April 1, 2008, the SCRAC awarded $9.84 million for 22 stem cell research projects.

The third Request for Proposals was issued on September 24, 2008. As of the December 8, 2008 deadline, 77 applications for public funding were received. The Peer Review Committee completed their review and reported by teleconference on March 17, 2009. On March 31, 2009, the SCRAC awarded $9.8 million for 24 stem cell research projects.

Back to Questions

Which grant applications received funding in 2006?

An Integrated Approach to Neural Differentiation of Human Embryonic Stem Cells, Yale University, Michael P. Snyder, Principal Investigator, $3,815,476.72

Directing hES Derived Progenitor Cells into Musculoskeletal Lineages, University of Connecticut Health Center and University of Connecticut, David W. Rowe, M. D., Principal Investigator, $3,520,000

Human Embryonic Stem Cell Core Facility at Yale Stem Cell Center, Yale University, Haifan Lin, Principal Investigator, $2,500,000

Human ES Cell Core At University of Connecticut and Wesleyan University, University of Connecticut Health Center, Ren-He Xu, Principal Investigator, $2,500,000

DsRNA and Epigenetic Regulation in Embryonic Stem Cells, University of Connecticut Health Center, Gordon G. Carmichael, $880,000.

Alternative Splicing in Human Embryonic Stem Cells, University of Connecticut Health Center, Brenton R. Graveley, Principal Investigator, $880,000

SMAD4-based ChIP-chip Analysis to Screen Target Genes of BMP and TGF Signaling in Human ES Cells, University of Connecticut Health Center, Ren-He Xu, Principal Investigator, $880,000

Directing Production and Functional Integration of Embryonic Stem Cell-Derived Neural Stem Cells, Wesleyan University, Laura B. Grabel, Principal Investigator, $878,348.24

Role of the Leukemia Gene MKL in Developmental Hematopoiesis Using hES Cells, Yale University, Diane Krause, Principal Investigator, $856,653.72

Migration and Integration of Embryonic Stem Cell Derived Neurons into Cerebral Cortex, University of Connecticut, Joseph LoTurco, Principal Investigator, $561,631.84

Optimizing Axonal Regeneration Using a Polymer Implant Containing hESC-derived Glia, University of Connecticut, Akiko Nishiyama, $529,871.76

Development of Efficient Methods for Reproducible and Inducible Transgene Expression in Human Embryonic Stem Cells, University of Connecticut Health Center, James Li, Principal Investigator, $200,000

Pragmatic Assessment of Epigenetic Drift in Human ES Cell Lines, University of Connecticut, Theodore Rasmussen, Ph.D., Principal Investigator, $200,000

Cell Cycle and Nuclear Reprogramming by Somatic Cell Fusion, University of Connecticut Health Center, Winfried Krueger, Principal Investigator, $200,000

Function of the Fragile X Mental Retardation Protein in Early Human Neural Development, Yale University, Yingqun Joan Huang, Principal Investigator, $200,000

Quantitative Analysis of Molecular Transport and Population Kinetics of Stem Cell Cultivation in a Microfluidic System, University of Connecticut, Tai-His Fan, Principal Investigator, $200,000

Embryonic Stem Cell as a Universal Cancer Vaccine, University of Connecticut Health Center, Bei Liu, Zihai Li, M. D., Principal Investigators, $200,000

Lineage Mapping of Early Human Embryonic Stem Cell Differentiation, University of Connecticut, Craig E. Nelson, $200,000

Directed Isolation of Neuronal Stem Cells from hESC Lines, Yale University School of Medicine, Eleni A. Markakis, Principal Investigator, $184,407

Magnetic Resonance Imaging of Directed Endogenous Neural Progenitor Cell Migration, Yale University School of Medicine, Erik Shapiro, Principal Investigator, $199,975

Generation of Insulin Producing Cells from Human Embryonic Stem Cells, University of Connecticut, Gang Xu, Principal Investigator, $200,000

Back to Questions

Which grant applications received funding in 2008?

Maintaining and Enhancing the Human Embryonic Stem Cell Core at the Yale Stem Cell Center, Yale University Stem Cell Center, New Haven, Haifan Lin, PhD, Principal Investigator, $1,800,000.

Translational Studies in Monkeys of hESCs for Treatment of Parkinsons Disease, Yale University School of Medicine, New Haven, D. Eugene Redmond, Jr., MD, Principal Investigator, $1,120,000.

Production and Validation of Patient-Matched Pluipotent Cells for Improved Cutaneous Repair, University of Connecticut Center of Regenerative Biology, Storrs, Theodore Rasmussen, PhD., Principal Investigator, $634,880.

Directed Differentiation of ESCs into Cochlear Precursors for Transplantation as Treatment of Deafness, University of Connecticut, Storrs, Ben Bahr, PhD, Principal Investigator, $500,000.

Synaptic Replenishment Through Embryonic Stem Cell Derived Neurons in a Transgenic Mouse Model of Alzheimer's Disease, University of Connecticut Health Center, Farmington, Nada Zecevic, MD, PhD, Principal Investigator, $499,813.

Tyrosone Phosphorylation Profiles Associated with Self-Renewal and Differentiation of hESC, University of Connecticut Health Center, Farmington, Bruce Mayer, PhD., Principal Investigator, $450,000.

Directed Differentiation of ESCs into Cochlear Precursors for Transplantation as Treatment of Deafness, University of Connecticut Health Center, Farmington, D. Kent Morest, MD, Principal Investigator, $450,000.

Targeting Lineage Committed Stem Cells to Damaged Intestinal Mucosa, University of Connecticut Health Center, Farmington, Daniel W. Rosenberg, PhD., Principal Investigator, $450,000.

Modeling Motor Neuron Degeneration in Spinal Muscular Atrophy Using hESCs, University of Connecticut Health Center, Farmington, Xuejun Li, PhD., Principal Investigator, $450,000.

Human Embryonic and Adult Stem Cell for Vascular Regeneration, Yale University School of Medicine, New Haven, Laura E. Niklason, MD, PhD, $450,000.

Effect of Hypoxia on Neural Stem Cells and the Function in CAN Repair, Yale University, New Haven, Flora M. Vaccarino, Principal Investigator, $449,771.40.

Wnt Signaling and Cardiomyocyte Differentiation from hESCs, Yale University, New Haven, Dianqing Wu, Principal Investigator, $446,818.50.

Flow Cytometry Core for the Study of hESC, University of Connecticut Health Center, Farmington, Hector Leonardo Aguila, PhD., Principal Investigator, $250,000.

Cortical neuronal protection in spinal cord injury following transplantation of dissociated neurospheres derived from human embryonic stem cells, Yale University School of Medicine, New Haven, Masanori Sasaki, MD, PhD, Principal Investigator, $200,000.

Molecular Control of Pluripotency in Human Embryonic Stem Cell, Yale Stem Cell Center, New Haven, Natalia Ivanova, Principal Investigator, $200,000.

Cytokine-induced Production of Transplantable Hematopoietic Stem Cells from Human ES Cells, University of Connecticut Health Center, Farmington, Laijun Lai, PhD, Principal Investigator, $200,000.

Functional Use of Embryonic Stem Cells for Kidney Repair, Yale University, New Haven, Lloyd G. Cantley, Principal Investigator, $200,000.

VRK-1-mediated Regulation of p53 in the Human ES Cell Cycle, Yale University, New Haven, Valerie Reinke, Principal Investigator, $200,000.

Definitive Hematopoitic Differentiation of hESCs under Feeder-Free and Serum-Free Conditions, Yale University, Caihong Qiu, PhD, Principal Investigator, $200,000.

Differentiation of hESC Lines to Neural Crest Derived Trabecular Meshwork Like Cells Implications in Glaucoma, University of Connecticut Health Center, Farmington, Dharamainder Choudhary, PhD., Principal Investigator, $200,000.

The Role of the piRNA Pathway in Epigenetic Regulation of hESCs, Yale University, New Haven, Qiaoqiao Wang, PhD., Principal Investigator, $200,000.

Early Differentiation Markers in hESCs: Identification and Characterization of Candidates, University of Connecticut Center for Regenerative Biology, Storrs, Mark G. Carter, PhD., Principal Investigator, $200,000.

Regulation hESC-dervied Neural Stem Cells by Notch Signaling, Yale University, New Haven, Joshua Breunig, MD, Principal Investigator, $188,676.

Back to Questions

Which grant applications received funding in 2009?

Continuing and Enhancing the UCONN-Wesleyan Stem Cell Core, University of Connecticut Stem Cell Center, Farmington, Ren-He Xu, MD, PhD, Principal Investigator, $1,900,000.00.

Williams Syndrome Associated TFII-I Factor and Epigenetic Marking-Out in hES and Induced Pluripotent Stem Cells, University of Connecticut Health Center, Farmington, Dashzeveg Bayarsaihan, PhD., Principal Investigator, $500,000.00.

Cellular transplantation of neural progenitors derived from human embryonic stem cells to remyelinate the nonhuman primate spinal cord, Yale University, New Haven, Jeffrey Kocsis, PhD., Principal Investigator, $500,000.00.

Mechanisms of Stem Cell Homing to the Injured Heart, University of Connecticut Health Center, Linda Shapiro, PhD., Principal Investigator, $500,000.00.

Originally posted here:Stem Cell Research Program - Grants - portal.ct.gov

Follow this link:
Connecticut Stem Cells | Stem Cell TV

Posted in Connecticut Stem Cells | Comments Off on Connecticut Stem Cells | Stem Cell TV

Massachusetts Stem Cells | Stem Cell TV

Posted: September 10, 2019 at 7:43 pm

James F. Battey, Jr., MD, PhD; Laura K. Cole, PhD; and Charles A. Goldthwaite, Jr., PhD.

Stem cells are distinguished from other cells by two characteristics: (1) they can divide to produce copies of themselves (self-renewal) under appropriate conditions and (2) they are pluripotent, or able to differentiate into any of the three germ layers: the endoderm (which forms the lungs, gastrointestinal tract, and interior lining of the stomach), mesoderm (which forms the bones, muscles, blood, and urogenital tract), and ectoderm (which forms the epidermal tissues and nervous system). Pluripotent cells, which can differentiate into any mature cell type, are distinct from multipotent cells (such as hematopoietic, or blood-forming, cells) that can differ into a limited number of mature cell types. Because of their pluripotency and capacity for self-renewal, stem cells hold great potential to renew tissues that have been damaged by conditions such as type 1 diabetes, Parkinson's disease, heart attacks, and spinal cord injury. Although techniques to transplant multipotent or pluripotent cells are being developed for many specific applications, some procedures are sufficiently mature to be established options for care. For example, human hematopoietic cells from the umbilical cord and bone marrow are currently being used to treat patients with disorders that require replacement of cells made by the bone marrow, including Fanconi's anemia and chemotherapy-induced bone marrow failure after cancer treatment.

However, differentiation is influenced by numerous factors, and investigators are just beginning to understand the fundamental properties of human pluripotent cells. Researchers are gradually learning how to direct these cells to differentiate into specialized cell types and to use them for research, drug discovery, and transplantation therapy (see Figure 8.1). However, before stem cell derivatives are suitable for clinical application, scientists require a more complete understanding of the molecular mechanisms that drive pluripotent cells into differentiated cells. Scientists will need to pilot experimental transplantation therapies in animal model systems to assess the safety and long-term stable functioning of transplanted cells. In particular, they must be certain that any transplanted cells do not continue to self-renew in an unregulated fashion after transplantation, which may result in a teratoma, or stem cell tumor. In addition, scientists must ascertain that cells transplanted into a patient are not recognized as foreign by the patient's immune system and rejected.

Figure 8.1. The Scientific Challenge of Human Stem CellsThe state of the science currently lies in the development of fundamental knowledge of the properties of human pluripotent cells. The scientific capacity needs to be built, an understanding of the molecular mechanisms that drive cell specialization needs to be advanced, the nature and regulation of interaction between host and transplanted cells needs to be explored and understood, cell division needs to be understood and regulated, and the long-term stability of the function in transplanted cells needs to be established.

Stem cells derived from an early-stage human blastocyst (an embryo fertilized in vitro and grown approximately five days in culture) have the capacity to renew indefinitely, and can theoretically provide an unlimited supply of cells. It is also possible to derive stem cells from non-embryonic tissues, including amniotic fluid, placenta, umbilical cord, brain, gut, bone marrow, and liver. These stem cells are sometimes called "adult" stem cells, and they are typically rare in the tissue of origin. For example, blood-forming (hematopoietic) stem cell experts estimate that only 1 in 2000 to fewer than 1 in 10,000 cells found in the bone marrow is actually a stem cell.1 Because so-called "adult" stem cells include cells from the placenta and other early stages of development, they are more correctly termed "non-embryonic stem cells." Non-embryonic stem cells are more limited in their capacity to self renew in the laboratory, making it more difficult to generate a large number of stem cells for a specific experimental or therapeutic application. Under normal conditions, non-embryonic stem cells serve as a repair pool for the body, so they typically differentiate only into the cell types found in the organ of origin. Moreover, there is little compelling evidence for trans-differentiation, whereby a stem cell from one organ differentiates into a mature cell type of a different organ. New discoveries may overcome these limitations of stem cells derived from non-embryonic sources, and research directed toward this goal is currently underway in a number of laboratories.

Cultures of human pluripotent, self-renewing cells enable researchers to understand the molecular mechanisms that regulate differentiation (see Figure 8.2), including epigenetic changes (traits that may be inherited that do not arise from changes in the DNA sequence) in the chromatin structure, developmental changes in gene expression, exposure to growth factors, and interactions between adjacent cells. Understanding these basic mechanisms may enable future scientists to mobilize and differentiate endogenous populations of pluripotent cells to replace a cell type ravaged by injury or disease. Alternatively, scientists may some day be able to coax human pluripotent cells grown in the laboratory to become a specific type of specialized cell, which physicians could subsequently transplant into a patient to replace cells damaged by these same disease processes.

Scientists are gradually learning to direct the differentiation of pluripotent cell cultures into a specific type of cell, which can then be used as cellular models of human disease for drug discovery or toxicity studies. While it is not possible to predict the myriad ways that a basic understanding of stem cell differentiation may lead to new approaches for treating patients with cellular degenerative diseases, some avenues can be theorized. For example, in the case of Huntington's disease, a fatal neurodegenerative disorder, one could imagine that pluripotent cells derived from an embryo that carries Huntington's disease and differentiated into neurons in culture could be used to test drugs to delay or prevent degeneration.

Despite the incredible growth in knowledge that has occurred in stem cell research within the last couple of decades, investigators are just beginning to unravel the process of differentiation. Human pluripotent cell lines are an essential tool to understand this process and to facilitate the ultimate use of these cells in the clinic. To provide background on this fundamental topic, this article reviews the various potential sources and approaches that have been used to generate human pluripotent and multipotent cell lines, both of embryonic and non-embryonic origin.

Currently, at least six embryonic sources have been used to establish human pluripotent stem cell lines. All approaches involve isolation of viable cells during an early phase of development, followed by growth of these cells in appropriate culture medium. The various sources of these initial cell populations are discussed in brief below. It should be noted that the manipulation and use of embryonic tissues has raised a number of ethical issues.2,3 This article focuses on the scientific and technical issues associated with creating pluripotent cells, with the understanding that some of these techniques are currently subject to debates that extend beyond discussions of their scientific merits.

Figure 8.2. The Promise of Stem Cell ResearchStem cell research provides a useful tool for unraveling the molecular mechanisms that determine the differentiation fate of a pluripotent cell and for understanding the gene expression properties and epigenetic modifications essential to maintain the pluripotent state. In the future, this knowledge may be used to generate cells for transplantation therapies, whereby a specific cell population compromised by disease is replaced with new, functional cells. Differentiated derivatives of human pluripotent cells may also prove to be useful as models for understanding the biology of disease and developing new drugs, particularly when there is no animal model for the disease being studied. The greatest promise of stem cell research may lie in an area not yet imagined.

2008 Terese Winslow

Drawing upon twenty years of communal expertise with mouse ES cells,4 and on human inner cell mass culture conditions developed by Ariff Bongso and colleagues,5 James Thomson and colleagues at the University of Wisconsin generated the first hESC lines in 1998 using tissue from embryos fertilized in vitro.6 This method uses embryos generated for in vitro fertilization (IVF) that are no longer needed for reproductive purposes. During IVF, medical professionals usually produce more embryos than a couple attempting to start a family may need. Spare embryos are typically stored in a freezer to support possible future attempts for additional children if desired. It is estimated that there are approximately 400,000 such spare embryos worldwide.6 If these embryos are never used by the couple, they either remain in storage or are discarded as medical waste. Alternatively, these embryos can potentially be used to generate a hESC line.

To generate a hESC line, scientists begin with a donated blastocyst-stage embryo, at approximately five days after IVF (see Figure 8.3a). The blastocyst consists of approximately 150200 cells that form a hollow sphere of cells, the outer layer of which is called the trophectoderm. During normal development, the trophoblast becomes the placenta and umbilical cord. At one pole of this hollow sphere, 3050 cells form a cluster that is called the inner cell mass (ICM), which would give rise to the developing fetus. ICM cells are pluripotent, possessing the capacity to become any of the several hundred specialized cell types found in a developed human, with the exception of the placenta and umbilical cord.

Scientists remove the ICM from the donated blastocyst and place these cells into a specialized culture medium. In approximately one in five attempts, a hESC line begins to grow. Stem cells grown in such a manner can then be directed to differentiate into various lineages, including neural precursor cells,8 cardiomyocytes,9 and hematopoietic (blood forming) precursor cells.10

However, hESC lines are extremely difficult to grow in culture; the cells require highly specialized growth media that contain essential ingredients that are difficult to standardize. Yet the culture conditions are critical to maintain the cells' self-renewing and pluripotent properties. Culture requires the support of mouse or human cells, either directly as a "feeder" cell layer6,11,12 or indirectly as a source of conditioned medium in feeder-free culture systems.13 The feeder cells secrete important nutrients and otherwise support stem cell growth, but are treated so they cannot divide. Although the complete role of these feeder cells is not known, they promote stem cell growth, including detoxifying the culture medium and secreting proteins that participate in cell growth.14 hESC lines used to produce human cells for transplantation therapies may need to be propagated on a human feeder cell layer to reduce the risk of contamination by murine viruses or other proteins that may cause rejection. Thus, hESC lines often grow only under highly specific culture conditions, and the identification of ideal growth conditions presents a challenge regardless of the source of the hESCs.

Furthermore, human ES cell cultures must be expanded using an exacting protocol to avoid cell death and to control spontaneous differentiation. Since a limited number of laboratories in the United States are growing these cells, there is a shortage of people well-versed in the art and science of successful hESC culture. In the short term, challenges of working with these cells include developing robust culture conditions and protocols, understanding the molecular mechanisms that direct differentiation into specific cell types, and developing the infrastructure to advance this scientific opportunity. Once these challenges have been met, scientists will need to conduct transplantation studies in animal models (rodent and non-human primates) to demonstrate safety, effectiveness, and long-term benefit before stem cell therapies may enter clinical trials.

A second method for generating human pluripotent stem cell lines was published in 1998 by John Gearhart and coworkers at The Johns Hopkins Medical School.15

These researchers isolated specialized cells known as primordial germ cells (PGCs) from a 57-week-old embryo and placed these cells into culture (see Figure 8.3b). PGCs are destined to become either oocytes or sperm cells, depending on the sex of the developing embryo. The resulting cell lines are called embryonic germ cell lines, and they share many properties with ES cells. As with ES cells, however, PGCs present challenges with sustained growth in culture.16,17 Spontaneous differentiation, which hinders the isolation of pure clonal lines, is a particular issue. Therefore, the clinical application of these cells requires a more complete understanding of their derivation and maintenance in vitro.

Embryos that stop dividing after being fertilized in vitro are not preferentially selected for implantation in a woman undergoing fertility treatment. These embryos are typically either frozen for future use or discarded as medical waste. In 2006, scientists at the University of Newcastle, United Kingdom, generated hESC lines from IVF embryos that had stopped dividing.18 These scientists used similar methods as described under "Traditional hESC Line Generation" except that their source material was so-called "dead" IVF embryos (see Figure 8.3c). The human stem cells created using this technique behaved like pluripotent stem cells, including producing proteins critical for "stemness" and being able to produce cells from all three germ layers. It has been proposed that an IVF embryo can be considered dead when it ceases to divide.19 If one accepts this definition, such an embryo that "dies" from natural causes presumably cannot develop into a human being, thereby providing a source to derive human ES cells without destroying a living embryo.

Figure 8.3. Alternative Methods for Preparing Pluripotent Stem Cells

2008 Terese Winslow

Couples who have learned that they carry a genetic disorder sometimes use pre-implantation genetic diagnosis (PGD) and IVF to have a child that does not carry the disorder. PGD requires scientists to remove one cell from a very early IVF human embryo and test it for diseases known to be carried by the hopeful couple. Normally, embryos identified with genetic disorders are discarded as medical waste. However, Dr.Yuri Verlinsky and colleagues have capitalized on these embryos as a way to further our understanding of the diseases they carry (see Figure 8.3d) by deriving hESC lines from them.20 These stem cell lines can then be used to help scientists understand genetically-based disorders such as muscular dystrophy, Huntington's disease, thalessemia, Fanconi's anemia, Marfan syndrome, adrenoleukodystrophy, and neurofibromatosis.

In 2006, Dr. Robert Lanza and colleagues demonstrated that it is possible to remove a single cell from a pre-implantation mouse embryo and generate a mouse ES cell line.21 This work was based upon their experience with cleavage-stage mouse embryos. Later that same year, Dr. Lanza's laboratory reported that it had successfully established hESC lines (see Figure 8.3e) from single cells taken from pre-implantation human embryos.22 The human stem cells created using this technique behaved like pluripotent stem cells, including making proteins critical for "stemness" and producing cells from all three germ layers. Proponents of this technique suggest that since it requires only one embryonic cell, the remaining cells may yet be implanted in the womb and develop into a human being. Therefore, scientists could potentially derive human embryonic stem cells without having to destroy an embryo. However, ethical considerations make it uncertain whether scientists will ever test if the cells remaining after removal of a single cell can develop into a human being, at least in embryos that are not at risk for carrying a genetic disorder. Moreover, it is unclear whether the single cell used to generate a pluripotent stem cell line has the capacity to become a human being.

Parthenogenesis is the creation of an embryo without fertilizing the egg with a sperm, thus omitting the sperm's genetic contributions. To achieve this feat, scientists "trick" the egg into believing it is fertilized, so that it will begin to divide and form a blastocyst (see Figure 8.3f). In 2007, Dr. E.S. Revazova and colleagues reported that they successfully used parthenogenesis to derive hESCs.23 These stem cell lines, derived and grown using a human feeder cell layer, retained the genetic information of the egg donor and demonstrated characteristics of pluripotency. This technique may lead to the ability to generate tissue-matched cells for transplantation to treat women who are willing to provide their own egg cells.24 It also offers an alternate method for deriving tissue-matched hESCs that does not require destruction of a fertilized embryo.

Amniotic fluid surrounding the developing fetus contains cells shed by the fetus and is regularly collected from pregnant women during amniocentesis. In 2003, researchers identified a subset of cells in amniotic fluid that express Oct-4, a marker for pluripotent human stem cells that is expressed in ES cells and embryonic germ cells.25 Since then, investigators have shown that amniotic fluid stem cells can differentiate into cells of all three embryonic germ layers and that these cells do not form tumors in vivo.26,27

For example, Anthony Atala and colleagues at the Wake Forest University have recently generated non-embryonic stem cell lines from cells found in human and rat amniotic fluid.27 They named these cells amniotic fluid-derived stem cells (AFS). Experiments demonstrate that AFS can produce cells that originate from each of the three embryonic germ layers, and the self-renewing cells maintained the normal number of chromosomes after a prolonged period in culture. However, undifferentiated AFS did not produce all of the proteins expected of pluripotent cells, and they were not capable of forming a teratoma. The scientists developed in vitro conditions that enabled AFS to produce nerve cells, liver cells, and bone-forming cells. AFS-derived human nerve cells could make proteins typical of specialized nerve cells and were able to integrate into a mouse brain and survive for at least two months. Cultured AFS-derived human liver cells secreted urea and made proteins characteristic of normal human liver cells. Cultured AFS-derived human bone cells made proteins expected of human bone cells and formed bone in mice when seeded onto scaffolds and implanted under the mouse's skin. Although scientists do not yet know how many different cell types AFS can generate, AFS may one day allow researchers to establish a bank of cells for transplantation into humans.

An alternative to searching for an existing population of stem cells is to create a new one from a population of non-pluripotent cells. This strategy, which may or may not involve the creation of an embryo, is known as "reprogramming." This section will summarize reprogramming approaches, including several recent breakthroughs in the field..

In SCNT (see Figure 8.3g), human oocytes (eggs) are collected from a volunteer donor who has taken drugs that stimulate the production of more than one oocyte during the menstrual cycle. Scientists then remove the nucleus from the donated oocyte and replace it with the nucleus from a somatic cell, a differentiated adult cell from elsewhere in the body. The oocyte with the newly-transferred nucleus is then stimulated to develop. The oocyte may develop only if the transplanted nucleus is returned to the pluripotent state by factors present in the oocyte cytoplasm. This alteration in the state of the mature nucleus is called nuclear reprogramming. When development progresses to the blastocyst stage, the ICM is removed and placed into culture in an attempt to establish a pluripotent stem cell line. To date, the technique has been successfully demonstrated in two primates: macaque monkeys28 and humans.29

However, successful SCNT creates an embryo-like entity, thereby raising the ethical issues that confront the use of spare IVF embryos. However, pluripotent cell lines created by embryos generated by SCNT offer several advantages over ES cells. First, the nuclear genes of such a pluripotent cell line will be identical to the genes in the donor nucleus. If the nucleus comes from a cell that carries a mutation underlying a human genetic disease such as Huntington's disease, then all cells derived from the pluripotent cell line will carry this mutation. In this case, the SCNT procedure would enable the development of cellular models of human genetic disease that can inform our understanding of the biology of disease and facilitate development of drugs to slow or halt disease progression. Alternatively, if the cell providing the donor nucleus comes from a specific patient, all cells derived from the resulting pluripotent cell line will be genetically matched to the patient with respect to the nuclear genome. If these cells were used in transplantation therapy, the likelihood that the patient's immune system would recognize the transplanted cells as foreign and initiate tissue rejection would be reduced. However, because mitochondria also contain DNA, the donor oocyte will be the source of the mitochondrial genome, which is likely to carry mitochondrial gene differences from the patient which may still lead to tissue rejection.

A technique reported in 2007 by Dr. Kevin Eggan and colleagues at Harvard University may expand scientists' options when trying to "reprogram" an adult cell's DNA30. Previously, successful SCNT relied upon the use of an unfertilized egg. Now, the Harvard scientists have demonstrated that by using a drug to stop cell division in a fertilized mouse egg (zygote) during mitosis, they can successfully reprogram an adult mouse skin cell by taking advantage of the "reprogramming factors" that are active in the zygote at mitosis. They removed the chromosomes from the single-celled zygote's nucleus and replaced them with the adult donor cell's chromosomes (see Figure 8.3h). The active reprogramming factors present in the zygote turned genes on and off in the adult donor chromosomes, to make them behave like the chromosomes of a normally fertilized zygote. After the zygote was stimulated to divide, the cloned mouse embryo developed to the blastocyst stage, and the scientists were able to harvest embryonic stem cells from the resulting blastocyst. When the scientists applied their new method to abnormal mouse zygotes, they succeeded at reprogramming adult mouse skin cells and harvesting stem cells. If this technique can be repeated with abnormal human zygotes created in excess after IVF procedures, scientists could use them for research instead of discarding them as medical waste.

Altered nuclear transfer is a variation on standard SCNT that proposes to create patient-specific stem cells without destroying an embryo. In ANT, scientists turn off a gene needed for implantation in the uterus (Cdx2) in the patient cell nucleus before it is transferred into the donor egg (see Figure 8.3i). In 2006, Dr. Rudolph Jaenisch and colleagues at MIT demonstrated that ANT can be carried out in mice.31 Mouse ANT entities whose Cdx2 gene is switched off are unable to implant in the uterus and do not survive to birth. Although ANT has been used to create viable stem cell lines capable of producing almost all cell types, the authors point out that this technique must still be tested with monkey and human embryos. Moreover, the manipulation needed to control Cdx2 expression introduces another logistical hurdle that may complicate the use of ANT to derive embryonic stem cells. Proponents of ANT, such as William Hurlbut of the Stanford University Medical Center, suggest that the entity created by ANT is not a true embryo because it cannot implant in the uterus.32, 33 However, the technique is highly controversial, and its ethical implications remain a source of current debate.4,32

In 2005, Kevin Eggan and colleagues at Harvard University reported that they had fused cultured adult human skin cells with hESCs (see Figure 8.3j).36 The resulting "hybrid" cells featured many characteristics of hESCs, including a similar manner of growth and division and the manufacture of proteins typically produced by hESCs. Some factor(s) within the hESCs enabled them to "reprogram" the adult skin cells to behave as hESCs. However, these cells raised a significant technical barrier to clinical use. Because fused cells are tetraploid (they contain four copies of the cellular DNA rather than the normal two copies), scientists would need to develop a method to remove the extra DNA without eliminating their hESC-like properties. The fusion method serves as a useful model system for studying how stem cells "reprogram" adult cells to have properties of pluripotent cells. However, if the reprogramming technique could be carried out without the fusion strategy, a powerful avenue for creating patient-specific stem cells without using human eggs could be developed.

In 2007, two independent research groups published manuscripts that described successful genetic reprogramming of human adult somatic cells into pluripotent human stem cells.34,35 Although some technical limitations remain, this strategy suggests a promising new avenue for generating pluripotent cell lines that can inform drug development, models of disease, and ultimately, transplantation medicine. These experiments, which are discussed below, were breakthroughs because they used adult somatic cells to create pluripotent stem cells that featured hallmarks of ES cells.

In 2006, Shinya Yamanaka and colleagues at Kyoto University reported that they could use a retroviral expression vector to introduce four important stem cell factors into adult mouse cells and reprogram them to behave like ES cells (see Figure 8.3k).37 They called the reprogrammed cells "iPSCs," for induced pluripotent stem cells. However, iPSCs produced using the original technique failed to produce sperm and egg cells when injected into an early mouse blastocyst and did not make certain critical DNA changes. These researchers then modified the technique to select for iPSCs that can produce sperm and eggs,38 results that have since been reproduced by Rudolph Jaenisch and colleagues at the Massachusetts Institute of Technology (MIT).39

In addition, the MIT scientists determined that iPSCs DNA is modified in a manner similar to ES cells, and important stem cell genes are expressed at similar levels. They also demonstrated that iPSCs injected into an early mouse blastocyst can produce all cell types within the developing embryo, and such embryos can complete gestation and are born alive.

Once these research advances were made in mice, they suggested that similar techniques might be used to reprogram adult human cells. In 2007, Yamanaka and coworkers reported that introducing the same four genetic factors that reprogrammed the mouse cells into adult human dermal fibroblasts reprogrammed the cells into human iPSCs.35 These iPSCs were similar to human ES cells in numerous ways, including morphology, proliferative capacity, expression of cell surface antigens, and gene expression. Moreover, the cells could differentiate into cell types from the three embryonic germ layers both in vitro and in teratoma assays. Concurrent with the Yamanaka report, James Thomson and coworkers at the University of Wisconsin published a separate manuscript that detailed the creation of human iPSCs through somatic cell reprogramming using four genetic factors (two of which were in common with the Yamanaka report).34 The cells generated by the Thomson group met all defining criteria for ES cells, with the exception that they were not derived from embryos.

These breakthroughs have spurred interest in the field of iPSCs research. In early 2008, investigators at the Massachusetts General Hospital40 and the University of California, Los Angeles41 reported generating reprogrammed cells. As scientists explore the mechanisms that govern reprogramming, it is anticipated that more reports will be forthcoming in this emerging area. Although these reprogramming methods require the use of a virus, non-viral strategies may also be possible in the future. In any case, these approaches have created powerful new tools to enable the "dedifferentation" of cells that scientists had previously believed to be terminally differentiated.42,43

Although further study is warranted to determine if iPS and ES cells differ in clinically significant ways, these breakthrough reports suggest that reprogramming is a promising strategy for future clinical applications. Induced pluripotent cells offer the obvious advantage that they are not derived from embryonic tissues, thereby circumventing the ethical issues that surround use of these materials. Successful reprogramming of adult somatic cells could also lead to the development of stem cell lines from patients who suffer from genetically-based diseases, such as Huntington's Disease, spinal muscular atrophy, muscular dystrophy, and thalessemia. These lines would be invaluable research tools to understand the mechanisms of these diseases and to test potential drug treatments. Additionally, reprogrammed cells could potentially be used to repair damaged tissues; patient-specific cell lines could greatly reduce the concerns of immune rejection that are prevalent with many transplantation strategies.

However, several technical hurdles must be overcome before iPSCs can be used in humans. For example, in preliminary experiments with mice, the virus used to introduce the stem cell factors sometimes caused cancers.37 The viral vectors used in these experiments will have to be selected carefully and tested fully to verify that they do not integrate into the genome, thereby harboring the potential to introduce genetic mutations at their site of insertion. This represents a significant concern that must be addressed before the technique can lead to useful treatments for humans. However, this strategy identifies a method for creating pluripotent stem cells that, together with studies of other types of pluripotent stem cells, will help researchers learn how to reprogram cells to repair damaged tissues in the human body.

Stem cell research is a rapidly evolving field, and researchers continue to isolate new pluripotent cells and create additional cell lines. This section briefly reviews other sources of pluripotent cells and the implications that their discovery may have on future research.

Epiblast Cells. While rodent and human ES cells are pluripotent, they maintain their respective pluripotencies through different molecular signaling pathways. It is not known why these differences exist. Recently, several research groups have reported the generation of stable, pluripotent cell lines from mouse and rat epiblast, a tissue of the post-implantation embryo that ultimately generates the embryo proper.44,45 These cells are distinct from mouse ES cells in terms of the signals that control their differentiation. However, the cells share patterns of gene expression and signaling responses with human ES cells. The establishment of epiblast cell lines can therefore provide insight into the distinctions between pluripotent cells from different species and illuminate ways that pluripotent cells pursue distinct fates during early development.

Existing Adult Stem Cells. As has been discussed in other chapters, numerous types of precursor cells have been isolated in adult tissues.46 Although these cells tend to be relatively rare and are dispersed throughout the tissues, they hold great potential for clinical application and tissue engineering. For example, tissues created using stem cells harvested from an adult patient could theoretically be used clinically in that patient without engendering an immune response. Moreover, the use of adult stem cells avoids the ethical concerns associated with the use of ES cells. In addition, adult-derived stem cells do not spontaneously differentiate as do ES cells, thus eliminating the formation of teratomas often seen with implantation of ES cells. The potential of adult stem cells for regenerative medicine is great; it is likely that these various cells will find clinical application in the upcoming decades.

Although the recent advances in reprogramming of adult somatic cells has generated a wave of interest in the scientific community, these cell lines will not likely replace hESC lines as tools for research and discovery. Rather, both categories of cells will find unique uses in the study of stem cell biology and the development and evaluation of therapeutic strategies. Pluripotent cells offer a number of potential clinical applications, especially for diseases with a genetic basis. However, researchers are just beginning to unlock the many factors that govern the cells' growth and differentiation. As scientists make strides toward understanding how these cells can be manipulated, additional applications, approaches, and techniques will likely emerge. As such, pluripotent cells will play a pivotal role in future research into the biology of development and the treatment of disease.

Chapter7|Table of Contents|Chapter9

Excerpt from:Alternate Methods for Preparing Pluripotent Stem Cells ...

See more here:
Massachusetts Stem Cells | Stem Cell TV

Posted in Massachusetts Stem Cells | Comments Off on Massachusetts Stem Cells | Stem Cell TV

Georgia Stem Cells | Stem Cell TV

Posted: September 7, 2019 at 4:35 pm

Theranostics 2017; 7(7):2067-2077. doi:10.7150/thno.19427

Review

Kiwon Ban1, Seongho Bae2, Young-sup Yoon2, 3

1. Department of Biomedical Sciences, City University of Hong Kong, Hong Kong;2. Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, USA;3. Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.

Cardiomyocytes (CMs) derived from human pluripotent stem cells (hPSCs) are considered a most promising option for cell-based cardiac repair. Hence, various protocols have been developed for differentiating hPSCs into CMs. Despite remarkable improvement in the generation of hPSC-CMs, without purification, these protocols can only generate mixed cell populations including undifferentiated hPSCs or non-CMs, which may elicit adverse outcomes. Therefore, one of the major challenges for clinical use of hPSC-CMs is the development of efficient isolation techniques that allow enrichment of hPSC-CMs. In this review, we will discuss diverse strategies that have been developed to enrich hPSC-CMs. We will describe major characteristics of individual hPSC-CM purification methods including their scientific principles, advantages, limitations, and needed improvements. Development of a comprehensive system which can enrich hPSC-CMs will be ultimately useful for cell therapy for diseased hearts, human cardiac disease modeling, cardiac toxicity screening, and cardiac tissue engineering.

Keywords: Cardiomyocytes, hPSCs

Heart failure is the leading cause of death worldwide [1]. Approximately 6 million people suffer from heart failure in the United States every year [1]. Despite this high incidence, existing surgical and pharmacological interventions for treating heart failure are limited because these approaches only delay the progression of the disease; they cannot directly repair the damaged hearts [2]. In the case of large myocardial infarction (MI), patients progress to heart failure and die within short time from the onset of symptoms [3].

The adult human heart has minimal regenerative capacity, because during mammalian development, the proliferative capacity of cardiomyocytes (CMs) progressively diminishes and becomes terminally differentiated shortly after birth [4].Therefore, once CMs are damaged, they are rarely restored [5]. When MI occurs, the infarcted area is easily converted to non-contractile scar tissue due to loss of CMs and replacement by fibrosis [6]. Development of a fibroblastic scar initiates a series of events that lead to adverse remodeling, hypertrophy, and eventual heart failure [2, 3, 7].

While heart transplantation is considered the most viable option for treating advanced heart failure, the number of available donor hearts is always less than needed [6]. Therefore, more realistic therapeutic options have been required [2]. Accordingly, over the past two decades, cell-based cardiac repair has been intensively pursued [2, 7]. Several different cell types have been tested and varied outcomes were obtained. Indeed, the key factor for successful cell-based cardiac repair is to find the optimal cell type that can restore normal heart function. Naturally, CMs have been considered the best cell type to repair a damaged heart [8]. In fact, many scientists hypothesized that implanted CMs would survive in damaged hearts and form junctions with host CMs and synchronously contract with the host myocardium [9]. In fact, animal studies with primary fetal or neonatal CMs demonstrated that transplanted CMs could survive in infarcted hearts [9-11]. These primary CMs reduced scar size, increased wall thickness, and improved cardiac contractile function with signs of electro-mechanical integration [9-11]. These studies strongly suggest that CMs can be a promising source to repair the heart. However, the short supply and ethical concerns disallow using primary human CMs. In a patient with ischemic cardiomyopathy, about 40-50% of the CMs are lost in 40 to 60 grams of heart tissue [7]. Even if we seek to regenerate a fairly small portion of the damaged myocardium, a large number of human primary CMs would be required, which is impossible.

Accordingly, CMs differentiated from human pluripotent stem cells (hPSCs) including both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have emerged as a promising option for candidate CMs for cell therapy [12, 13]. hPSCs have many advantages as a source for CMs. First, hPSCs have obvious cardiomyogenic potential. hPSC derived-CMs (hPSC-CMs) possess a clear cardiac phenotype, displaying spontaneous contraction, cardiac excitation-contraction (EC) coupling, and expression of cardiac transcription factors, cardiac ion channels, and cardiac structural proteins [14, 15]. Second, undifferentiated hPSCs and their differentiated cardiac progeny display significant proliferation capacity, allowing generation of a large number of hPSC-CMs. Lastly, many pre-clinical studies demonstrated that implantation of hPSC-CMs can repair injured hearts and improve cardiac function [16-19]. Histologically, implanted hPSC-CMs are engrafted, aligned and coupled with the host CMs in a synchronized manner [16-19].

In the last two decades, various protocols for differentiating hPSCs into CMs have been developed to improve the efficiency, purity and clinical compatibility [20] [18]. The reported differentiation methods include, but are not limited to: differentiation via embryoid body (EB) formation [20], co-culture with END-2 cells [18], and monolayer culture [15, 21, 22]. The EB-mediated CM differentiation protocol is one of the most widely employed methods due to its simple procedure and low cost. However, it often becomes labor-intensive to produce scalable EBs for further differentiation, which makes it difficult for therapeutic applications. EB-mediated differentiation also produces inconsistent results, showing beating CMs from 5% to 70% of EBs. Recently, researchers developed monolayer methods to complement the problems of EB-based methods [15, 21, 22]. In one representative protocol, hPSCs are cultured at a high density (up to 80%) and treated with a high concentration of Activin A (100 ng/ml) for 1 day and BMP4 (10 ng/ml) for 4 days followed by continuous culture on regular RPMI media with B27 [15]. This protocol induces spontaneous beating at approximately 12 days and produces approximately 40% CMs after 3 weeks. These hPSC-CMs can be further cultured in RPMI-B27 medium for another 2-3 weeks without significant cell damage [15]. However, these protocols use media with proprietary formulations, which complicates clinical application. As shown, most monolayer-based methods employ B27, which is a complex mix of 21 components. Some of the components of B27, including bovine serum albumin (BSA), are animal-derived products, and the effects of B27 components on differentiation, maturation or subtype specification processes are poorly defined. In 2014, Burridge and his colleagues developed an advanced protocol that is defined, cost-effective and efficient [22]. By subtracting one component from B27 at a time and proceeding with cardiac differentiation, the researchers reported that BSA and L-ascorbic acid 2-phosphate are essential components in cardiac differentiation. Subsequently, by replacing BSA with rice-derived recombinant human albumin, the chemically defined medium with 3 components (CDM3) was produced. The application of a GSK-inhibitor, CHIR99021, for the first 2 days followed by 2 days of the Wnt-inhibitor Wnt-59 to cells is an optimal culture condition in CDM3 resulting in similar levels of live-cell yields and CM differentiation [22].

Despite remarkable improvement in the generation of hPSC-CMs, obtaining pure populations of hPSC-CMs still remains challenging. Currently available methods can only generate a mixture of cells which include not only CMs but other cell types. This is one of the most critical barriers for applications of hPSC-CMs in regenerative therapy, drug discovery, and disease investigation. For Instance, cardiac transplantation of non-pure hPSC-CMs mixed with undifferentiated hPSCs or other cell types may produce tumors or unwanted cell types in hearts [23-28]. Accordingly, a pure or enriched population of hPSC-CMs would be required, particularly for cardiac cell therapy. Enriched hPSC-CMs would also be more beneficial for myocardial repair due to improved electric and mechanical properties [29]. A pure, homogeneous population of hPSC-CMs would pose less arrhythmic risk and have enhanced contractile performance, and would be more useful in disease modeling as they better reflect native CM physiology. Finally, purified hPSC-CMs would better serve for testing drug efficacy and toxicity. Therefore, many researchers have tried to develop methods to purify CMs from cardiomyogenically differentiated hPSCs.

There are three important topics that are not addressed in this review. First is the beneficial role of other cell types such as endothelial cells and fibroblasts in the integration, survival, and function of CMs [30-32]. We did not discuss this issue because it would need a separate review due to the volume of material. While the roles of such cells are important, the value of having purified hPSC-CMs is not diminished. Although cell mixtures or tissue engineered products can be used, unless purified CMs are employed, they would form tumors or other cells/tissues when implanted in vivo. Our point here is that even if cardiomyocytes are mixed with non-CMs, all cells should be clearly defined and purified as well. If the mixture is made in a non-purified or non-defined manner (for example, an unsophisticated top-down approach), there would be undefined cells that are neither CMs, ECs, nor fibroblasts and these unidentified cells will make aberrant tissues or tumors. Second, we did not deal with maturation of hPSC-CMs because of its broad scope and depth [33, 34]. Third is direct reprogramming or conversion of somatic cells into CMs. There has been another advancement in the generation of CMs by directly reprogramming or converting somatic cells into CM-like cells by introducing a combination of cardiac transcription factors (TFs) or muscle-specific microRNAs (miRNAs) both in vitro and in vivo [35-41]. These cells are referred to as induced CMs (iCMs) or cardiac-like myocytes (iCLMs). While this is an important advancement, we did not cover this topic either due to its size. Accordingly, this review will focus on the various strategies for purifying or enriching hPSC-CMs reported to date (Figure 1).

Early on, researchers isolated hPSC-CMs manually under microscopy by mechanically separating out the beating areas from myogenically differentiating hPSC cultures [18, 20, 42]. This method usually generates 5-70% hPSC-CMs. Although generally crude, it can enrich even higher percentages of CMs with further culture. This manual isolation method has the advantage of being easy, but while it can be useful for small-scale research, it is very labor intensive and not scalable, precluding large scale research or clinical application.

Currently available strategies for enriching cardiomyocytes derived from human pluripotent stem cells.

Xu et el. reported that hPSC-CMs, due to their physical and structural properties, can be enriched by Percoll density gradient centrifugation [43]. Percoll was first formulated by Pertoft et al [44] and it was originally developed for the isolation of cells, organelles, or viruses by density centrifugation. The Percoll-based method has several advantages. The procedure for Percoll-based separation is very simple and easy, it is inexpensive, and its low viscosity allows more rapid sedimentation and lower centrifugal forces compared to a sucrose density gradient. Lastly, it can be prepared and kept for a long time in an isotonic solution to maintain osmolarity. Although Percoll separation has resulted in major improvements in hPSC-CM isolation procedures, it has clear limitations with regard to purity and scalability. Previous studies found that Percoll separation is only able to enrich 40 -70% of hPSC-CMs. It is also not compatible with large-scale enrichment of hPSC-CMs.

Another traditional method for purifying hPSC-CMs is based on the expression of a drug resistant gene or a fluorescent reporter gene such as eGFP or DsRed, which is driven by a cardiac specific promoter in genetically modified hPSC lines [45, 46]. Here, enrichment of hPSC-CMs can be achieved by either drug treatment to eliminate cells that do not express the drug resistant gene or with FACS to isolate fluorescent cells [47, 48].

Briefly, enrichment of PSC-CMs by genetically based selection was first reported by Klug et al [49]. The authors generated murine ES cell lines via permanent gene transfection of the aminoglycoside phosphotransferase gene driven by the MHC (MYH7) promoter. With this approach, highly purified murine ESC-CMs up to 99% were achieved. Next, several studies reported the use of various CM-specific promoters to enrich ESC-CMs such as Mhc (Myh6), Myh7, Ncx (Sodium Calcium exchanger) and Mlc2v (Myl2) [46, 50, 51]. In the case of hESCs, MHC/EGFP hESCs were generated by permanent transfection of the EGFP-tagged MHC promoter [52]. Similarly, an NKX2.5/eGFP hESC line was generated to enrich GFP positive CMs [53]. However, since MHC and NKX2.5 are expressed in general CMs, the resulting CMs contain a mixture of the three subtypes of CMs, nodal-, atrial-, and ventricular-like CMs. To enrich only ventricular-like CMs, Huber et al. generated MLC2v/GFP ESCs to be able to isolate MLC2v/GFP positive ventricular-like cells by FACS [52] [54-57]. In addition, the cGATA6 gene was used to purify nodal-like hESC-CMs [58]. Future studies should focus on testing new types of cardiac specific promoters and devising advanced selection procedures to improve this strategy.

While fluorescence-based cell sorting is more widely used, the drug selection method may be a better approach to enrich high purity of hPSC-CMs during differentiation/culture as it does not require FACS. The advantage is its capability for high-purity cell enrichment due to specific gene-based cell sorting. These highly pure cells can allow more precise mechanistic studies and disease modeling. Despite its many advantages, the primary weakness of genetic selection is genetic manipulation, which disallows its use for therapeutic application. Insertion of reporter genes into the host genome requires viral or nonviral transfection/transduction methods, which can induce mutagenesis and tumor formation [50, 59-61].

Practically, antibody-based cell enrichment is the best method for cell purification to date. When cell type-specific surface proteins or marker proteins are known, one can tag cells with antibodies against the proteins and sort the target cells by FACS or magnetic-activated cell sorting (MACS). The main advantage is its specificity and sensitivity, and its utility is well demonstrated in research and even in clinical therapy with hematopoietic cells [62]. Another advantage is that multiple surface markers can be used at the same time to isolate target cells when one marker is not sufficient. However, no studies have reported surface markers that are specific for CMs, even after many years. Recently, though, several researchers demonstrated that certain proteins can be useful for isolating hPSC-CMs.

In earlier studies, KDR (FLK1 or VEGFR2) and PDGFR- were used to isolate cardiac progenitor cells [63]. However, since these markers are also expressed on hematopoietic cells, endothelial cells, and smooth muscle cells, they could not enrich only hPSC-CMs. Next, two independent studies reported two surface proteins, SIRPA [64] and VCAM-1 [65], which it was claimed could specifically identify hPSC-CMs. Dubois et al. screened a panel of 370 known antibodies against CMs differentiated from hESCs and identified SIRPA as a specific surface protein expressed on hPSC-CMs [64]. FACS with anti-SIRPA antibody enabled the purification of CMs and cardiac precursors from cardiomyogenically differentiating hPSC cultures, producing cardiac troponin T (TNNT2, also known as cTNT)-positive cells, which are generally considered hPSC-CMs, with up to 98% purity. In addition, a study performed by Elliot and colleagues identified another cell surface marker, VCAM1 [53]. In this study, the authors used NKX2.5/eGFP hESCs to generate hPSC-CMs, allowing the cells to be sorted by their NKX2.5 expression. NKX2.5 is a well-known cardiac transcription factor and a specific marker for cardiac progenitor cells [66, 67]. To identify CM-specific surface proteins, the authors performed expression profiling analyses and found that expression levels of both VCAM1 and SIRPA were significantly upregulated in NKX2.5/eGFP+ cells. Flow cytometry results showed that both proteins were expressed on the cell surface of NKX2.5/eGFP+ cells. Differentiation day 14 NKX2.5/eGFP+ cells expressed VCAM1 (71 %) or SIRPA (85%) or both VCAM1 and SIRPA (37%). When the FACS-sorted SIRPA-VCAM1-, SIRPA+ or SIRPA+VCAM1+ cells were further cultured, only SIRPA+ or SIRPA+VCAM1+ cells showed NKX2.5/eGFP+ contracting portion. Of note, NKX2.5/eGFP and SIRPA positive cells showed higher expression of smooth muscle cell and endothelial cell markers indicating that cells sorted solely based on SIRPA expression may not be of pure cardiac lineage. Hence, the authors concluded that a more purified population of hPSC-CMs could be isolated by sorting with both cell surface markers. Despite significant improvements, it appears that these surface markers are not exclusively specific for CMs as these antibodies also mark other cell types including smooth muscle cells and endothelial cells. Furthermore, they are also known to be expressed in the brain and the lung, which raises concerns whether these surface proteins can be used as sole markers for the purification of hPSC-CMs compatible for clinical applications.

More recently, Protze et al. reported successful differentiation and enrichment of sinoatrial node-like pacemaker cells (SANLPCs) from differentiating hPSCs by using cell surface markers and an NKX2-5-reporter hPSC line [68]. They found that BMP signaling specified cardiac mesoderm toward the SANLPC fate and retinoic acid signaling enhanced the pacemaker phenotype. Furthermore, they showed that later inhibition of the FGF pathway, the TFG pathway, and the WNT pathway shifted cell fate into SANLPCs, and final cell sorting for SIRPA-positive and CD90-negative cells resulted in enrichment of SANLPCs up to ~83%. These SIRPA+CD90- cells showed the molecular, cellular and electrophysiological characteristics of SANLPCs [68]. While this study makes important progress in enriching SANLPCs by modulating signaling pathways, no specific surface markers for SANLPCs were identified and the yield was still short of what is usually expected for cells purified via FACS.

Hattori et al. developed a highly efficient non-genetic method for purifying hPSC-derived CMs, in which they employed a red fluorescent dye, tetramethylrhodamine methyl ester perchlorate (TMRM), that can label active mitochondria. Since CMs contain a large number of mitochondria, CMs from mice and marmosets (monkey) could be strongly stained with TMRM [69]. They further found that primary CMs from several different types of animals and CMs derived from both mESCs and hESCs were successfully purified by FACS up to 99% based on the TMRM signals. In addition to its efficiency for CM enrichment, TMRM did not affect cell viability and disappeared completely from the cells within 24 hrs. Importantly, injected hPSC-CMs purified in this way did not form teratoma in the heart tissues. However, since TMRM only functions in CMs with high mitochondrial density, this method cannot purify entire populations of hPSC-CMs [64]. While originally TMRM was claimed to be able to isolate mature hPSC-CMs, mounting evidence indicates that hPSC-CMs are similar to immature human CMs at embryonic or fetal stages. Therefore, both the exact phenotype of the cells isolated by TMRM and its utility are rather questionable [33, 34]. Two subsequent studies demonstrated that TMRM failed to accurately distinguish hPSC-CMs due to the insufficient amounts of mitochondria [64].

Employing the unique metabolic properties of CMs, Tohyama et al. developed an elegant purification method to enrich PSC-CMs [70]. This approach is based on the remarkable biochemical differences in lactate and glucose metabolism between CMs and non-CMs, including undifferentiated cells. Mammalian cells use glucose as their main energy source [71]. However, CMs are capable of energy production from different sources such as lactate or fatty acids [71]. A comparative transcriptome analysis was performed to detect metabolism-related genes which have different expression patterns between newborn mouse CMs and undifferentiated mouse ESCs. These results showed that CMs expressed genes encoding tricarboxylic acid (TCA) cycle enzymes more than genes related to lipid and amino acid synthesis and the pentose phosphate cycle compared to undifferentiated ESCs. To further prove this observation, they compared the metabolites of these pathways using fluxome analysis between CMs and other cell types such as ESCs, hepatocytes and skeletal muscle cells, and found that CMs have lower levels of metabolites related to lipid and amino acid synthesis and pentose phosphate. Subsequently, authors cultured newborn rat CMs and mouse ESCs in media with lactate, forcing the cells to use the TCA cycle instead of glucose, and they observed that CMs were the only cells to survive this condition for even 96 hrs. They further found that when PSC derivatives were cultured in lactate-supplemented and glucose-depleted culture medium, only CMs survived. Their yield of CM population was up to 99% and no tumors were formed when these CMs were transplanted into hearts. This lactate-based method has many advantages: its simple procedures, ease of application, no use of FACS for cell sorting, and relatively low cost. More recently, this method was applied to large-scale CM aggregates to ensure scalability. As a follow-up study, the same group recently reported a more refined lactate-based enrichment method which further depletes glutamine in addition to glucose [72]. The authors found that glutamine is essential for the survival of hPSCs since hPSCs are highly dependent on glycolysis for energy production rather than oxidative phosphorylation. The use of glutamine- and glucose-depleted lactate-containing media resulted in more highly purified hPSC-CMs with less than 0.001% of residual PSCs [72]. One concern of this lactate-based enrichment method is the health of the purified hPSC-CMs, because physiological and functional characteristics of hPSC-CMs cultured in glucose- and glutamine-depleted media for a long time may have functional impairment since CMs with mature mitochondria were not able to survive without glucose and glutamine, although they were able to use lactate to synthesize pyruvate and glutamate [72]. In addition, this lactate-based strategy can only be applied to hPSC- CMs, but not other hPSC derived cells such as neuron or -cells.

Our group also recently reported a new method to isolate hPSC-CMs by directly labelling cardiac specific mRNAs using nano-sized probes called molecular beacons (MBs) [29, 73, 74]. Designed to detect intracellular mRNA targets, MBs are dual-labeled antisense oligonucleotide (ODN) nano-scale probes with a DNA or RNA backbone, a Cy3 fluorophore at the 5' end, and a Black Hole quencher 2 (BHQ2) at the 3' end [75, 76]. They form a stem-loop (hairpin) structure in the absence of a complementary target, quenching the fluorescence of the reporter. Hybridization with the target mRNA opens the hairpin and physically separates the reporter from the quencher, allowing a fluorescence signal to be emitted upon excitation. The MB-based method can be applied to the purification of any cell type that has known specific gene(s) [77].

In one study [29], we designed five MBs targeting unique sites in TNNT2 or MYH6/7 mRNA in both mouse and human. To determine the most efficient transfection method to deliver MBs into living cells, various methods were tested and nucleofection was found to have the highest efficiency. Next, we tested the sensitivity and specificity of MBs using an immortalized mouse CM cell line, HL-1, and other cell types. Finally, we narrowed it down to one MB, MHC-MB, which showed >98% sensitivity and > 95% specificity. This MHC-MB was applied to cardiomyogenically differentiated mouse and human PSCs and FACS sorting was performed. The resultant MHC-MB-positive cells expressed cardiac proteins at ~97% when measured by flow cytometry. These sorted cells also demonstrated spontaneous contraction and all the molecular and electrophysiological signatures of human CMs. Importantly, when these purified CMs were injected into the mouse infarcted myocardium, they were well integrated into the myocardium without forming any tumors, and they improved cardiac function.

In a subsequent study [74], we refined a method to enrich ventricular CMs from differentiating PSCs (vCMs) by targeting a transcription factor which is not robustly expressed in cells. Since vCMs are the main source for generating cardiac contractile forces and the most frequently damaged in the heart, there has been great demand to develop a method that can obtain a pure population of vCMs for cardiac repair. Despite this critical unmet need, no studies have demonstrated the feasibility of isolating ventricular CMs without permanently altering their genome. Accordingly, we first designed MBs targeting the Iroquois homeobox protein 4 (Irx4) mRNA, a vCM specific transcription factor [78, 79]. After testing sensitivity and specificity, one IRX4-MB was selected and applied to myogenically differentiated mPSCs. The FACS-sorted IRX4-MB-positive cells exhibited vCM-like action potentials in more than 98% of cells when measured by several electrophysiological analyses including patch clamp and Ca2+ transient analyses. Furthermore, these cells maintained spontaneous contraction and expression of vCM-specific proteins.

The MB-based cell purification method is theoretically the most broadly applicable technology among the purification methods because it can isolate any target cells expressing any specific gene. Thus, the MB-based sorting technique can be applied to the isolation of other cell types such as neural-lineage cells or islet cells, which are critical elements in regenerative medicine but do not have specific surface proteins identified to date. In addition, theoretically, this technology may have the highest efficiency when MBs are designed to have the maximum sensitivity and specificity for the cells of interest, but not others. These characteristics are particularly important for cell therapy. Despite these advantages, the delivery method of MB into the cells needs to be improved. So far, nucleofection is the best delivery method, but caused some cell damage with

Recently, Miki and colleagues reported a novel method for purifying cells of interest based on endogenous miRNA activity [80]. Miki et al. employed several synthetic mRNA switches (= miRNA switch), which consist of synthetic mRNA sequences that include a recognition sequence for miRNA and an open reading frame that codes a desired gene, such as a regulatory protein that emits fluorescence or promotes cell death. If the miRNA recognition sequence binds to miRNA expressed in the desired cells, the expression of the regulatory protein is suppressed, thus distinguishing the cell type from others that do not contain the miRNA and express the protein.

Briefly, the authors first identified 109 miRNA candidates differentially expressed in distinct stages of hPSC-CMs (differentiation day 8 and 20). Next, they found that 14 miRNAs were co-expressed in hPSC-CMs at day 8 and day 20 and generated synthetic mRNAs that recognize these 14 miRNA, called miRNA switches. Among those miRNA switches, miR-1-, miR-208a-, and miR-499a-5p-switches successfully enriched hPSC-CMs with purity of sorted cells up to 96% determined by TNNT2 intracellular flow cytometry. Particularly, hPSC-CMs enriched by the miR-1-switch showed substantially higher expression of several cardiac specific genes/proteins and lower expression of non-CM genes/proteins compared with control cells. Patch clamp confirmed that these purified hPSC-CMs possessed both ventricular-like and atrial-like action potentials.

One of the major advantages of this technology is its wider applicability to other cell types. miRNA switches have the flexibility to design the open reading frame in the mRNA sequence such that any desired transgene can be incorporated into the miRNA switches to regulate the cell phenotype based on miRNA activity. The authors tested this possibility by incorporating BIM sequence, an apoptosis inducer, into the cardiac specific miR-1- and miR-208a switches and tested whether they could selectively induce apoptosis in non-CMs. They found that miR-1- and miR-208a-Bim-switches successfully enriched cTNT-positive hPSC-CMs without cell sorting. Enriched hPSC-CMs by 208a-Bim-switch were injected into the hearts of mice with acute MI and they engrafted, survived, expressed both cTNT and CX43, and formed gap junctions with the host myocardium. No teratoma was detected. In addition, other miRNA switches such as miR-126-, miR-122-5p-, and miR-375-switches targeting endothelial cells, hepatocytes, and -cells, respectively, successfully enriched these cell types differentiated from hPSCs. However, identification of specific miRNAs expressed only in the specific cell type of interest and verification of their specificity in target cells will be key issues for continuing to use this miRNA-based cell enrichment method.

Recent advances in biomedical engineering have contributed to developing systems that can isolate target cells using physicochemical properties of the cells. Microfluidic systems have been intensively applied for cell separation due to recent improvements in miniaturizing a cell culture system [81-83]. These advances made possible the design of automated microfluidic devices with cellular microenvironments and controlled fluid flows that save time and cost in experiments. Thus, there have been an increasing number of studies seeking to apply the microfluidic system for cell separation. Among the first, Singh et al. tested the possibility of using a microfluidic system for the separation of hPSC [84] by preparative detachment of hPSCs from differentiating cultures based on differences in the adhesion properties of different cell types. Distinct streams of buffer that generated varying levels of shear stress further allowed selective enrichment of hPSC colonies from mixed populations of adherent non-hPSCs, achieving up to 95% purity. Of note, this strategy produced hPSC survival rates almost two times higher than FACS, reaching 80%.

Subsequently, for hPSC-CMs purification, Xin et al. developed a microfluidic system with integrated ridge-like flow derivations and fishnet-like microcolumns for the enrichment of hiPSC-CMs [85]. This device is composed of a 250 mm-long microfluidic channel, which has two integrated parallel microcolumns with surfaces functionalized with anti-human TRA-1 antibody for undifferentiated hiPSC trapping. Aided by the ridge-like surface patterns on the upper wall of the channel, micro-streams are generated so that the cell suspension of mixed undifferentiated hiPSCs and hiPSC-CMs are forced to cross the functionalized fishnet-like microcolumns, resulting in trapping of undifferentiated hiPSCs due to the interaction between the hiPSCs and the columns, and the untrapped hiPSC-CMs are eventually separated. By modulating flow and coating with anti-human TRA-1 antibody, they were able to enrich CMs to more than 80% purity with 70% viability. While this study demonstrated that a microfluidic device could be used for purifying hPSC-CMs, it was not realistic because the authors used a mixture of only undifferentiated hiPSCs and hiPSC-CMs. In real cardiomyogenically differentiated hiPSCs, undifferentiated hiPSCs are rare and many intermediate stage cells or other cell types are present, so the idea that this simple device can select only hiPSC-CMs from a complex mixture is uncertain.

Overall, the advantages of microfluidic system based cell isolation include fast speed, improved cell viability and low cost owing to the automated microfluidic devices that can control cellular microenvironments and fluid flows [86-88]. However, microfluidic-based cell purification methods have limitations in terms of low purity and scalability [89-92]. In fact, there have been only a few studies demonstrating the feasibility that microfluidic device-based cell separation could achieve higher than 80% purity of target cells. Furthermore, currently available microfluidic devices allow only separation of a small number of cells ( 95% purity.

Having available a large quantity of a homogeneous population of cells of interest is an important factor in advancing biomedical research and clinical medicine, and is especially true for hPSC-CMs. While remarkable progress has been made in the methods for differentiating hPSCs into CMs, technologies to enrich hPSC-CMs, particularly those which are clinically applicable, have been emerging only over the last few years. Contamination with other cell types and even the heterogeneous nature of hPSC-CMs significantly hinder their use for several future applications such as cardiac drug toxicology screening, human cardiac disease modeling, and cell-based cardiac repair. For instance, cardiac drug-screening assays require pure populations of hPSC-CMs, so that the observed signals can be attributed to effects on human CMs. Studies of human cardiac diseases can also be more adequately interpreted with purified populations of patient derived hiPSC-CMs. Clinical applications with hPSC-CMs will need to be free of other PSC derivatives to minimize the risk of teratoma formation and other adverse outcomes.

Summary of representative methods for hPSC-CM purification

Schematic pictures of microfluidic device for enriching hiPSC-CMs. (A) The part of the device designed for trapping undifferentiated hiPSCs. (B) (Left) Illustration of the overall microfluidic device assembled with peristaltic pump, cell suspension reservoirs, and a serpentine channel. (Right) Magnified image showing a channel combining microcolumns and ridge-like flow derivation structures. Modified from Li et al. On chip purification of hiPSC-derived cardiomyocytes using a fishnet-like microstructure. Biofabrication. 2016 Sep 8;8(3): 035017

Therefore, development of reproducible, effective, non-mutagenic, scalable, and economical technologies for purifying hPSC-CMs, independent of hPSC lines or differentiation protocols, is a fundamental requirement for the success of hPSC-CM applications. Fortunately, new technologies based on the biological specificity of CMs such as MITO-tracker, molecular beacons, lactate-enriched-glucose depleted-media, and microRNA switches have been developed. In addition, technologies based on engineering principles have recently yielded a promising platform using microfluidic technology. While due to the short history of this field, more studies are needed to verify the utility of these technologies, the growing attention toward this research is a welcome move.

Another important question raised recently is how to non-genetically purify chamber-specific subtypes of CMs such as ventricular-like, atrial-like and nodal-like hPSC-CMs. So far, only a few studies have addressed this potential with human PSCs. We also showed that a molecular beacon-based strategy could enrich ventricular CMs differentiated from PSCs [74]. Another study demonstrated generation of SA-node like pacemaker cells by using a stepwise treatment of various morphogens and small molecules followed by cell sorting with several sub-specific surface markers. However, the yield of both studies was relatively low (

In summary, technological advances in the purification of hPSC-CMs have opened an avenue for realistic application of hPSC-CMs. Although initial success was achieved for purification of CMs from differentiating hPSC cultures, questions such as scalability, clinical compatibility, and cellular damage remain to be answered and isolation of human subtype CMs has yet to be demonstrated. While there are other challenges such as maturity, in vivo integration, and arrhythmogenecity, this development of purification technology represents major progress in the field and will provide unprecedented opportunities for cell-based therapy, disease modeling, drug discovery, and precision medicine. Furthermore, the availability of chamber-specific CMs with single cell analyses will facilitate more sophisticated investigation of human cardiac development and cardiac pathophysiology.

This work was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government (MSIP) (No 2015M3A9C6031514), the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HI15C2782, HI16C2211) and grants from NHLBI (R01HL127759, R01HL129511), NIDDK (DP3-DK108245). This work was also supported by a CityU Start-up Grant (No 7200492), a CityU Research Project (No 9610355), and a Georgia Immuno Engineering Consortium through funding from Georgia Institute of Technology, Emory University, and the Georgia Research Alliance.

The authors have declared that no competing interest exists.

1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M. et al. Heart disease and stroke statistics2016 update. Circulation. 2016;133:e38-e360

2. Ptaszek LM, Mansour M, Ruskin JN, Chien KR. Towards regenerative therapy for cardiac disease. Lancet. 2012;379:933-42

3. Jessup M, Brozena S. Heart failure. N Engl J Med. 2003;348:2007-18

4. Pasumarthi KBS, Field LJ. Cardiomyocyte cell cycle regulation. Circ Res. 2002;90:1044-54

5. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnab-Heider F, Walsh S. et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324:98-102

6. Passier R, van Laake LW, Mummery CL. Stem-cell-based therapy and lessons from the heart. Nature. 2008;453:322-9

7. Laflamme MA, Murry CE. Heart regeneration. Nature. 2011;473:326-35

8. Tulloch NL, Muskheli V, Razumova MV, Korte FS, Regnier M, Hauch KD. et al. Growth of engineered human myocardium with mechanical loading and vascular coculture / Novelty and significance. Circ Res. 2011;109:47-59

9. Reinecke H, Zhang M, Bartosek T, Murry CE. Survival, integration, and differentiation of cardiomyocyte grafts: A study in normal and injured rat hearts. Circulation. 1999;100:193-202

10. Leor J, Patterson M, Quinones MJ, Kedes LH, Kloner RA. Transplantation of fetal myocardial tissue into the infarcted myocardium of rat. A potential method for repair of infarcted myocardium?. Circulation. 1996;94:II332-6

11. Li R-K, Mickle DAG, Weisel RD, Zhang J, Mohabeer MK. In vivo survival and function of transplanted rat cardiomyocytes. Circ Res. 1996;78:283-8

12. Shiba Y, Fernandes S, Zhu WZ, Filice D, Muskheli V, Kim J. et al. Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature. 2012;489:322-5

13. Shigeru M, Satsuki F, Yukiko I, Takuji K, Noriko Mochizuki O, Shigeo M. et al. Building a new treatment for heart failure-transplantation of induced pluripotent stem cell-derived cells into the heart. Curr Gene Ther. 2016;16:5-13

14. Mignone JL, Kreutziger KL, Paige SL, Murry CE. Cardiogenesis from human embryonic stem cells - Mechanisms and applications. Circulation J. 2010;74:2517-26

15. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK. et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol. 2007;25:1015-24

16. Yuasa S, Itabashi Y, Koshimizu U, Tanaka T, Sugimura K, Kinoshita M. et al. Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embryonic stem cells. Nat Biotechnol. 2005;23:607-11

17. Nemir M, Croquelois A, Pedrazzini T, Radtke F. Induction of cardiogenesis in embryonic stem cells via downregulation of Notch1 signaling. Circ Res. 2006;98:1471-8

18. Mummery C, Ward-van Oostwaard D, Doevendans P, Spijker R, van den Brink S, Hassink R. et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation. 2003;107:2733-40

19. Passier R, Oostwaard DW, Snapper J, Kloots J, Hassink RJ, Kuijk E. et al. Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells. 2005;23:772-80

20. Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A. et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest. 2001;108:407-14

21. Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M. et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature. 2008;453:524-8

22. Burridge PW, Matsa E, Shukla P, Lin ZC, Churko JM, Ebert AD. et al. Chemically defined generation of human cardiomyocytes. Nat Methods. 2014;11:855-60

23. Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A. et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest. 2001;108:407-14

24. Zhang J, Wilson GF, Soerens AG, Koonce CH, Yu J, Palecek SP. et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res. 2009;104:e30-41

25. Nussbaum J, Minami E, Laflamme MA, Virag JAI, Ware CB, Masino A. et al. Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J. 2007;21:1345-57

26. Lee AS, Tang C, Rao MS, Weissman IL, Wu JC. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med. 2013;19:998-1004

27. Masuda S, Miyagawa S, Fukushima S, Sougawa N, Ito E, Takeda M. et al. Emerging innovation towards safety in the clinical application of ESCs and iPSCs. Nat Rev Cardiol. 2014;11:553-4

28. Masuda S, Miyagawa S, Fukushima S, Sougawa N, Okimoto K, Tada C. et al. Eliminating residual iPS cells for safety in clinical application. Protein Cell. 2015;6:469-71

29. Ban K, Wile B, Kim S, Park H-J, Byun J, Cho K-W. et al. Purification of cardiomyocytes from differentiating pluripotent stem cells using molecular beacons that target cardiomyocyte-specific mRNA. Circulation. 2013;128:1897-909

30. Masumoto H, Ikuno T, Takeda M, Fukushima H, Marui A, Katayama S. et al. Human iPS cell-engineered cardiac tissue sheets with cardiomyocytes and vascular cells for cardiac regeneration. Sci Rep. 2014;4:6716

31. Kensah G, Roa Lara A, Dahlmann J, Zweigerdt R, Schwanke K, Hegermann J. et al. Murine and human pluripotent stem cell-derived cardiac bodies form contractile myocardial tissue in vitro. Eur Heart J. 2013;34:1134-46

32. Thavandiran N, Dubois N, Mikryukov A, Mass S, Beca B, Simmons CA. et al. Design and formulation of functional pluripotent stem cell-derived cardiac microtissues. Proc Natl Acad Sci U S A. 2013;110:E4698-E707

33. Yang X, Pabon L, Murry CE. Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Res. 2014;114:511-23

34. Robertson C, Tran DD, George SC. Concise review: maturation phases of human pluripotent stem cell-derived cardiomyocytes. Stem Cells. 2013;31:829-37

35. Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG. et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;142:375-86

36. Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L. et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature. 2012;485:593-8

37. Jayawardena TM, Egemnazarov B, Finch EA, Zhang L, Payne JA, Pandya K. et al. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res. 2012;110:1465-73

38. Song K, Nam YJ, Luo X, Qi X, Tan W, Huang GN. et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature. 2012;485:599-604

39. Nam YJ, Song K, Luo X, Daniel E, Lambeth K, West K. et al. Reprogramming of human fibroblasts toward a cardiac fate. Proc Natl Acad Sci U S A. 2013;110:5588-93

40. Jayawardena TM, Finch EA, Zhang L, Zhang H, Hodgkinson CP, Pratt RE. et al. MicroRNA induced cardiac reprogramming in vivo: Evidence for mature cardiac myocytes and improved cardiac function. Circ Res. 2015;116:418-24

41. Wada R, Muraoka N, Inagawa K, Yamakawa H, Miyamoto K, Sadahiro T. et al. Induction of human cardiomyocyte-like cells from fibroblasts by defined factors. Proc Natl Acad Sci U S A. 2013;110:12667-72

42. Caspi O, Huber I, Kehat I, Habib M, Arbel G, Gepstein A. et al. Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol. 2007;50:1884-93

43. Xu C, Police S, Rao N, Carpenter MK. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res. 2002;91:501-8

44. Pertoft H, Laurent TC, Ls T, Kgedal L. Density gradients prepared from colloidal silica particles coated by polyvinylpyrrolidone (Percoll). Anal Biochem. 1978;88:271-82

45. Doevendans PA, Becker KD, An RH, Kass RS. The utility of fluorescentin vivoreporter genes in molecular cardiology. Biochem Biophys Res Commun. 1996;222:352-8

46. Ritner C, Wong SSY, King FW, Mihardja SS, Liszewski W, Erle DJ. et al. An engineered cardiac reporter cell line identifies human embryonic stem cell-derived myocardial precursors. PLoS One. 2011;6:e16004

47. Ma J, Guo L, Fiene SJ, Anson BD, Thomson JA, Kamp TJ. et al. High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents. Am J Physiol Heart Circ Physiol. 2011;301:H2006-H17

48. Xu XQ, Zweigerdt R, Soo SY, Ngoh ZX, Tham SC, Wang ST. et al. Highly enriched cardiomyocytes from human embryonic stem cells. Cytotherapy. 2008;10:376-89

49. Klug MG, Soonpaa MH, Koh GY, Field LJ. Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J Clin Invest. 1996;98:216-24

50. Anderson D, Self T, Mellor IR, Goh G, Hill SJ, Denning C. Transgenic enrichment of cardiomyocytes from human embryonic stem cells. Mol Ther. 2007;15:2027-36

51. Fu J-D, Jiang P, Rushing S, Liu J, Chiamvimonvat N, Li RA. Na+/Ca2+ exchanger is a determinant of excitation-contraction coupling in human embryonic stem cell-derived ventricular cardiomyocytes. Stem Cells Dev. 2009;19:773-82

52. Huber I, Itzhaki I, Caspi O, Arbel G, Tzukerman M, Gepstein A. et al. Identification and selection of cardiomyocytes during human embryonic stem cell differentiation. FASEB J. 2007;21:2551-63

53. Elliott DA, Braam SR, Koutsis K, Ng ES, Jenny R, Lagerqvist EL. et al. NKX2-5(eGFP/w) hESCs for isolation of human cardiac progenitors and cardiomyocytes. Nat Methods. 2011;8:1037-40

54. Bizy A, Guerrero-Serna G, Hu B, Ponce-Balbuena D, Willis BC, Zarzoso M. et al. Myosin light chain 2-based selection of human iPSC-derived early ventricular cardiac myocytes. Stem Cell Res. 2013;11:1335-47

55. Lee MY, Sun B, Schliffke S, Yue Z, Ye M, Paavola J. et al. Derivation of functional ventricular cardiomyocytes using endogenous promoter sequence from murine embryonic stem cells. Stem Cell Res. 2012;8:49-57

56. MLLER M, FLEISCHMANN BK, SELBERT S, JI GJ, ENDL E, MIDDELER G. et al. Selection of ventricular-like cardiomyocytes from ES cells in vitro. FASEB J. 2000;14:2540-8

57. Zhang Q, Jiang J, Han P, Yuan Q, Zhang J, Zhang X. et al. Direct differentiation of atrial and ventricular myocytes from human embryonic stem cells by alternating retinoid signals. Cell Res. 2011;21:579-87

View post:
Georgia Stem Cells | Stem Cell TV

Posted in Georgia Stem Cells | Comments Off on Georgia Stem Cells | Stem Cell TV

Rhode Island Stem Cells | Stem Cell TV | Page 3

Posted: September 7, 2019 at 4:26 pm

Posted: September 27, 2014 at 8:55 am

As we age, many of us experience the formation of deep lines and wrinkles in the face and a loss of volume in facial features that can give us a hollowed or sunken appearance in a number of areas including the lips and jaw-line folds between the cheeks and lips.

These very common aesthetic issues can be significantly improved with fat and stem cell injections, available from our Providence, Rhode Island plastic surgeon. Read on for more details on this effective procedure, and please contact Dr. Patrick K. Sullivan to schedule a consultation.

Fat and adipose derived stem cells are harvested from one part of the body (usually through a tiny incision in the belly button) and are injected in areas of the face where fat has been lost over time. It can be used to fill in the deep lines between the nose and cheek (nasolabial folds), the corners of the mouth (where the mouth may have a down-turned or frowning appearance), and/or deep creases in the forehead. Fat and stem cells can be used to augment the cheeks, lips, jaw-line, chin and other areas of the face. Fat and stem cell injections can be particularity beneficial in areas where there has been facial deflation that comes with the passage of time and from a host of other reasons.

Fat and stem cell injections are done under intravenous sedation without general anesthesia on an outpatient basis. The areas may be swollen for several weeks after surgery and it will take a number of weeks to see the final outcome.

I cannot express how delighted I am with the results from my surgery. It has made such a wonderful impact in my life and gave me a new outlook that was long overdue. I commend Dr. Sullivan for performing such a superb job. He is the best. Not only am I impressed with Dr. Sullivan but I am especially pleased with his staff. You all have been so kind to me. It is a breath of fresh air to see happy and professional people in one place. I am forever grateful. I will never forget this pleasurable experience. Name omitted for patient privacy

Dr. Patrick K. Sullivan can give you effective facial rejuvenation with results that bring out your natural beauty. With fat and stem cell injections, you can attain significant aesthetic enhancement in a variety of facial areas with results that are known to be long-lasting, as Dr. Patrick Sullivan has proven with his clinical research. He has followed hundreds of his patients over more than a ten year period and has proven that the transfer of fat maintains results for very long periods of time. Additionally, he has lectured to many of his peers about the latest techniques and the many benefits of utilizing fat and stem cell injections. Please contact us if you would like to learn more about this cutting-edge procedure and to schedule your private consultation with Dr. Sullivan.

View post:Fat Injections Transfer Contouring Rhode Island RI

Posted: at 8:55 am

An Advanced Solution

Why Stem Cells?

Stem cells are tiny progenitor cells found in our body that can divide (through mitosis) and change (differentiate) into various cell types. All cells in our body are constantly dividing where new cells are formed, then cells age and die. It is a natural physiologic process of programmed cell death and is known as Apoptosis. Your stem cells are your bodys natural healing cells and can act as your repair system in your body by replenishing adult tissues. They are the source of all these cells that have died.

There are two broad types of stem cells: embryonic stem cells, which are isolated from the inner cell mass of blastocyst (early stage of embryo), and non-embryonic or adult stem cells. It is also referred to as mesenchymal stem cells MSCs and is found in various tissues. There are three accessible sources of autologous adult stem cells in humans:

Stem cells can also be taken from umbilical cord blood just after birth. Of all stem cell types, autologous harvesting (cells are obtained from one's own body) from Adipose tissue (Fat cells) involves the least risk. Adipose tissue (fat cells) is one of the richest sources of MSCs. When compared to bone marrow, there are more than 500 times more stem cells in 1 gram of fat when compared to 1 gram of aspirated bone marrow.

New England Stem Cell Treatment Center NESCTC has the technology to extract stem cells from your fat cells. Under investigational protocols, these cells can be deployed to treat a number of degenerative conditions and diseases. NESCTC in collaboration with New England Center for Hair Restoration is pioneering deploying stem cells to treat thinning hair and hair loss.

Baldness

Hair follicles also contain stem cells, and some researchers predict research on these follicle stem cells may lead to successes in treating baldness through an activation of the stem cells progenitor cells. This therapy is expected to work by activating already existing stem cells on the scalp. Later therapy may be able to simply signal follicle stem cells to give off chemical signals to nearby follicle cells which have shrunk during the aging process, which in turn respond to these signals by regenerating and once again making healthy hair. Most recently, Dr. Aeron Potter of the University of California has claimed that stem-cell therapy led to a significant and visible improvement in follicular hair growth.

Here is the original post:Stem Cell Hair Loss Boston - Regrowth, Restoration

Posted: September 6, 2014 at 4:56 am

There is no Rhode Island law that specifically restricts the use of human adult or embryonic stem cells for research purposes. The Rhode Island law that does restrict some uses of human cells explicitly permits research as long as the research is not for the purposes of cloning an entire human beingwhich is not part of stem cell research.

Starting in 2003 and continuing every year thereafter, bills were introduced that would have explicitly allowed all forms of stem cell research and created a procedure for unused embryos as a result of in vitro fertilization treatments to be donated for the purpose of stem cell research. These bills were sponsored in the House by Representative Edith Ajello, and in the Senate by Senator Rhoda Perry. A 2007 version of the bill, 2007 H-6082, was introduced again but failed to pass.

In 2006, a resolution sponsored by Representative Eileen Naughton was passed, creating a special House commission to promote and develop a nationally recognized cord blood program for the future of disease management in Rhode Island. That commission began meeting in February of 2007. In 2007, a resolution sponsored by Representative Naughton was passed creating the Rhode Island House of Representatives Regenerative Medicine and Research Advisory Study Commission.

In 2007, Lt. Governor Elizabeth Roberts released a report entitled Discovering Rhode Islands Stem Cell Future: Charting the Course Toward Health and Prosperity, outlining the potential that stem cell research holds for reducing human suffering and supporting economic growth in Rhode Island.

Contacts for IASCR: Adriana Thomas, Policy Analyst, Rhode Island House of Representatives, and Eli Zupnick, Policy Analyst, Office of the Lt. Governor

Excerpt from:Rhode Island | Interstate Alliance on Stem Cell Research

Posted: August 22, 2014 at 6:02 am

Rhode Island Stem Cell Therapy Worldstemcells.com is one of the leading stem cell therapy and treatment providers for residents of Rhode Island and across the nation. Our cutting edge technology and compassionate staff truly set us apart from the competition. We are a US based company that understands your needs and concerns when looking for a stem cell treatment center. Our treatment center is located in Cancun, Mexico.

Conditions we treat include but not limited to:

Getting Started With Your Stem Cell Therapy and Treatments Here at World Stem Cells LLC we try to make the process of receiving stem cell transplants as easy as possible. We will help you figure out what your needs are and help you reach your goals as fast as possible. Follow the steps below on what to do.

Option 1 1.) Go to any page on our website and fill out the contact form. 2.) Fill in the required information and select the condition you would like to treat with stem cell therapy. 3.) Be sure to include any special information in the comments section. 4.) Click the submit button and we will contact you in a timely manner. 5.) Thats it, youre done!!!

REQUEST INFORMATION NOW!

Option 2

Call 800-234-1693 and speak with a representative regarding your stem cell therapy needs and requirements.

See more here:

Rhode Island Stem Cell Therapy | Stem Cell Treatments

Posted: at 6:02 am

Thousands of people suffer from diseases treatable with marrow or blood stem cell transplants. The National Marrow Donor Program finds donors for patients who don't have a match in their family.

First, volunteer. Join the Registry if you are 18-44 years old, in good health, and willing to give a swab of cheek cells.

Next, if you are a match, give blood samples to confirm it.

Then, you make a decision to give after an information session and a physical exam.

A Marrow Donation is donated in a hospital. After anesthesia is given, doctors remove a small amount of marrow from the back of the hip bones with a needle and syringe. Recovery is quick, though most donors have some bone pain and aches for several days or a few weeks. The marrow given naturally replenishes itself in four to six weeks. This method is selected 25 percent of the time.

A Peripheral Blood Stem Cell Donation is a special type of blood donation given at the Rhode Island Blood Center. Five daily injections of a stem cell growth factor are given to donors to increase the number of stem cells released from the marrow into the blood stream. Then an apheresis blood donation is made. Donors can experience bone pain as a result of receiving the growth factor. Recovery is quick, however, just one or two days after the donation is made. This method is selected 75 percent of the time.

For more information on joining the Be The Match Registry or to sponsor a marrow registration drive, please call 401-248-5720 or email marrow@ribc.org. Additional information is also available on http://www.marrow.org.

Read the original:

Marrow Donor Program - Rhode Island Blood Center

More here:
Rhode Island Stem Cells | Stem Cell TV | Page 3

Posted in Rhode Island Stem Cells | Comments Off on Rhode Island Stem Cells | Stem Cell TV | Page 3

New Hampshire Stem Cells | Stem Cell TV

Posted: September 7, 2019 at 4:23 pm

In 2014, during a speech in Manchester, Amanda Grappone Osmer made a startling admission.

I know why you hate me, she began, when it came her time to speak at TEDx Amoskeag Millyard. You all have memories of someone like me that takes you back to a time and place that you wish you didnt have to think about.

Your palms start to sweat. Your stomach is in a knot. Like me, your heart races. You just have an overall feeling of dread.

Mentally, you start to make a tally when you see me coming of all the ways you might get ripped off.

She describes further this experience with her at its center.

When you see me, you load up for bear. Because you know you need to, just to get through our conversation, she says.

You hate me because I am a car salesman. A fourth-generation car salesman.

And with a deep breath, she adds, I understand.

Osmers speech spoke to a stereotypical experience someone might have purchasing a car, an experience that she likened to being under the ether and one that her companys philosophy seeks to counter. Her personal mission and that of Grappone Automotive Group in Bow, for which she is CEO, moves well past the showroom to all aspects of the business, employee relationships and the manner in which she leads an engaged community life.

The business mission: Dedication to building lifelong relationships with our team members, guests and community by serving with integrity, kindness and respect.

And ingrained among her personal objectives is being a little bit better than the day before.

Osmer, the keynote speaker for The Keene Sentinels Extraordinary Women Awards on Aug. 24, graduated from the University of New Hampshire with a degree in humanities. In her teens, she worked at her familys dealership, which was started by her great-grandparents in Concord in 1924 as a Gulf service station. It is now five dealerships. But, despite her early work at the dealership, Osmer didnt envision a future for herself in the cars.

In 2001, after school and marriage, she moved to the West Coast, to the North Bay region of San Francisco. Her marriage ended after a short time, leaving her uncertain what to do next. She applied for all sorts of jobs with no luck, she says. Needing something and knowing something about cars, she found herself selling for Lexus of Marin.

I had never sold anything in my life, she says from her second-floor office at Grappones Toyota franchise, not far from the end of Interstate 89. Her notion of sales, she says, was all wrong, and she learned, You have to be nice to people and honest, and you will earn their business.

Three years later, she was back at her family dealership, in charge of fixed operations service, paint and collision. She described this as the hardest job of my life.

It was difficult to find technicians who met company standards, and there were myriad other workforce challenges, not the least of which is that few women run collision and service centers.

I knew nothing about that world, she recalls. It was constant stress.

But it was in this role that she discovered new ways of doing things that would change her and the company she would come to run. She found a mentor in Jeffrey Liker, the author of The Toyota Way, a best-seller at more than 650,000 copies and translated into 27 languages.

Liker, with whom Osmer corresponds, is professor of industrial and operations engineering at the University of Michigan and has written extensively about how Toyotas manufacturing processes employed principles to reduce waste, boost efficiency and create collaborative workforces to solve problems. He has also profiled other companies using these strategies and measurements, first pioneered by W. Edwards Deming in post-World War II Japan.

I fell in love with lean manufacturing, says Osmer, referring to the umbrella term under which these principles exist.

She opens Likers book frequently; her copy is dog-eared, heavily highlighted and fingerprinted and never far from reach. There are, in the lean world, seven categories of waste transport, inventory, motion, waiting, overproduction, over-processing and defects.

Osmer considers it one of her lifes highlights being invited to speak at the headquarters of Dupont in Delaware at a gathering of collision center specialists a conference at which Liker was speaking, too.

Shes asked if Grappone is an efficient operation.

Its a goal, she says candidly, referring to a never-ending focus on continuous improvement.

From the service operation, Osmer was promoted to COO and director of sales. The sales process was going through a similar evolution, she says.

We had peeled away from the current (traditional) way of doing things, she says, referring to the industry standard of commission-based selling. We had to figure out what is our way I really started to notice that we didnt have anyone recognizing the human experience.

The company hired a director of corporate potential a key decision and embarked on strategic planning that led to an unusual, if not dramatically different approach to business. Its primary commitment, she says, is to Grappones 340 employees. They come first in the mission statement by design. Second, the company seeks lifelong relationships with customers and believes this is best achievable if the sales and service experience is not one of negotiation. This, she says, creates integrity and expectations of consistent treatment. Theres a set price for everything, including financing terms. Everyone pays the same, removing the ether to which she referred in her TEDx speech.

Her sales team does not operate on commissions.

It didnt make sense to race to the bottom on pricing, she says.

Having Toyota as a flagship franchise was helpful; expectations of franchises are reasonable, she says, allowing room for Grappones way.

Always trying to be less wasteful as a company, Osmer said an eighth measure of waste also became a Grappone focus the waste of human creativity. Maybe more than any of the other principles, Osmer emphasizes a workplace that allows innovation to occur. As she describes ways this has been manifested, Ron Malachi, the companys inventory pricing specialist, walks by her office.

He ducks in when asked and rattles off several recent problems a team of folks has solved, including storing extra car inventory at a nearby indoor sports facility.

They get some income, and we get a place (to keep the cars), he says.

Osmer is one of five children born to Robert and Beverly Grappone. Her younger brother, Greg, was her only sibling to be part of the business, eventually becoming the groups chief information officer.

Greg, who had health challenges early in his life, developed cutaneous T-cell lymphoma in his 30s. He found he needed a blood stem cell transplant when the disease turned aggressive.

Osmer was a match for the transplant. Treatment involved eradicating Gregs immune system and injecting new stem cells through a transfusion of Osmers blood. The cancer was killed, but a gruesome side effect graft versus host disease took hold. Osmer described the horrific condition that transpired as one that literally hardened his tissues.

Greg died in 2015, leaving behind a wife and a two-year-old daughter.

In his name, Osmer works on a project that would develop a six-mile abandoned rail line into a new bike and walking path that connects to the Northern Rail trail and would link Concord to Lebanon. It is but one page in her deep portfolio of community work.

She says this involvement in social causes is informed by her familys work.

We were always taught its not about us, she says. Dad just didnt get hung up on material things. I dont get upset when I dont have more things. Its better to express me through how much I help people.

She sees herself as dedicated to serving a lot of people, and it starts with the employees, as the mission suggests.

People need to feel safe; psychological safety, physical safety and having flexibility, she says, describing how the company culture is modeled.

In such an environment, creativity is unleashed, efficiencies are found and people are retained. That environment includes an immaculate, welcoming Toyota dealership building that features a grand piano on its second floor a gift to Osmer from her grandfather.

So, its not a surprise that her team of six directors has more than 140 years of collective service to Grappone.

Away from the dealership, Osmers list of community-service positions is extensive and includes: board member, New Hampshire Public Broadcasting System; corporator, Canterbury Shaker Village; board member, The Endowment for Health; member, Partners for Community Wellness; member, New Hampshire Lemon Law Board; advisory member, Spark New Hampshire; advisory member, Stay Work Play New Hampshire; and advisory member, New Hampshire Charitable Foundations New Hampshire Tomorrow Initiative.

Recently, she became involved in President Donald Birx move to reorganize Plymouth State University into seven educational clusters, beginning this fall. They are: arts and technology; education, democracy and social change; exploration and discovery; health and human enrichment; innovation and entrepreneurship; justice and security; and tourism, environment and sustainable development.

I try to go where I can be most useful, she says, adding she prefers, in many cases, serving one term on a board rather than more to allow broader service.

Osmer lives with her husband, Tom, and three children (two girls and a boy) in a log home in Canterbury. The community, known for its Shaker history, suits her in many ways, from the caring she can expect from the Canterbury Library staff if she drops her son off some afternoon, to the wooded setting that allows her to indulge in trail running, to the neighborly warmth of the Canterbury Fair, recently held.

And, its just the right setting to play her banjo, her instrument of choice.

Osmers is a life being well lived and one seemingly grounded in the words she used to finish her TEDx speech.

So, this is not just about car sales. Its not just about a fourth-generation family business in Bow Junction, New Hampshire, she says. Ask yourselves. Do integrity, kindness and respect form the foundation of all of your relationships, with the people you love the most, with the people you work with, with the people you meet every day? Do they?

If they dont, dont worry about it, she says. Just know that you are under the ether with all of the rest of us. And its time to wake up.

See more here:Amanda Grappone Osmer breaks down car sales stereotypes with focus on kindness, integrity - The Keene Sentinel

Read the original post:
New Hampshire Stem Cells | Stem Cell TV

Posted in New Hampshire Stem Cells | Comments Off on New Hampshire Stem Cells | Stem Cell TV

Local vet taking part in stem cell therapy study for dogs – WPTV.com

Posted: February 17, 2017 at 9:44 am

TARPON SPRINGS, Fla. - Cosby just doesnt get around like he used to.

We have six dogs and hes always the one thats the last to get up. The last to get out, said his owner Brian Cirillo.

And for Cirillo, its sad to see.

I hate it. Its always like he always on his tippy topes on his back legs. So its heartbreaking.

But a new trial study that is about to start at the St. Francis Pet Care Center in Tarpon Springs, could be just what Cosby needs.

Veterinarian Mike Amsberry is offering stem cell therapy for dogs.

They are seeing that its very, very safe. And very effective.

This study is focused specifically on four-legged friends with arthritis.

But in the past hes seen stem cell treatments work wonders for other ailments.

Its cells treating the body, rather than then some foreign substance. Some medication.

In this trial, the stem cells come from umbilical cords of donor dogs.

Not only can qualified pets get the treatment for free, but owners are paid too.

Cosby seems like the perfect candidate.

I think thats where everything seems to be going with regard to medicine. So to be on the leading edge of that to potential help him without having to put him on a bunch of medicine is definitely a plus, said Cirillo.

The hope is one day Cosby will be able to keep up with the rest.

And lead the way to help thousands of other dogs.

For more information on the trial study go to petstemcells.org.

Excerpt from:
Local vet taking part in stem cell therapy study for dogs - WPTV.com

Posted in Cell Therapy | Comments Off on Local vet taking part in stem cell therapy study for dogs – WPTV.com

texas StemCell Therapy

Posted: August 25, 2015 at 5:43 pm

Hello, Public Anonymous User! Our Story Hello and thank you for your support of US Preventive Medicine (USPM).

Source Link(s) Are Here

U.S. Preventive Medicine - OurMission

Tags: a-board-member, chilton-capital, generated, health, houston, mission, president, research, school, texas Posted in Preventative Medicine | | Comments Off

Lack of sleep affects your immune system. Mother knows best at least it appears that way when it comes to lack of sleep. It turns out that lack of sleep really may make us more prone to catching colds and the flu

Source Link(s) Are Here

Lack of Sleep and the Immune System - WebMD

Tags: a-laundry-list, generated, impaired-immune, nightmares, not-functioning, physical-health-, pretty-complex-, sleep-center, texas Posted in Immune System | | Comments Off

Antibiotic resistance is now a bigger crisis than the AIDS epidemic of the 1980s, a landmark report recently warned. The spread of deadly superbugs that evade even the most powerful antibiotics is happening across the world, United Nations officials have confirmed.

Source Link(s) Are Here

Nano Medicine - Treatments for Antibiotic Resistant Bacteria

Tags: a-battle-back, a-bigger-crisis, china, easily-destroys, governmental, india, medical, most, people, texas, united-nations Posted in Nano medicine | | Comments Off

Slide: 1 / of 1 . Caption: With several companies on the verge of mass-marketing genetic tests that claim to read agings cellular clock, some researchers say the science isnt yet ready for prime-time use. The tests measure telomeres, or protein sheaths that prevent the tips of chromosomes from fraying.

Source Link(s) Are Here

To Measure Longevity, Common Sense Trumps Genetic Test

Tags: a-pretty-good, alluring-target, article, biological, boston, for-quantifying, lifestyle, texas, thomas-perls, university Posted in Longevity Genetics | | Comments Off

Source Link(s) Are Here

WSCS 2014: STEM CELLS AND MENTAL HEALTH - Video

Tags: and-, antonio-speakers, daniel, faap, george, science, texas, texas-at-san, texas-health Posted in Stem Cells | | Comments Off

Tags: cell-, copd, dallas, fat, generated, stem, texas, treatments Posted in Stem Cell Therapy | | Comments Off

Source Link(s) Are Here

Procedure Overview - The STEM CELL ORTHOPEDIC INSTITUTE of Texas - Video

Tags: adult, cell-, david-hirsch, from-, generated, hirsch, new-hope, overview, procedure-overview, stem, texas Posted in Stem Cell Therapy | | Comments Off

Source Link(s) Are Here

Glen Wysoki at The STEM CELL ORTHOPEDIC INSTITUTE of Texas - Video

Tags: cell-, david-hirsch, generated, hirsch, stem, testimonial, texas, treated-at-the, video-testimonial, wysoki, wysoki-at-the Posted in Stem Cell Therapy | | Comments Off

Source Link(s) Are Here

Stem Cell Therapy | Simple way to regrow cartilage - Video

Tags: express-, from-the, from-the-university, generated, pioneering, re-grow-damaged, regrow-cartilage, simple-new, texas, therapy, willey Posted in Stem Cell Therapy | | Comments Off

Source Link(s) Are Here

The Future of Treating Heart Disease Is Now (2015) - Video

Tags: future, generated, heart-disease, institute, Stem Cells, texas, texas-heart, the-future, treating, ways-including Posted in Regenerative Medicine | | Comments Off

Source Link(s) Are Here

Can breast cancer be stopped by targeting the stem cells? - Video

Tags: clinton, clinton-allred, generated, including-breast, stem, Stem Cells, targeting-the, texas, university, weston, weston-porter Posted in Stem Cells | | Comments Off

Source Link(s) Are Here

Our Stories - Saving Teeth with Stem Cells - Video

Tags: a-pediatric-stem-cell, cells, dentistry-at-the, diogenes, saving, school, science, science-center, stories-, texas, university Posted in Dental Stem Cells | | Comments Off

Source Link(s) Are Here

ADIPOSE FAT STEM CELLS - SVF Now Available in Texas - Innovations Medical Stem Cell Center - Video

Tags: available, cells, center, fat, generated, innovations, medical-stem, stem, svf, texas Posted in Fat Stem Cells | | Comments Off

Source Link(s) Are Here

Dr. Walter Gaman of Executive Medicine of Texas talks about stem cells - Video

Tags: and-athletic, clients, difference-for, executive-medicine, generated, offer-include, our-clients, services, Stem Cells, texas, the-lives, walter-gaman Posted in Stem Cells | | Comments Off

Source Link(s) Are Here

SU2C-CRI Cancer Immunology Translational Research Dream Team - Video

Tags: activism, adoptive-cell, dream-team, edythe-broad, generated, immunological, jonsson, research, texas, translational, university Posted in Immune System | | Comments Off

A small study suggests that stem cells from a stranger may be as good as a patients own in undoing the damage after a heart attack has weakened the hearts ability to pump blood.

Source Link(s) Are Here

Study says stem cells ? even a stranger's ? may repair heart attack damage

Tags: a-heart-attack-, a-muscle-tasked, a-stranger-may, damage, findings-on-the, health, heart, journal, million-or-200, possibility, Stem Cells, study, texas, university, world-reports Posted in Stem Cells | | Comments Off

Tags: a-key-role, cell-research, cell-therapies, conference, health, houston-stem, human-services, industry-, technologies, texas, texas-emerging, the-advancement Posted in Regenerative Medicine | | Comments Off

Newswise Fat progenitor cells may contribute to cancer growth by fortifying the vessels that provide needed blood to tumors, according to preclinical research findings by investigators at The University of Texas Health Science Center at Houston (UTHealth). The results were reported in Cancer Research, a journal of the American Association for Cancer Research. Studies of groups of people have demonstrated a link between obesity and certain cancers; however, the physiological causes have not been identified

Source Link(s) Are Here

Study Suggests How Expanding Waistlines May Contribute to Cancer

Tags: a-link-between, diet-, faculty, health-medical, houston, medical, mikhail-kolonin, molecular, physiological, prevention, research, school, science, texas, texas-graduate Posted in Fat Stem Cells | | Comments Off

The Grekos hearing is scheduled to begin at 9 a.m. Tuesday in the Martin Luther King, Jr. Administration Building, room 1-140A, 5775 Osceola Trail, Naples

Source Link(s) Are Here

State licensing hearing for Bonita Springs stem cell doctor to begin Tuesday

Tags: bonita-springs, cnn, european, license, martin, martin-luther, osceola-trail, texas, zannos-grekos Posted in Stem Cell Therapy | | Comments Off

< /p>

Link:
texas StemCell Therapy

Posted in Cell Therapy | Comments Off on texas StemCell Therapy

Stem Cell Stock Review Updates Coverage On Accurexa – KATV …

Posted: June 13, 2015 at 1:47 am

This article was originally distributed via SproutNews. SproutNews, WorldNow and this Site make no warranties or representations in connection therewith.

BEVERLY HILLS, CA / ACCESSWIRE / June 12, 2015 / The Stem Cell Stock Review has updated coverage on the company and will be providing ongoing coverage. Roland Rick Perry, Editor of the Review stated Accurexas end goal is to provide a medical device that can save lives not by improving the therapeutics or drugs used to treat neurological disorders including brain tumors, but rather by improving the delivery method and effectiveness of currently approved drugs used to treat the disorders using a flexible delivery catheter. Adding, The device called Branchpoint is designed to permit Clinicians to tailor therapeutic delivery and give physicians more precise control of the volume of therapeutics delivered and ensure that therapeutics delivered into the brain stay in the brain, avoiding the problem of reflux out to the brain surface. We are excited to update coverage as they progress towards their filing a 510k submission with the FDA.

Accurexas Branchpoint microinjection brain catheter can be described as a quantum leap and game changing advancement in the technology of delivering drugs and therapeutics, directly to the brain over the common syringe (or cannula), as depicted in the report. The device was recently subject of a cover story in Molecular Therapy(R) (MT) magazine, the official journal of the American Society for Gene & Cell Therapy. The report can be viewed at both the Stem Cell and Bioteck Stock Review websites.

Stem Cell Stock Review Website: http://www.stemcellstockreview.com/research-reports.html

The Biotech Stock Review Website: http://www.thebiotechstockreview.com

About The Stem Cell Stock Review

The Stem Stock Review website provides individual news feeds for each company on the Watch List, enabling investors to easily follow the entire group with a single visit. Each Friday we issue a weekly head-line wrap up of stem cell industry news via our free newsletter. Also included are links to third party industry expert websites and leading news sources such as the Life Sciences Report, Edison Research, Futurity, the Timmerman Report, Fierce Biotech, BioMed Reports, Science Daily and research reports from a broad spectrum of Wall Street sources.

The Stem Cell Stock Review additionally has a Flipboard powered magazine which archives a collection of stem cell industry related articles from over 100 sources and can be found here: Stem Cell Stock Review Magazine: https://flipboard.com/@institution73s6/stem-cell-stock-review-8oe7m025y.

The Stem Cell Stock Review additionally has an online Internet TV channel called Biotech Exec TV, which hosts interviews with industry and Wall Street experts.

Biotech Exec TV: http://www.biotechexectv.com/

Read more:
Stem Cell Stock Review Updates Coverage On Accurexa - KATV ...

Posted in Arkansas Stem Cells | Comments Off on Stem Cell Stock Review Updates Coverage On Accurexa – KATV …

alabama StemCells Therapy StemCells Therapy

Posted: October 24, 2014 at 10:58 pm

Public release date: 26-Jul-2012 [ | E-mail | Share ]

Contact: Vicki Cohn vcohn@liebertpub.com 914-740-2100 x2156 Mary Ann Liebert, Inc./Genetic Engineering News

New Rochelle, NY, July 26, 2012 Administering high-doses of interleukin-2 (IL-2) has been the preferred treatment for patients with stage IV metastatic melanoma. An article published in the current issue of Cancer Biotherapy and Radiopharmaceuticals, a peer-reviewed journal from Mary Ann Liebert, Inc. (http://www.liebertpub.com), explores whether or not this regimen is still the most effective. The article is available free online at the Cancer Biotherapy and Radiopharmaceuticals website (http://www.liebertpub.com/cbr).

In the article Should High-Dose Interleukin-2 Still Be the Preferred Treatment for Patients with Metastatic Melanoma? (http://online.liebertpub.com/doi/full/10.1089/cbr.2012.1220) Robert Dillman and colleagues at the Hoag Institute for Research and Education and Hoag Family Cancer Institute, Newport Beach, CA concluded that until long-term survival data for some of the newer drugs are available, patients with stage IV metastatic melanoma who are well enough to be given intensive IL-2 therapy should receive it initially, either alone or in combination with one of the newer therapeutic agents.

This is an important article that puts into perspective the reasons why IL-2 should continue to be the initial therapy in patients with metastatic melanoma, says Editor Donald J. Buchsbaum, PhD, Division of Radiation Biology, Department of Radiation Oncology, University of Alabama at Birmingham.

###

About the Journal

Cancer Biotherapy and Radiopharmaceuticals (http://www.liebertpub.com/cbr), published 10 times a year in print and online, is under the editorial leadership of Editors Donald J. Buchsbaum, PhD and Robert K. Oldham, MD, Lower Keys Cancer Center, Key West, FL. Cancer Biotherapy and Radiopharmaceuticals is the only journal with a specific focus on cancer biotherapy, including monoclonal antibodies, cytokine therapy, cancer gene therapy, cell-based therapies, and other forms of immunotherapy. The Journal includes extensive reporting on advancements in radioimmunotherapy and the use of radiopharmaceuticals and radiolabeled peptides for the development of new cancer treatments. Topics include antibody drug conjugates, fusion toxins and immunotoxins, nanoparticle therapy, vascular therapy, and inhibitors of proliferation signaling pathways.

About the Publisher

Mary Ann Liebert, Inc., publishers (http://www.liebertpub.com) is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Journal of Interferon & Cytokine Research, Human Gene Therapy and Human Gene Therapy Methods, and Stem Cells and Development. Its biotechnology trade magazine, Genetic Engineering & Biotechnology News (GEN), was the first in its field and is today the industrys most widely read publication worldwide. A complete list of the firms 70 journals, books, and newsmagazines is available at Mary Ann Liebert, Inc. (http://www.liebertpub.com)

Read the original post:
alabama StemCells Therapy StemCells Therapy

Posted in Alabama Stem Cells | Comments Off on alabama StemCells Therapy StemCells Therapy