Page 2,851«..1020..2,8502,8512,8522,853..2,8602,870..»

Monkeys’ Parkinson’s woes eased via stem cells

Posted: February 22, 2012 at 7:51 pm

Thursday, Feb. 23, 2012

KYOTO — Researchers have succeeded in improving the treatment of Parkinson's disease by using human embryonic stem cells to create nerve cells that produce dopamine and then transplanting the cells into monkeys' brains.

Four monkeys with Parkinson's disease — and previously unable to walk due to their symptoms — improved substantially after the human nerve cells were transplanted into their brains, reducing the shaking in their limbs and leading to some regaining the ability to walk, the research team, including Kyoto University professor Jun Takahashi, said Tuesday.

It is the first time pluripotent human embryonic stem cells have been successfully transplanted to improve symptoms of Parkinson's disease in monkeys, according to the team.

Parkinson's disease is linked to drops in the production of dopamine — a neurotransmitter in the brain. While there are drugs to treat the progressive neurological illness, there is currently no treatment to stop dopamine levels from falling.

In the study, the researchers transplanted nerve cells derived from the human stem cells into the four monkeys' brains. About three months later, all of them began to show improvements in their symptoms and tests conducted a year after the operation confirmed the nerve cells had been successfully grafted in their brains.

The finding holds much promise for the future treatment of Parkinson's disease in humans using regenerative medicine, but the researchers cautioned that a lot more work lies ahead as the study also showed that transplanted nerve cells that were not appropriately matured led to the development of tumors, although they were not malignant and could be treated.

Follow this link:
Monkeys' Parkinson's woes eased via stem cells

Posted in Stem Cells | Comments Off on Monkeys’ Parkinson’s woes eased via stem cells

Nasal Stem Cells Show Promise in Repairing Spinal Cord Damage Caused by Contusion

Posted: February 22, 2012 at 7:51 pm

An important new study by a team of scientists at RhinoCyte™ Inc., Louisville, Ky., details promising results on the effectiveness of olfactory (nasal) stem cells in repairing spinal cord damage resulting from the most common cause of these injuries — contusions (bruising) due to major trauma such as is seen in auto accidents, falls or combat. This could have major implication for the estimated 5 million people worldwide affected by spinal cord injuries – 1.275 million of them in the United States alone, where the cost of treatment exceeds $40.5 billion each year.

Louisville, Kentucky (PRWEB) February 22, 2012

An important new study released by a team of scientists at RhinoCyte™ Inc., Louisville, Ky., details promising results on the effectiveness of olfactory (nasal) stem cells in repairing spinal cord damage resulting from the most common cause of these injuries — contusions (bruising) due to major trauma. Their study is featured in the current issue of the Journal of Neurodegeneration and Regeneration.

The study, led by Dr. Fred Roisen, has great implication for the estimated 5 million people worldwide affected by spinal cord injuries – 1.275 million of them in the United States alone, where the cost of treatment exceeds $40.5 billion each year. Current treatment options are limited to retaining and retraining mobility; no drug therapies are available, but studies pertaining to stem cell treatments are showing great promise for these as well as other neurodegenerative conditions.

A previous study by the group made national headlines when lab rats whose spinal cords had been partially cut in the region of the animal’s neck in a way that disabled their front right paws were able to regain significant use of their paws after being injected with olfactory stem cells. The investigative team took the cells from the olfactory neurosensory epithelium — the part of the nose that controls the sense of smell — in adult volunteer donors who were already undergoing elective sinus surgery. The removal of the stem cells has no effect on the patients’ ability to smell. Also, the minimally invasive surgery is frequently done on an outpatient basis so the cells are readily available and, as such, are a potentially promising source of therapeutic stem cells.

The researchers isolated the stem cells and increased their numbers in the laboratory by growing them in an enriched solution. The cells were then injected into a group of lab rats. Twelve weeks later, these animals had regained control of their affected paws while a control group that received no cells had not.

This latest study continued that original work, by concentrating on contusions caused by blunt force trauma such as that resulting from an automobile accident or a fall. Spinal cord and head trauma are common among soldiers suffering serious combat injuries, too.

Two independent sets of experiments were conducted, beginning two weeks after the rats had received contusions administered in a computer-controlled surgery. In the first group, 27 out of 41 rats were injected with olfactory stem cells, while the remainder received none. In the second group, 16 rats were treated with olfactory stem cells, 11 received no treatment and 10 received stem cells grown from human skin to see how the olfactory cells compared with another stem cell source.

The results once again showed great promise, with 40 percent of the rats treated with the olfactory-derived stem cells showing significant improvement after just six weeks, compared to 30 percent of those treated with human skin-derived cells and only 9 percent of those receiving no treatment. In addition, the olfactory stem cell-treated rats showing the highest rate of improvement recovered much faster than the other groups.

“This is very exciting on numerous levels,” said Dr. Roisen. “As an autologous cell source — that is, the patient is both the donor and the recipient — olfactory stem cells bypass the time a patient must wait while a suitable donor is found, which can be critical to the outcome of the patient’s treatment. They also eliminate the need for immunosuppressive drugs, which have numerous negative side effects.

“And just as importantly, stem cells taken from the nose of an adult do away with the ethical concerns associated with using embryonic stem cells.”

The researchers are in the final stages of their enabling studies, which are scheduled to be completed by summer; Phase 1 safety studies could begin as soon as early next year.

Dr. Roisen is chief science officer and co-founder of RhinoCtye™, and a professor and chair of the University of Louisville School of Medicine’s Department of Anatomical Sciences and Neurobiology. The original work forming the basis for the contusion study was conducted by Dr. Roisen’s group at UofL and has been licensed to RhinoCtye™ (http://www.rhinocyte.com), a company he co-founded in 2005 with Dr. Chengliang Lu and Dr. Kathleen Klueber to develop and commercialize diagnostic tools and therapies for stem cell treatment of multiple degenerative and traumatic neurological diseases. RhinoCyte™ currently has three patents for olfactory stem cell treatments approved in the United States, Australia and Israel, with others pending worldwide.

###

Laurel Harper
Laurel92@msn.com
502-550-0089
Email Information

Here is the original post:
Nasal Stem Cells Show Promise in Repairing Spinal Cord Damage Caused by Contusion

Posted in Stem Cells | Comments Off on Nasal Stem Cells Show Promise in Repairing Spinal Cord Damage Caused by Contusion

Stem cell implants boost monkeys with Parkinson’s

Posted: February 22, 2012 at 7:51 pm

Monkeys suffering from Parkinson's disease show a marked improvement when human embryonic stem cells are implanted in their brains, in what a Japanese researcher said Wednesday was a world first.

A team of scientists transplanted the stem cells into four primates that were suffering from the debilitating disease.

The monkeys all had violent shaking in their limbs -- a classic symptom of Parkinson's disease -- and were unable to control their bodies, but began to show improvements in their motor control after about three months, Kyoto University associate professor Jun Takahashi told AFP.

About six months after the transplant, the creatures were able to walk around their cages, he said.

"Clear improvements were confirmed in their movement," he said.

Parkinson's disease is a progressive neurological illness linked to a decrease in dopamine production in the brain. There is currently no medical solution to this drop off in a key neurotransmitter.

The condition, which generally affects older people, gained wider public recognition when Hollywood actor Michael J. Fox revealed he was a sufferer.

Takahashi said at the time of the implant about 35 percent of the stem cells had already grown into dopamine neuron cells, with around 10 percent still alive after a year.

He said he wants to improve the effectiveness of the treatment by increasing the survival rate of dopamine neuron cells to 70 percent.

"The challenge before applying it to a clinical study is to raise the number of dopamine neuron cells and to prevent the development of tumours," he said.

"I would like to make this operation more effective and safe" before clinical trials, Takahashi said.

Takahashi said so far he had used embryonic stem cells, which are harvested from foetuses, but would likely switch to so-called Induced Pluripotent Stem (iPS) cells, which are created from human skin, for the clinical trial.

His team, which has also transplanted iPS cells into monkeys, are now looking to see if the primates with Parkinson's disease show similar improvements in their motor control.

Scientists say the use of human embryonic stem cells as a treatment for cancer and other diseases holds great promise, but the process has drawn fire from religious conservatives, among others.

Opponents say harvesting the cells, which have the potential to become any cell in the human body, is unethical because it involves the destruction of an embryo.

The Japanese government currently has no guidelines on the use of human stem cells in clinical research.

In October last year, the Court of Justice of the European Union banned the patenting of stem cells when their extraction causes the destruction of a human embryo, a ruling that could have repercussions on medical research.

Scientists warned that the ruling would damage stem cell research in Europe, while the Catholic church hailed it as a victory for the protection of human life.

The rest is here:
Stem cell implants boost monkeys with Parkinson's

Posted in Stem Cells | Comments Off on Stem cell implants boost monkeys with Parkinson’s

MediVet-America Partners With Butler Schein Animal Health to Distribute World’s Leading Animal Stem Cell Technology to …

Posted: February 22, 2012 at 7:49 pm

Global leader in animal stem cell technology is poised for significant expansion through new partnership with top U.S. companion animal health distribution company.

Las Vegas, Nevada (PRWEB) February 22, 2012

MediVet-America, the global leader in veterinary stem cell technology and regenerative medicine, has entered into a distribution partnership with Butler Schein Animal Health, a division of Henry Schein, the leading companion animal health distribution company in the U.S., to sell and distribute stem cell kits and equipment to veterinarians serving the nation’s fast-growing $50 billion pet industry.

The announcement was made today at the Western Veterinary Conference in Las Vegas by Jeremy Delk, CEO of MediVet-America.

The two companies will partner to sell and distribute MediVet-America’s advanced stem cell technology to more than 26,000 veterinary clinics nationwide. Adult animal stem cell technology uses the body’s own regenerative healing power to help treat dogs, cats, horses and other animals suffering from painful arthritis, hip dysplasia and tendon, ligament and cartilage injuries and other ailments.

The Adipose-Derived Stem Cell Procedure Kit and state of the art equipment, co-developed with Medical Australia, enable veterinarians to remove a small sample of fat, separate the stem cells, then activate and inject them into affected areas.

“We are pleased to be teaming up with Butler Schein, the largest companion animal health distribution company in the nation,” said Delk. “Their strong track record in sales and distribution will further fuel our rapid growth and bring this breakthrough technology to more leading veterinary practices across the country.”

To introduce the distribution partnership, Delk said MediVet-America has developed an exclusive program of product and service offers that will be made available only to Butler Schein customers.

Veterinary practitioners in more than 200 markets throughout 42 states now perform the drug-free procedure entirely in their own clinics more quickly, effectively and economically than earlier generation animal stem cell therapy. MediVet-America’s new treatment, developed in Australia, is available in 26 countries worldwide.

“This exciting partnership will allow even more of our colleagues unparalleled access to MediVet-America’s superior technology, providing the most affordable and efficacious stem cell therapy in the industry,” said Mike Hutchinson, D.V.M., the world’s leading animal stem cell practitioner. Dr. Hutchinson, who has spoken around the world about stem cell therapy, most recently in Tokyo, has performed more than 300 procedures over the last 18 months in his practice near Pittsburgh, PA.

Partnering with the leading animal health manufacturers in the world, Butler Schein maintains an order-fill ratio greater than 98 percent, and is positioned to bring the broadest selection of veterinary products and strategic business solutions to veterinarians, including:

    A comprehensive product offering for companion animal, equine and large animal practices including biologicals, diagnostics, nutritionals, parasiticides and pharmaceuticals

    Technology hardware and software solutions     Capital equipment, supply products and repair services     Practice design and remodeling, client marketing and financial solutions

Stem cells are basic biological cells with the ability to differentiate into specialized tissue cells and regenerate new cells to replace or repair damaged tissue. The stem cells used in veterinary medicine are not embryonic, which have attracted controversy over the years, but are taken from adipose (fat) tissue of the adult animal.

Americans spent an estimated $50.8 billion in 2011 on their companion animals, according to the American Pet Products Association, up from $28.5 billion in 2001. MediVet-America’s stem cell treatment costs about $1,800 for small animals, $2,400 for horses. Stem cells also can be frozen and banked for future use through MediVet Lab Services.

MEDIVET-AMERICA

A research and development company and global leader in veterinary stem cell technology, MediVet-America provides innovative cell applications for the therapeutic care of animals. Headquartered in Nicholasville, Kentucky, MediVet-America develops advanced cellular designed kits and services for the treatment of arthritis and degenerative joint disease. The company also offers MediVet Lab Services in multiple locations around the world that provides technical support for in-house stem cell vets, as well as regional and national Adipose stem cell processing and cryo banking services for pets at a young age or for a maintenance program, autologous conditioned serum processing, and cell counting for in-house stem cell procedures. http://www.MediVet-America.com

BUTLER SCHEIN ANIMAL HEALTH

Butler Schein Animal Health is the leading U.S. companion animal health distribution company. Headquartered in Dublin, Ohio, the company operates through 18 distribution centers and 12 telecenters. Approximately 900 Butler Schein Animal Health team members, including 300 field sales representatives and 200 telesales and customer support representatives, serve animal health customers in all 50 states. http://www.ButlerShein.com

###

Dick Roberts
Roberts Communications
(412) 535-5000
Email Information

Here is the original post:
MediVet-America Partners With Butler Schein Animal Health to Distribute World's Leading Animal Stem Cell Technology to ...

Posted in Cell Therapy, Stem Cell Therapy | Comments Off on MediVet-America Partners With Butler Schein Animal Health to Distribute World’s Leading Animal Stem Cell Technology to …

Study: Stem Cells Reverse Heart Damage – Video

Posted: February 22, 2012 at 6:11 am

15-02-2012 13:09 BY ALYSSA CARTEE ANCHOR MEGAN MURPHY A breakthrough discovery in stem cell treatments. A patient's own stem cells could actually regenerate the heart after a heart attack. WFLD explains the findings. "The studies found that recent heart attack victims who receive stem cell infusions had a drop in unhealthy heart scar tissue from 24 to 12 percent." The procedure is minimally invasive. A catheter is inserted through the patient's vein and a piece of heart muscle about the size of a peppercorn is removed. That biopsied tissue is then grown in a petri dish and reintroduced to the damaged portion of the heart. This new procedure could change the way heart attacks are treated. ABC reports the typical damage a heart attack leaves and the limited options for treatment. "The damaged scar tissue that results from a heart attack diminishes heart function, which can ultimately lead to enlargement of the heart. At best ... there are measures doctors can try to reduce or compensate for the damage, but in many cases, heart failure ultimately sets in, often requiring mechanical support or a transplant." But the new treatment challenges the conventional wisdom that once the heart is damaged, it can't be repaired. Doctor Sanjay Gupta told CNN this breakthrough in the use of stem cells means a few different things for the medical community. "We've been talking about the promise of stem cells for so long but people have really yet to see it in action. ... It really proved two things. First ...

View post:
Study: Stem Cells Reverse Heart Damage - Video

Posted in Stem Cell Videos | Comments Off on Study: Stem Cells Reverse Heart Damage – Video

Panamanian-US Scientific Research Supports Using Fat Stem Cells to Treat Rheumatoid Arthritis

Posted: February 22, 2012 at 6:11 am

A Panamanian-led, multidisciplinary research team has published the first description of non-expanded fat stem cells in the treatment of rheumatoid arthritis patients. "Autologous Stromal Vascular Fraction Therapy for Rheumatoid Arthritis: Rationale and Clinical Safety," which appears in the January publication of the International Archives of Medicine, followed 13 rheumatoid arthritis patients who were treated with their own fat-derived stem cells.

Dallas, TX (PRWEB) February 21, 2012

A Panamanian-led, multidisciplinary research team has published the first description of non-expanded fat stem cells in the treatment of rheumatoid arthritis patients. "Autologous Stromal Vascular Fraction Therapy for Rheumatoid Arthritis: Rationale and Clinical Safety," which appears in the January publication of the International Archives of Medicine, followed 13 rheumatoid arthritis patients who were treated with their own fat-derived stem cells.

Treating arthritis with fat-derived stem cells has become commonplace in veterinary medicine over the past five years with over 7,000 horses and dogs treated by publication contributor Vet-Stem, a San Diego-based company. The objective of the joint Panamanian-US study was to determine feasibility of translating Vet-Stem's successful animal results into human patients.

Observing no treatment associated adverse reactions after one year, the team concluded that its protocol should be studied further to determine efficacy in the treatment of rheumatoid arthritis. Their publication details the rationale for the use of fat derived stem cells in treatment of autoimmune conditions and is freely available at: http://www.intarchmed.com/content/pdf/1755-7682-5-5.pdf

“Key to advancement of any medical protocol is transparent disclosure of rationale, treatment procedures and outcomes to the research community in a peer-reviewed and IRB-compliant manner,” said Dr. Jorge Paz Rodriguez, Medical Director of the Stem Cell Institute and research team leader. “While we have previously published case studies on the use of fat stem cells in multiple sclerosis patients, and one rheumatoid arthritis patient, this is the first time that comprehensive follow-up has been completed for a larger cohort of patients,” he added.

An important distinction that separates this particular approach from those which are being explored by several international investigators is that the fat stem cells were not grown in a laboratory, affording a substantially higher level of safety and protocol practicality.

“This work signifies Panama's emergence into the burgeoning field of translational medicine,” commented Dr. Ruben Berrocal Timmons, the Panamanian Secretary of Science and publication co-author. “We are proud to have attracted and collaborated with internationally-renowned stem cell clinical researchers such as Dr. Michael Murphy and Dr. Keith March from the Indiana University School of Medicine Center for Vascular Biology and Medicine, Dr. Boris Minev from the University of California, San Diego Moores Cancer Center, Dr. Chien Shing Chen from Loma Linda University Behavioral Medicine Center and Dr. Bob Harman from Vet-Stem. By leveraging their vast, collective clinical experience with Panamanian scientific infrastructure and know-how, we are striving to develop effective, internationally recognized stem cell procedures that will be accepted the world over.”

The treatment procedure involves a mini-liposuction, collection of the fat's cellular component, processing to obtain a population of cells that includes stem cells, freezing the cells in preparation for quality control, and subsequent re-administration of the cells into patients.

The Panamanian-US group has previously shown that there is a specific type of T cell, called the T regulatory cell, associated with fat stem cells, which is capable of suppressing pathological immunity. Their current theory, which is described in detail in the publication: http://www.ncbi.nlm.nih.gov/pubmed/20537320, is that the T regulatory component of the fat is capable of slowing down or suppressing the “autoimmune” reaction, while the stem cell component causes formation of new tissue to replace the damaged joints.

About the Stem Cell Institute

Founded in 2006 on the principles of providing unbiased, scientifically-sound treatment options, the Stem Cell Institute has matured into the world’s leading adult stem cell therapy and research center. In close collaboration with universities and physicians world-wide, the institute’s doctors treat carefully selected patients with spinal cord injury, osteoarthritis, heart disease, multiple sclerosis, rheumatoid arthritis and other autoimmune diseases. Doctors at The Stem Cell Institute have treated over 1000 patients to-date.

For more information on stem cell therapy:

Stem Cell Institute Web Site: http://www.cellmedicine.com

Facebook: http://www.facebook.com/stemcellinstitute

Blogger: http://www.adult-stem-cell-therapy.blogspot.com

Stem Cell Institute

Via Israel & Calle 66

Pacifica Plaza Office #2A

San Francisco, Panama

Republic of Panama

Phone: +1 800 980-STEM (7836) (USA Toll-free) +1 954 636-3390 (from outside USA)

Fax: +1 866 775-3951 (USA Toll-free) +1 775 887-1194 (from outside USA)

###

Jay Lenner
jdlenner@cellmedicine.com
1-800-980-7836
Email Information

See the original post:
Panamanian-US Scientific Research Supports Using Fat Stem Cells to Treat Rheumatoid Arthritis

Posted in Stem Cell Videos | Comments Off on Panamanian-US Scientific Research Supports Using Fat Stem Cells to Treat Rheumatoid Arthritis

Brain Tumors: Advancing Stem Cell Therapies – 2011 CIRM Grantee Meeting – Video

Posted: February 22, 2012 at 6:11 am

09-11-2011 11:26 Karen Aboody speaks at the 2011 CIRM Grantee Meeting about the developing a stem cell-based clinical trial for malignant brain tumors. Dr. Aboody and her team at the City of Hope Hospital medical center in Duarte, have been funded by CIRM to create a human neural cell line with the ability to target brain tumor cells and deliver a powerful chemotherapeutic agent selectively at tumor sites, effectively destroying invasive glioma cells while sparing normal tissues.

Continued here:
Brain Tumors: Advancing Stem Cell Therapies - 2011 CIRM Grantee Meeting - Video

Posted in Stem Cell Treatments | Comments Off on Brain Tumors: Advancing Stem Cell Therapies – 2011 CIRM Grantee Meeting – Video

Celling Biosciences Sponsors 7th Annual Stem Cell Summit

Posted: February 22, 2012 at 6:11 am

AUSTIN, Texas, Feb. 21, 2012 /PRNewswire/ -- Celling Biosciences announces a sponsorship of the 7th Annual Stem Cell Summit being held on February 21st at Bridgewaters New York in New York City. The Stem Cell Summit is consistently the premiere venue for the world's leaders in regenerative medicine to network and promote next generation technologies and cell therapies.

The meeting will feature more than 30 thought leaders in stem cell therapy including Dr. Kenneth Pettine of the Orthopedic Stem Cell Institute in Loveland, Colorado.  Dr. Pettine has teamed up with Celling Biosciences' SpineSmith Division to present "Adult Stem Cell Therapy for Orthopedic and Spine Conditions Resulting from Injury or Aging."  Dr. Pettine has become an innovator in the regenerative cell therapy market and believes "regenerative therapies will become the next standard of care in treating many orthopedic conditions." 

Following the Stem Cell Summit, Dr. Pettine will be presenting a discussion on regenerative therapies to the trainers and medical staff attending this year's NFL combine.  The NFL has recently gained attention from Peyton Manning going oversees to receive a cell therapy treatment for his cervical spine condition.  Dr. Pettine envisions a day when these professional athletes stop going to foreign countries to receive medical treatment.

The Orthopedic Stem Cell Institute provides state-of-the-art regenerative cell therapy using Celling Biosciences' ART 21 system. The ART 21 system processes bone marrow from the patient at the point of care to consistently produce a concentrate of regenerative cells with high yields of mononuclear stem cells in less than 15 minutes.  Celling Biosciences provides the cell separation systems along with the biomaterials and devices necessary to recreate the environment to promote healing. 

Kevin Dunworth, founder of Celling Biosciences, believes regenerative cell therapy has more to do with creating the optimal environment then just providing cells.  "We believe autologous cell therapy is a viable solution but physicians need to understand that these cells require the necessary substrate for delivery and the proper techniques for retrieval.  Our focus has been on providing not only cell separation technologies, medical devices and biomaterials but also the registered nurses to deliver the service so physicians can have the most consistent, reliable and predictable regenerative cell therapy for their patients."

Contact:
Tracy Gladden
Communications Manager
Tgladden@spinesmithusa.com
512-637-2050

About Celling Biosciences
Celling Biosciences, works closely with surgeons, scientists and engineers to research and develop innovative technologies in the field of regenerative medicine. http://www.cellingbiosciences.com and http://www.spinesmithusa.com

View original post here:
Celling Biosciences Sponsors 7th Annual Stem Cell Summit

Posted in Stem Cell Research | Comments Off on Celling Biosciences Sponsors 7th Annual Stem Cell Summit

Blumenthal to cook $250,000 burger?

Posted: February 22, 2012 at 3:28 am

Celebrity chef Heston Blumenthal is the favourite to cook the $A250,000 hamburger made from stem cells.

THINKSTOCK

THE world's first hamburger made with a synthetic meat protein derived from bovine stem cells will be publicly consumed this October after being prepared by a celebrity chef, according to the inventor of the artificial mince.

Heston Blumenthal is the favourite to be asked to cook the $250,000 hamburger, which will be made from 3,000 strips of synthetic meat protein grown in fermentation vats.

Dr Mark Post, of Maastricht University in the Netherlands, said the anonymous backer of his research project had not yet decided who would get to eat the world's most expensive hamburger, which will unveiled at a ceremony in Maastricht.

Dr Post told the American Association for the Advancement of Science that a hamburger made from artificial beef protein was a milestone in the development of novel ways to meet the global demand for meat, which is expected to double by 2050.

"In October we're going to provide a 'proof of concept' showing that with in vitro culture methods that are pretty classical we can make a product out of stem cells that looks like, and hopefully taste like, meat," Dr Post said.

"The target goal is to make a hamburger and for that we need to grow 3,000 pieces of this muscle and a couple of hundred pieces of fat tissue. As long as it's a patty the size of a regular hamburger, I'm happy with it," he said.

A handful of researchers has been working for the past six years on the technical problem of extracting stem cells from bovine muscle, culturing them in the laboratory and turning them into strips of muscle fibres that can be minced together with synthetic fat cells into an edible product.

The technical challenges have included giving the meat a pinkish colour and the right texture for cooking and eating, as well as ensuring that it feels and tastes like real meat.

Dr Post admitted to being nervous about the final result. "I am a little worried, but seeing and tasting is believing," he said.

Although some animals still have to be slaughtered to provide the bovine stem cells, scientists estimate that a million times more meat could be made from the carcass of a single cow, compared with conventional cattle rearing. As well as reducing the number of beef cattle, it would save the land, water and oil currently need to raise cattle for the meat trade, Dr Post said.

"Eventually, my vision is that you have a limited herd of donor animals that you keep in stock in the world. You basically kill animals and take all the stem cells from them, so you would still need animals for this technology."
One of the economic incentives behind the research is the increasing cost of the grain used to feed much of the world's cattle. This is helping to drive up the cost of meat.

"It comes down to the fact that animals are very inefficient at converting vegetable protein [either grass or grain] into animal protein. Yet meat demand is also going to double in the next 40 years," he said.

"Right now we are using about 70 per cent of all our agricultural capacity to grow meat through livestock. You are going to need alternatives. If we don't do anything, meat will become a luxury food and will become very expensive.

"Livestock also contribute a lot to greenhouse gas emissions, more so than our entire transport system. Livestock produces 39 per cent of the methane, 5 per cent of CO2 and 40 per cent of all the nitrous oxide. Eventually we'll have an 'eco-tax' on meat."

Growing meat in fermentation vats might be better for the environment. And it might be more acceptable to vegetarians and people concerned about the welfare of domestic livestock, Dr Post said. "There are many reasons why people are vegetarian. I've talked to the Dutch vegetarian society, which has said that probably half of its members will eat this meat if it has cost fewer animal lives and requires less intensive farming," Dr Post said. Growing artificial meat would also allow greater control over its makeup. It will be possible, for example, to alter the fat content, or the amount of polyunsaturated fats vs saturated fats, according to Dr Post.

"You can probably make meat healthier," he said. "You can probably trigger these cells to make more polyunsaturated fatty acids, just like grass-fed beef has more polyunsaturates than grain-fed beef. You could make any type of meat, you could make mixed meats. I'm pretty sure you could even make panda meat."

Dr Post declined to reveal who his backer was, except to say that he was well known but not a celebrity - and not British. "It's a very reputable source of money," he said. "He's an individual. There may be two reasons why he wants to remain anonymous: as soon as his name is associated with this technology he will draw the attention to himself and he doesn't really want to do that."

Dr Post added: "And the second reason is that he has the image of whatever he does turns into gold and he is not sure that may be the case here so he doesn't want to be associated with a potential failure."

 

LAB-GROWN MEAT THE CASE FOR AND AGAINST:
 

Pros

Billions of animals would be spared from suffering in factory farms and slaughterhouses Would reduce the environmental impacts of livestock production, which the UN's Food and Agriculture Organisation estimates account for 18 per cent of greenhouse-gas emissions Could reduce by 90 per cent the land- and water-use footprint of meat production, according to Oxford University research, freeing those resources for more efficient forms of food production Would provide a more sustainable way to meet demand from China and India, whose growing appetite for meat is expected to double global meat consumption by 2040 Lab-grown meat could be healthier - free of hormones, antibiotics, bacteria such as salmonella and E.coli, and engineered to contain a lower fat content Would reduce the threat of swine and avian flu outbreaks associated with factory farming

Cons

Consumers may find the notion of lab-grown meat creepy or unnatural - a "Frankenstein food" reminiscent of the Soylent Green at the heart of the 1973 sci-fi film of the same name For some vegetarians, in vitro meat will be unsatisfactory as it perpetuates "meat addiction" - rather than focusing on promoting non-meat alternatives, and changing our meat-heavy diet Although the fat content can be tinkered with, other risks of eating red meat, such as an increased threat of bowel cancer, remain It's not cruelty-free - animals will still have to be slaughtered to provide the bovine stem cells There could be unforeseen health consequences to eating lab-grown meat As a highly processed, "unnatural" foodstuff, lab-grown meat is a step in the wrong direction for "slow-food" advocates, and others who believe the problems in our food system have their origins in the distance between food production and the consumer

Go here to read the rest:
Blumenthal to cook $250,000 burger?

Posted in Stem Cell Videos | Comments Off on Blumenthal to cook $250,000 burger?

Stem Cells Help Heal Heart Attack Damage

Posted: February 22, 2012 at 3:28 am

(RTTNews.com) - Researchers have used a patient's own stem cell tissue to help repair damage done as a result of a heart attack.

When a victim suffers a heart attack the damaged muscle is gradually replaced by scar tissue; however, the replacement scar tissue does not function as well as healthy heart muscle placing the victim at risk for higher heart attack incidence.

But, by using stem cells, researchers have been able to replace scar tissue with live, healthy tissue.

The British Heart Foundation says that the new growth was "unprecedented," adding that it could "be great news for heart attack patients."

The study took place as a joint effort between Cedars-Sinai Medical Center in Los Angeles and Johns Hopkins University in Baltimore and treated 17 heart attack patients.

Within weeks after their heart attacks the patients had 12 to 25 million heart-derived cells returned into their hearts.

For comments and feedback: contact editorial@rttnews.com

http://www.rttnews.com

View post:
Stem Cells Help Heal Heart Attack Damage

Posted in Stem Cell Videos | Comments Off on Stem Cells Help Heal Heart Attack Damage

Page 2,851«..1020..2,8502,8512,8522,853..2,8602,870..»