Page 2,870«..1020..2,8692,8702,8712,872..2,8802,890..»

UQ researchers make breakthrough in stem cell research

Posted: February 13, 2012 at 1:44 pm

University of Queensland scientists have developed a world-first method for producing adult stem cells that will substantially impact patients who have a range of serious diseases.

The research is a collaborative effort involving UQ's Australian Institute for Bioengineering and Nanotechnology (AIBN) and is led by UQ Clinical Research Centre's (UQCCR) Professor Nicholas Fisk.

It revealed a new method to create mesenchymal stem cells (MSCs), which can be used to repair bone and potentially other organs.

?We used a small molecule to induce embryonic stem cells over a 10 day period, which is much faster than other studies reported in the literature,? Professor Fisk said.

?The technique also worked on their less contentious counterparts, induced pluripotent stem cells.

?To make the pluripotent mature stem cells useful in the clinic, they have to be told what type of cell they need to become (pre-differentiated), before being administered to an injured organ, or otherwise they could form tumours.

?Because only small numbers of MSCs exist in the bone marrow and harvesting bone marrow from a healthy donor is an invasive procedure, the ability to make our own MSCs in large number in the laboratory is an exciting step in the future widespread clinical use of MSCs.

?We were able to show these new forms of stem cells exhibited all the characteristics of bone marrow stem cells and we are currently examining their bone repair capability."

AIBN Associate Professor and Co-Investigator on the project, Ernst Wolvetang said the new protocol had overcome a significant barrier in the translation of stem cell-based therapy.

?We are very excited by this research, which has brought together stem cell researchers from two of the major UQ research hubs UQCCR and AIBN,? Associate Professor Wolvetang said.

The research is published in the February edition of the STEM CELLS Translational Medicine journal.

UniQuest, The University of Queensland's main commercialisation company, invites parties interested in licensing the intellectual property relating to this discovery to contact UniQuest on 3365 4037 or lifesciences@uniquest.com.au.

Media Contact: Kirsten Rogan, Communications and Media, University of Queensland Faculty of Health Sciences, 07 3346 5308, 0412307594 or k.rogan@uq.edu.au

Read more here:
UQ researchers make breakthrough in stem cell research

Posted in Stem Cell Research | Comments Off on UQ researchers make breakthrough in stem cell research

Researchers make breakthrough in stem cell research

Posted: February 13, 2012 at 1:44 pm

The research is a collaborative effort involving UQ's Australian Institute for Bioengineering and Nanotechnology (AIBN) and is led by UQ Clinical Research Centre's (UQCCR) Professor Nicholas Fisk.

It revealed a new method to create mesenchymal stem cells (MSCs), which can be used to repair bone and potentially other organs.

“We used a small molecule to induce embryonic stem cells over a 10 day period, which is much faster than other studies reported in the literature,” Professor Fisk said.

“The technique also worked on their less contentious counterparts, induced pluripotent stem cells.

“To make the pluripotent mature stem cells useful in the clinic, they have to be told what type of cell they need to become (pre-differentiated), before being administered to an injured organ, or otherwise they could form tumours.

“Because only small numbers of MSCs exist in the bone marrow and harvesting bone marrow from a healthy donor is an invasive procedure, the ability to make our own MSCs in large number in the laboratory is an exciting step in the future widespread clinical use of MSCs.

“We were able to show these new forms of stem cells exhibited all the characteristics of bone marrow stem cells and we are currently examining their bone repair capability."

AIBN Associate Professor and Co-Investigator on the project, Ernst Wolvetang said the new protocol had overcome a significant barrier in the translation of stem cell-based therapy.

“We are very excited by this research, which has brought together stem cell researchers from two of the major UQ research hubs UQCCR and AIBN,” Associate Professor Wolvetang said.

The research is published in the February edition of the STEM CELLS Translational Medicine journal.

Provided by University of Queensland (news : web)

See more here:
Researchers make breakthrough in stem cell research

Posted in Stem Cell Research | Comments Off on Researchers make breakthrough in stem cell research

UQ researchers make breakthrough in stem cell research

Posted: February 13, 2012 at 12:06 pm

University of Queensland scientists have developed a world-first method for producing adult stem cells that will substantially impact patients who have a range of serious diseases.

The research is a collaborative effort involving UQ's Australian Institute for Bioengineering and Nanotechnology (AIBN) and is led by UQ Clinical Research Centre's (UQCCR) Professor Nicholas Fisk.

It revealed a new method to create mesenchymal stem cells (MSCs), which can be used to repair bone and potentially other organs.

?We used a small molecule to induce embryonic stem cells over a 10 day period, which is much faster than other studies reported in the literature,? Professor Fisk said.

?The technique also worked on their less contentious counterparts, induced pluripotent stem cells.

?To make the pluripotent mature stem cells useful in the clinic, they have to be told what type of cell they need to become (pre-differentiated), before being administered to an injured organ, or otherwise they could form tumours.

?Because only small numbers of MSCs exist in the bone marrow and harvesting bone marrow from a healthy donor is an invasive procedure, the ability to make our own MSCs in large number in the laboratory is an exciting step in the future widespread clinical use of MSCs.

?We were able to show these new forms of stem cells exhibited all the characteristics of bone marrow stem cells and we are currently examining their bone repair capability."

AIBN Associate Professor and Co-Investigator on the project, Ernst Wolvetang said the new protocol had overcome a significant barrier in the translation of stem cell-based therapy.

?We are very excited by this research, which has brought together stem cell researchers from two of the major UQ research hubs UQCCR and AIBN,? Associate Professor Wolvetang said.

The research is published in the February edition of the STEM CELLS Translational Medicine journal.

UniQuest, The University of Queensland's main commercialisation company, invites parties interested in licensing the intellectual property relating to this discovery to contact UniQuest on 3365 4037 or lifesciences@uniquest.com.au.

Media Contact: Kirsten Rogan, Communications and Media, University of Queensland Faculty of Health Sciences, 07 3346 5308, 0412307594 or k.rogan@uq.edu.au

Visit link:
UQ researchers make breakthrough in stem cell research

Posted in Stem Cells | Comments Off on UQ researchers make breakthrough in stem cell research

Researchers make breakthrough in stem cell research

Posted: February 13, 2012 at 12:05 pm

The research is a collaborative effort involving UQ's Australian Institute for Bioengineering and Nanotechnology (AIBN) and is led by UQ Clinical Research Centre's (UQCCR) Professor Nicholas Fisk.

It revealed a new method to create mesenchymal stem cells (MSCs), which can be used to repair bone and potentially other organs.

“We used a small molecule to induce embryonic stem cells over a 10 day period, which is much faster than other studies reported in the literature,” Professor Fisk said.

“The technique also worked on their less contentious counterparts, induced pluripotent stem cells.

“To make the pluripotent mature stem cells useful in the clinic, they have to be told what type of cell they need to become (pre-differentiated), before being administered to an injured organ, or otherwise they could form tumours.

“Because only small numbers of MSCs exist in the bone marrow and harvesting bone marrow from a healthy donor is an invasive procedure, the ability to make our own MSCs in large number in the laboratory is an exciting step in the future widespread clinical use of MSCs.

“We were able to show these new forms of stem cells exhibited all the characteristics of bone marrow stem cells and we are currently examining their bone repair capability."

AIBN Associate Professor and Co-Investigator on the project, Ernst Wolvetang said the new protocol had overcome a significant barrier in the translation of stem cell-based therapy.

“We are very excited by this research, which has brought together stem cell researchers from two of the major UQ research hubs UQCCR and AIBN,” Associate Professor Wolvetang said.

The research is published in the February edition of the STEM CELLS Translational Medicine journal.

Provided by University of Queensland (news : web)

Visit link:
Researchers make breakthrough in stem cell research

Posted in Cell Medicine | Comments Off on Researchers make breakthrough in stem cell research

The Gamida Cell-Teva Joint Venture Concludes Enrollment for the Phase III Study of StemEx®, a Cord Blood Stem Cell …

Posted: February 13, 2012 at 12:05 pm

JERUSALEM--(BUSINESS WIRE)--

Gamida Cell announced today that the Gamida Cell-Teva Joint Venture (JV), equally held by Gamida Cell and Teva Pharmaceutical Industries, has enrolled the last of 100 patients in the international, multi-center, pivotal registration, Phase III clinical trial of StemEx, a cell therapy product in development as an alternative therapeutic treatment for adolescents and adults, with blood cancers such as leukemia and lymphoma, who cannot find a family related, matched bone marrow donor.

StemEx is a graft of an expanded population of stem/progenitor cells, derived from part of a single unit of umbilical cord blood and transplanted by IV administration along with the remaining, non-manipulated cells from the same unit.

Dr. Yael Margolin, president and chief executive officer of Gamida Cell, said, "The JV is planning to announce the safety and efficacy results of the Phase III StemEx trial in 2012 and to launch the product into the market in 2013. It is our hope that StemEx will provide the answer for the thousands of leukemia and lymphoma patients unable to find a matched, related bone marrow donor.”

Dr. Margolin continued, “StemEx may be the first allogeneic cell therapy to be brought to market. This is a source of pride for Gamida Cell, as it further confirms the company’s leadership as a pioneer in cell therapy. In addition to StemEx, Gamida Cell is developing a diverse pipeline of products for the treatment of cancer, hematological diseases such as sickle cell disease and thalassemia, as well as autoimmune and metabolic diseases and conditions helped by regenerative medicine.”

About Gamida Cell

Gamida Cell is a world leader in stem cell population expansion technologies and stem cell therapy products for transplantation and regenerative medicine. The company’s pipeline of stem cell therapy products are in development to treat a wide range of conditions including blood cancers such as leukemia and lymphoma, solid tumors, non-malignant hematological diseases such as hemoglobinopathies, acute radiation syndrome, autoimmune diseases and metabolic diseases as well as conditions that can be helped by regenerative medicine. Gamida Cell’s therapeutic candidates contain populations of adult stem cells, selected from non-controversial sources such as umbilical cord blood, which are expanded in culture. Gamida Cell was successful in translating these proprietary expansion technologies into robust and validated manufacturing processes under GMP. Gamida Cell’s current shareholders include: Elbit Imaging, Clal Biotechnology Industries, Israel Healthcare Venture, Teva Pharmaceutical Industries, Amgen, Denali Ventures and Auriga Ventures. For more information, please visit: http://www.gamida-cell.com.

Follow this link:
The Gamida Cell-Teva Joint Venture Concludes Enrollment for the Phase III Study of StemEx®, a Cord Blood Stem Cell ...

Posted in Cell Therapy | Comments Off on The Gamida Cell-Teva Joint Venture Concludes Enrollment for the Phase III Study of StemEx®, a Cord Blood Stem Cell …

Stem cell injection successfully treats urinary incontinence

Posted: February 13, 2012 at 8:19 am

It started when Deborah Bishop was still in her 20s.

Always athletic -- she had participated in field hockey, speed skating and baseball -- Ms. Bishop was doing jumping jacks when she noticed to her embarrassment that she had leaked urine.

As the weeks wore on, the Canadian woman began to have more and more of these accidents. It wasn't just strenuous exercise that caused them, but also being tickled or coughing or sneezing.

The condition is known as stress urinary incontinence, and researchers say it may affect hundreds of millions of people around the world, primarily women, who are more susceptible because of their anatomy.

Today, Ms. Bishop, 54, is "90 percent" normal on her urinary leakage, she said -- all because of an injection of her own stem cells that she received three years ago.

The cells, known officially as autologous muscle-derived cells, were taken out of her thigh, multiplied several times over in the lab, and then injected into the muscles around her urethra, the opening at the neck of the bladder.

While many people still associate the phrase "stem cells" with ethical debates over using embryos, these stem cells have nothing to do with that.

All of us have stem cells in various parts of our bodies that can develop into mature cells and are used to repair muscle, nerve and tissue damage.

In this case, researcher Johnny Huard at the University of Pittsburgh developed a technique for finding stem cells in muscle tissue and then purifying and multiplying them. The biomedical firm Cook MyoSite Inc. bought the licensing rights to his technique and is overseeing the current tests on treating stress urinary incontinence.

The idea is that the stem cells will create new cells that will strengthen the muscles that control urination. Even though the initial trials were focused on testing the safety of the procedure, 60 to 70 percent of the women have shown a significant decrease in their urinary leakage, said Ryan Pruchnic, Cook MyoSite's director of operations.

Lesley Carr, Ms. Bishop's physician and a urologist at Sunnybrook Health Sciences Centre in Toronto, said there is no medication that helps with this most prevalent form of incontinence. Up to now, the primary last-resort therapy has been surgical insertion of a mesh sling around the urethra.

The surgery is effective, Dr. Carr said, but "there are rare but recognized complications," including pain and infections, and women face up to six weeks of restricted activity after the operation.

That was a big obstacle for Ms. Bishop, not only because she is so physically active, but because she was in the middle of a house renovation when she sought help for her condition.

"I told Dr. Carr I couldn't afford to be out of commission for six weeks," she recalled, "and that's when she must have mentioned the stem cell trial to me."

In July 2009, she had a piece of her outer thigh muscle removed under local anesthesia, a procedure she admits left her feeling "like I'd been kicked by a horse" for about a week.

Researchers then located and multiplied the stem cells in her muscle tissue, and the following September, she had them injected into the muscles around her urethra. The entire injection took about five minutes, she said, and she felt nothing.

The improvement was gradual after that. "I noticed a difference in a couple months," she said, "and a significant difference in four or five months. I thought what made it really unique was that it was using my own muscle cells."

The procedure means that today, she can do her strenuous morning exercises of standing broad jumps and stride jumps without having to wear heavy pads to absorb leakage.

The latest trials with the stem cells are the first to enroll women who will either get real stem cells or placebo injections. Cook MyoSite hopes to have solid results and be able to bring the procedure to market by 2015, Mr. Pruchnic said.

The company has also begun initial tests of the muscle stem cells in people who have had heart attacks or are experiencing chronic heart failure, in hopes they will restore the strength and flexibility of cardiac muscle.

By using a person's own cells, Dr. Carr noted, there is no need for patients to take immunosuppressive medications. She believes such regenerative medicine "will be the wave of the future in most fields" of health care.

Ms. Bishop is certainly sold.

"I've got a girlfriend who's had three children and is very physically active, and she's struggling with stress incontinence now, and so I'm an advocate for this.

"It was an excellent experience for me, and I would highly recommend it to anyone."

Mark Roth: mroth@post-gazette.com or 412-263-1130.

First published on February 13, 2012 at 12:00 am

More here:
Stem cell injection successfully treats urinary incontinence

Posted in Cell Medicine | Comments Off on Stem cell injection successfully treats urinary incontinence

American CryoStem Joins Alliance for Regenerative Medicine

Posted: February 13, 2012 at 8:18 am

RED BANK, NJ--(Marketwire -02/08/12)- American CryoStem Corporation (OTCQB: CRYO.OB - News), a commercial developer, manufacturer and marketer of clinical products and services involving adipose tissue and adipose derived adult stem cells, announced its association with the Alliance for Regenerative Medicine (ARM).

ARM is a Washington, DC-based non-profit organization that promotes legislative, regulatory and reimbursement initiatives necessary to facilitate access to life-giving advances in regenerative medicine. American CryoStem's decision to join ARM was based on the alignment of its ongoing mission to offer the highest quality products and services to help accelerate the regenerative medicine industry and ARM's support of policy efforts toward safe and reliable cellular products.

Morrie Ruffin, Managing Director for the Alliance for Regenerative Medicine, commented, "We are delighted to have American CryoStem as part of the Alliance and look forward to working together to advance the field of adipose-derived stem cells for a variety of therapeutic applications."

ARM's membership is diverse, representing leading regenerative medicine companies and investors, university-based and non-profit research institutions, patient advocacy groups, pharmaceutical companies engaged in regenerative medicine research and other organizations supporting regenerative medicine. American CryoStem has created and commercialized core proprietary products and platforms for processing, storing and quality management of adipose tissue and adipose derived adult stem cells that are broadly relevant to ARM's membership.

"American CryoStem is committed to working with industry organizations to develop cutting edge adipose tissue based treatments and therapies. One unique component of our clinical laboratory product and service suite is offering individuals the opportunity to cryogenically store their younger, healthier adult stem cells for their own future use in regenerative medicine," stated John Arnone, American CryoStem CEO. "We are pleased and honored to work with the Alliance for Regenerative Medicine to educate the public and regulators on the safe uses of adult stem cells and their potential life changing applications."

In support of these goals, the Company recently launched ACS Laboratories, thus expanding its clinical processing technology to companies, institutions and medical professionals. ACS Laboratories offers a wide range of adipose tissue specific services. Through ACS laboratories patented ACSelerate™ cell culture media, a ten product suite, American CryoStem can leverage its technology and products to participate in a broad range of clinical application opportunities.

About American CryoStem: American CryoStem Corporation (OTCQB: CRYO.OB - News) markets clinical processing products and services for adipose (fat) tissue and adipose derived adult stem cells. CRYO's clinical processing and preservation platform supports the science and applications being discovered globally by providing the highest quality, clinically processed cells and assuring their sterility, viability and growth cap abilities, while at the same time developing cutting edge application, therapies and laboratory products and services for consumers and physicians.

The Private Securities Litigation Reform Act of 1995 provides a "safe harbor" for forward-looking statements. Certain of the statements contained herein, which are not historical facts, are forward-looking statements with respect to events, the occurrence of which involve risks and uncertainties. These forward-looking statements may be impacted, either positively or negatively, by various factors. Information concerning potential factors that could affect the Company is detailed from time to time in the Company's reports filed with the Securities and Exchange Commission.

More here:
American CryoStem Joins Alliance for Regenerative Medicine

Posted in Regenerative Medicine | Comments Off on American CryoStem Joins Alliance for Regenerative Medicine

Regenerative Medicine: Current Concepts and Changing Trends – Video

Posted: February 12, 2012 at 7:18 pm

26-01-2012 07:54 Air date: Wednesday, January 25, 2012, 3:00:00 PM Timedisplayed is Eastern Time, Washington DC Local Category: Wednesday Afternoon Lectures Description: Patients with diseased or injured organs may be treated with transplanted organs. There is a severe shortage of donor organs which is worsening yearly due to the aging population. Regenerative medicine and tissue engineering apply the principles of cell transplantation, material sciences, and bioengineering to construct biological substitutes that may restore and maintain normal function in diseased and injured tissues. Stem cells may offer a potentially limitless source of cells for tissue engineering applications and are opening new options for therapy. Recent advances that have occurred in regenerative medicine will be reviewed and applications of these new technologies that may offer novel therapies for patients with end-stage tissue and organ failure will be described. The NIH Wednesday Afternoon Lecture Series includes weekly scientific talks by some of the top researchers in the biomedical sciences worldwide. For more information, visit: The NIH Director's Wednesday Afternoon Lecture Series Author: Anthony Atala, MD, Wake Forest School of Medicine Runtime: 00:51:29 Permanent link: videocast.nih.gov

Original post:
Regenerative Medicine: Current Concepts and Changing Trends - Video

Posted in Genetic medicine | Comments Off on Regenerative Medicine: Current Concepts and Changing Trends – Video

Sight Seen: Gene Therapy Restores Vision in Both Eyes

Posted: February 12, 2012 at 4:57 pm

Gene therapy has markedly improved vision in both eyes in three women who were born virtually blind. The patients can now avoid obstacles even in dim light, read large print and recognize people's faces. The operation, researchers predict, should work even better in children and adolescents blinded by the same condition.

[More]

Add to digg
Add to StumbleUpon
Add to Reddit
Add to Facebook
Add to del.icio.us
Email this Article


Source:
http://rss.sciam.com/sciam/topic/gene-therapy

Posted in Gene therapy | Comments Off on Sight Seen: Gene Therapy Restores Vision in Both Eyes

Cracks in the Plaques: Mysteries of Alzheimer’s Slowly Yielding to New Research

Posted: February 12, 2012 at 4:57 pm

This has been a big week in Alzheimer's news as scientists put together a clearer picture than ever before of how the disease affects the brain. Three recently published studies have detected the disease with new technologies, hinted at its prevalence, and described at last how it makes its lethal progress through the brain.

[More]

Add to digg
Add to StumbleUpon
Add to Reddit
Add to Facebook
Add to del.icio.us
Email this Article


Source:
http://rss.sciam.com/sciam/topic/gene-therapy

Posted in Gene therapy | Comments Off on Cracks in the Plaques: Mysteries of Alzheimer’s Slowly Yielding to New Research

Page 2,870«..1020..2,8692,8702,8712,872..2,8802,890..»