The Man Who Grew Eyes From Scratch

Posted: August 26, 2014 at 8:55 pm

Growing nerve tissue and organs is a sci-fi dream. Moheb Costandi met the pioneering researcher who grew eyes and brain cells.

The train line from mainland Kobe is a marvel of urban transportation. Opened in 1981, Japan's first driverless, fully automated train pulls out of Sannomiya station, guided smoothly along elevated tracks that stand precariously over the bustling city streets below, across the bay to the Port Island.

The island, and much of the city, was razed to the ground in the Great Hanshin Earthquake of 1995 which killed more than 5,000 people and destroyed more than 100,000 of Kobe's buildings and built anew in subsequent years. As the train proceeds, the landscape fills with skyscrapers. The Rokk mountains come into view, looming menacingly over the city, peppered with smoke billowing from the dozens of narrow chimneys of the electronics, steel and shipbuilding factories.

Today, as well as housing the Port of Kobe, the man-made island contains hotels, medical centres, universities, a large convention centre and an Ikea store. There are also three government-funded RIKEN research institutions: the Advanced Institute of Computational Science (which is home to what was, until 2011, the world's fastest supercomputer), the Center for Life Science Technologies, and the Centre for Developmental Biology (CDB).

At the entrance to one of the labs, a faded poster in a thin plastic frame shows the crew of the Starship Enterprise, a young Captain Kirk sitting proudly at the helm. Underneath is the famous Star Trek slogan: "To boldly go where no man has gone before."

On the other side of the door, scientists in the Laboratory for Organogenesis and Neurogenesis are working on something that has fired the imagination of science fiction authors for many years. They are at the cutting edge of an emerging field: rebuilding the body by growing tissues and organs from stem cells. They hope to develop the next generation of therapies for a variety of debilitating human diseases, and unravel the mysteries of brain development.

Not long after fertilisation, the embryo consists of a tiny sphere of identical, non-specialised cells, referred to as pluripotent stem cells. These have the ability to stay in this state indefinitely, while dividing to produce daughter cells that are capable of turning into any cell type found in the adult body. These embryonic stem cells offered hope for researchers trying to develop disease treatments, but the fact that they could only be obtained from human embryos raised serious ethical questions about their use.

Then, in 2007, a team led by Shinya Yamanaka of Kyoto University demonstrated that connective tissue cells from adult rats could be made to revert to a pluripotent, stem cell-like state and reprogrammed to form different cell types. Others went on to show that cells taken from just about anywhere in the human body can be similarly reprogrammed, into just about any other type of cell.

By 2008, US researchers had taken skin cells from an 82-year-old woman with amyotrophic lateral sclerosis (ALS, a form of motor neuron disease), placed them into petri dishes and reprogrammed them to form the same motor neurons that are destroyed by the disease. By 2010, researchers at Stanford had shown that mouse connective tissue cells could be reprogrammed directly into neurons, bypassing the pluripotent state.

Follow this link:

The Man Who Grew Eyes From Scratch

Related Post