A comparative recombination analysis of human coronaviruses and implications for the SARS-CoV-2 pandemic | Scientific Reports – Nature.com

Posted: August 31, 2021 at 2:04 am

Simon-Loriere, E. & Holmes, E. C. Why do RNA viruses recombine?. Nat. Rev. Microbiol. 9, 617626. https://doi.org/10.1038/nrmicro2614 (2011).

CAS Article PubMed PubMed Central Google Scholar

Dhama, K. et al. Coronavirus disease 2019-COVID-19. Clin. Microbiol. Rev. 33, e0002820. https://doi.org/10.1128/cmr.00028-20 (2020).

CAS Article Google Scholar

Cheng, V. C., Lau, S. K., Woo, P. C. & Yuen, K. Y. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin. Microbiol. Rev. 20, 660694. https://doi.org/10.1128/cmr.00023-07 (2007).

CAS Article PubMed PubMed Central Google Scholar

Neches, R. Y., McGee, M. D. & Kyrpides, N. C. Recombination should not be an afterthought. Nat. Rev. Microbiol. 18, 606. https://doi.org/10.1038/s41579-020-00451-1 (2020).

CAS Article PubMed Google Scholar

Paraskevis, D. et al. Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infect. Genet. Evol. 79, 104212. https://doi.org/10.1016/j.meegid.2020.104212 (2020).

CAS Article PubMed PubMed Central Google Scholar

Wu, A. et al. Mutations, Recombination and Insertion in the evolution of 2019-nCoV. bioRxiv https://doi.org/10.1101/2020.02.29.971101 (2020).

Article PubMed PubMed Central Google Scholar

Vijgen, L. et al. Complete genomic sequence of human coronavirus OC43: Molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event. J. Virol. 79, 15951604. https://doi.org/10.1128/jvi.79.3.1595-1604.2005 (2005).

CAS Article PubMed PubMed Central Google Scholar

Zhang, Y. et al. Genotype shift in human coronavirus OC43 and emergence of a novel genotype by natural recombination. J. Infect. 70, 641650. https://doi.org/10.1016/j.jinf.2014.12.005 (2015).

Article PubMed Google Scholar

Zhang, Z., Shen, L. & Gu, X. Evolutionary dynamics of MERS-CoV: Potential recombination, positive selection and transmission. Sci. Rep. 6, 25049. https://doi.org/10.1038/srep25049 (2016).

ADS CAS Article PubMed PubMed Central Google Scholar

Zhang, X. W., Yap, Y. L. & Danchin, A. Testing the hypothesis of a recombinant origin of the SARS-associated coronavirus. Arch. Virol. 150, 120. https://doi.org/10.1007/s00705-004-0413-9 (2005).

CAS Article PubMed Google Scholar

Liu, P. et al. Prevalence and genetic diversity analysis of human coronaviruses among cross-border children. Virol. J. 14, 230. https://doi.org/10.1186/s12985-017-0896-0 (2017).

CAS Article PubMed PubMed Central Google Scholar

Kin, N., Miszczak, F., Lin, W., Gouilh, M. A. & Vabret, A. Genomic analysis of 15 Human coronaviruses OC43 (HCoV-OC43s) circulating in France from 2001 to 2013 reveals a high intra-specific diversity with new recombinant genotypes. Viruses 7, 23582377. https://doi.org/10.3390/v7052358 (2015).

CAS Article PubMed PubMed Central Google Scholar

Lau, S. K. et al. Severe acute respiratory syndrome (SARS) coronavirus ORF8 protein is acquired from SARS-related coronavirus from greater horseshoe bats through recombination. J. Virol. 89, 1053210547. https://doi.org/10.1128/jvi.01048-15 (2015).

CAS Article PubMed PubMed Central Google Scholar

Lau, S. K. et al. Molecular epidemiology of human coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination. J. Virol. 85, 1132511337. https://doi.org/10.1128/jvi.05512-11 (2011).

CAS Article PubMed PubMed Central Google Scholar

Dominguez, S. R. et al. Genomic analysis of 16 Colorado human NL63 coronaviruses identifies a new genotype, high sequence diversity in the N-terminal domain of the spike gene and evidence of recombination. J. Gen. Virol. 93, 23872398. https://doi.org/10.1099/vir.0.044628-0 (2012).

CAS Article PubMed PubMed Central Google Scholar

Pyrc, K. et al. Mosaic structure of human coronavirus NL63, one thousand years of evolution. J. Mol. Biol. 364, 964973. https://doi.org/10.1016/j.jmb.2006.09.074 (2006).

CAS Article PubMed PubMed Central Google Scholar

Woo, P. C. et al. Comparative analysis of 22 coronavirus HKU1 genomes reveals a novel genotype and evidence of natural recombination in coronavirus HKU1. J. Virol. 80, 71367145. https://doi.org/10.1128/jvi.00509-06 (2006).

CAS Article PubMed PubMed Central Google Scholar

Sabir, J. S. et al. Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia. Science 351, 8184. https://doi.org/10.1126/science.aac8608 (2016).

ADS CAS Article PubMed Google Scholar

Wang, Y. et al. Origin and Possible Genetic Recombination of the Middle East Respiratory Syndrome Coronavirus from the First Imported Case in China: Phylogenetics and Coalescence Analysis. MBio 6, e01280-01215. https://doi.org/10.1128/mBio.01280-15 (2015).

CAS Article Google Scholar

Eden, J. S., Tanaka, M. M., Boni, M. F., Rawlinson, W. D. & White, P. A. Recombination within the pandemic norovirus GII.4 lineage. J. Virol. 87, 62706282. https://doi.org/10.1128/jvi.03464-12 (2013).

CAS Article PubMed PubMed Central Google Scholar

Dearlove, B. et al. A SARS-CoV-2 vaccine candidate would likely match all currently circulating variants. Proc. Natl. Acad. Sci. USA 117, 2365223662. https://doi.org/10.1073/pnas.2008281117 (2020).

Article PubMed PubMed Central Google Scholar

Montoya, V. et al. Deep sequencing increases hepatitis C virus phylogenetic cluster detection compared to Sanger sequencing. Infect. Genet. Evol. 43, 329337. https://doi.org/10.1016/j.meegid.2016.06.015 (2016).

CAS Article PubMed Google Scholar

Prez-Losada, M., Arenas, M., Galn, J. C., Palero, F. & Gonzlez-Candelas, F. Recombination in viruses: Mechanisms, methods of study, and evolutionary consequences. Infect. Genet. Evol. 30, 296307. https://doi.org/10.1016/j.meegid.2014.12.022 (2015).

CAS Article PubMed Google Scholar

Hamre, D. & Procknow, J. J. A new virus isolated from the human respiratory tract. Proc. Soc. Exp. Biol. Med. 121, 190193. https://doi.org/10.3181/00379727-121-30734 (1966).

CAS Article PubMed Google Scholar

https://www.newscientist.com/article/2268379-two-coronavirus-variants-have-merged-heres-what-you-need-to-know/, cited Feb 20 2021.

Eguia, R. T. et al. A human coronavirus evolves antigenically to escape antibody immunity. PLoS Pathog. 17, e1009453. https://doi.org/10.1371/journal.ppat.1009453 (2021).

CAS Article PubMed PubMed Central Google Scholar

McIntosh, K., Becker, W. B. & Chanock, R. M. Growth in suckling-mouse brain of IBV-like viruses from patients with upper respiratory tract disease. Proc. Natl. Acad. Sci. USA 58, 22682273. https://doi.org/10.1073/pnas.58.6.2268 (1967).

ADS CAS Article PubMed PubMed Central Google Scholar

McIntosh, K. et al. Seroepidemiologic studies of coronavirus infection in adults and children. Am. J. Epidemiol. 91, 585592. https://doi.org/10.1093/oxfordjournals.aje.a121171 (1970).

CAS Article PubMed Google Scholar

Kahn, J. S. & McIntosh, K. History and recent advances in coronavirus discovery. Pediatr Infect Dis J 24, S223-227. https://doi.org/10.1097/01.inf.0000188166.17324.60 (2005) (discussion S226).

Article PubMed Google Scholar

Chen, R. & Vasilakis, N. Denguequo tu et quo vadis?. Viruses 3, 15621608. https://doi.org/10.3390/v3091562 (2011).

Article PubMed PubMed Central Google Scholar

https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563. Accessed 31 Dec 2020.

CDC. SARS-CoV-2 Variant Classifications and Definitions. https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html.

Didelot, X., Gardy, J. & Colijn, C. Bayesian inference of infectious disease transmission from whole-genome sequence data. Mol. Biol. Evol. 31, 18691879. https://doi.org/10.1093/molbev/msu121 (2014).

CAS Article PubMed PubMed Central Google Scholar

Pickett, B. E. et al. ViPR: an open bioinformatics database and analysis resource for virology research. Nucleic Acids Res. 40, D593-598. https://doi.org/10.1093/nar/gkr859 (2012).

CAS Article PubMed Google Scholar

Katoh, K. & Standley, D. M. MAFFT: iterative refinement and additional methods. Methods Mol. Biol. 1079, 131146. https://doi.org/10.1007/978-1-62703-646-7_8 (2014).

Article PubMed Google Scholar

Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 27252729. https://doi.org/10.1093/molbev/mst197 (2013).

CAS Article PubMed PubMed Central Google Scholar

https://www.gisaid.org/. Accessed 9 Jan 2021.

Capella-Gutirrez, S., Silla-Martnez, J. M. & Gabaldn, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 19721973. https://doi.org/10.1093/bioinformatics/btp348 (2009).

CAS Article PubMed PubMed Central Google Scholar

Martin, D. P., Murrell, B., Golden, M., Khoosal, A. & Muhire, B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol 1, vev003. https://doi.org/10.1093/ve/vev003 (2015).

Article PubMed PubMed Central Google Scholar

Martin, D. & Rybicki, E. RDP: Detection of recombination amongst aligned sequences. Bioinformatics 16, 562563. https://doi.org/10.1093/bioinformatics/16.6.562 (2000).

CAS Article PubMed Google Scholar

Martin, D. P., Posada, D., Crandall, K. A. & Williamson, C. A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res. Hum. Retroviruses 21, 98102. https://doi.org/10.1089/aid.2005.21.98 (2005).

CAS Article PubMed Google Scholar

Smith, J. M. Analyzing the mosaic structure of genes. J. Mol. Evol. 34, 126129. https://doi.org/10.1007/bf00182389 (1992).

ADS CAS Article PubMed Google Scholar

Posada, D. & Crandall, K. A. Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc. Natl. Acad. Sci. USA 98, 1375713762. https://doi.org/10.1073/pnas.241370698 (2001).

ADS CAS Article PubMed PubMed Central Google Scholar

Lam, H. M., Ratmann, O. & Boni, M. F. Improved algorithmic complexity for the 3SEQ recombination detection algorithm. Mol. Biol. Evol. 35, 247251. https://doi.org/10.1093/molbev/msx263 (2018).

CAS Article PubMed Google Scholar

Padidam, M., Sawyer, S. & Fauquet, C. M. Possible emergence of new geminiviruses by frequent recombination. Virology 265, 218225. https://doi.org/10.1006/viro.1999.0056 (1999).

CAS Article PubMed Google Scholar

Gibbs, M. J., Armstrong, J. S. & Gibbs, A. J. Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16, 573582. https://doi.org/10.1093/bioinformatics/16.7.573 (2000).

CAS Article PubMed Google Scholar

Weiller, G. F. Phylogenetic profiles: A graphical method for detecting genetic recombinations in homologous sequences. Mol. Biol. Evol. 15, 326335. https://doi.org/10.1093/oxfordjournals.molbev.a025929 (1998).

CAS Article PubMed Google Scholar

Lemey, P., Lott, M., Martin, D. P. & Moulton, V. Identifying recombinants in human and primate immunodeficiency virus sequence alignments using quartet scanning. BMC Bioinformatics 10, 126. https://doi.org/10.1186/1471-2105-10-126 (2009).

CAS Article PubMed PubMed Central Google Scholar

Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9, 772. https://doi.org/10.1038/nmeth.2109 (2012).

CAS Article PubMed PubMed Central Google Scholar

Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696704. https://doi.org/10.1080/10635150390235520 (2003).

Article PubMed Google Scholar

Rambaut, A., Lam, T. T., MaxCarvalho, L. & Pybus, O. G. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2, vew007. https://doi.org/10.1093/ve/vew007 (2016).

Article PubMed PubMed Central Google Scholar

https://apps.who.int/iris/bitstream/handle/10665/326126/WHO-MERS-RA-19.1-eng.pdf. Accessed 31 Dec 2020.

Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016. https://doi.org/10.1093/ve/vey016 (2018).

Read more:
A comparative recombination analysis of human coronaviruses and implications for the SARS-CoV-2 pandemic | Scientific Reports - Nature.com

Related Posts