Page 44«..1020..43444546..50..»

Category Archives: Genetic Engineering

Lonza taps Cryoport to bolster cell and gene therapy delivery – BioPharma Dive

Posted: November 8, 2019 at 12:42 am

Dive Brief:

Lonza is betting big on the future of gene and cell therapy and trying to offer customers an end-to-end solution to meet the complex challenges that come with the field.

Every stage of cell therapy, from patient apheresis through transport, genetic engineering and reinfusion comes with critical requirements for temperature control, speed and chain of identity.

Cryoport operates in more than 100 countries and supports more than 413 clinical trials. Notably, the company also supports three approved therapies: Gilead's Yescarta(axicabtagene ciloleucel), Novartis' Kymriah(tisagenlecleucel) and Bluebird bio's Zynteglo.

Demand for specialized manufacturing and distribution services is growing as researchers figure out new ways to manipulate cells so they can fight cancer and other diseases, Cryoport CEO Jerrell Shelton said in the statement.Cryoport's temperature-controlled supply chain systems fit well with Lonza's manufacturing services, he added.

For Lonza, cell and gene therapies are a new focus, part of a broader turn to the pharmaceutical side of the contract manufacturer's business.

In April 2018, the Swiss CDMO opened the doors to a 300,000 square-foot plant in Texas dedicated to producing the complex treatments.

CEO Marc Funk told BioPharma Dive in an interview earlier this year that Lonza has now worked with over 45 customers seeking supply of viral vectors, which are used to deliver gene therapies.

Read this article:
Lonza taps Cryoport to bolster cell and gene therapy delivery - BioPharma Dive

Posted in Genetic Engineering | Comments Off on Lonza taps Cryoport to bolster cell and gene therapy delivery – BioPharma Dive

The world’s banana crops are under threat from a deadly fungus. Is gene editing the answer? – National Post

Posted: November 8, 2019 at 12:42 am

We expect to have more than one variety of apple to choose from. Even at the most modestly stocked produce stand, youre likely to see mounds of Galas, McIntoshes and Honeycrisps. When it comes to the banana, though no matter where you shop theres only ever one: The Cavendish.

As far removed as we are from tropical growing regions, youd be forgiven for assuming the fruit we recognize as a cheap and reliable staple is the one true banana. In reality, however, there are over a thousand types, each exhibiting a different flavour profile, texture, shape, colour, ripening pattern and durability. And for the second time in recent history, the very existence of the sole breed we rely on which represents the single most exported fresh fruit on the planet is under threat.

Researchers, seeking a solution, are looking towards a new form of genetic modification. Could specific alterations of the genetic makeup of the Cavendish help stave off the disappearance of such a critical commodity?

In August, Colombia declared a state of emergency when scientists confirmed a banana-killing fungus had reached the Americas for the first time. Known by its common name, Panama disease, the strain of fungus Fusarium oxysporum cubense Tropical Race 4 (TR4) has been a known issue since the early 1990s, but until this year, it was largely contained to Asia. Immune to pesticides, the lethal soil-borne organism, for which there is no known cure, obliterates yields by choking banana trees of essential water and nutrients.

The Cavendishs predecessor as worlds presiding banana was the Gros Michel, a variety that dominated fruit stands in temperate regions until it was decimated by fungal strain Tropical Race 1 in the 1950s. That the extreme monoculture approach replicated with the Cavendish would result in a similar fate should have seemed inevitable.

Cavendish bananas are sterile and breeding them requires a cloning process that creates genetically identical plants. Because of their inherent lack of biodiversity, monocultures such as this banana are especially vulnerable to diseases and pests; when theres a weakness, such as little or no resistance against TR4, it can have sweeping and ruinous effects.

Given the bananas immense importance to producers and consumers, researchers have been attempting a variety of methods to create a resistance to the deadly fungus. According to Nature, James Dale, a biotechnologist at Queensland University of Technology in Brisbane, is currently field testing genetically modified bananas in Northern Australia with some success. Dale has added a gene from a wild banana into the Cavendish variety that makes it more resistant to the TR4.

However, even if scientists are able to breed a TR4-immune Cavendish, they wouldnt be permitted to grow or sell them in a significant portion of the world. In Europe, for example, GM crops are restricted. And in Canada, although GMOs have been on the market since the late 1990s, nearly 90 per cent of Canadians believe they should be subject to mandatory labelling.

As a result, researchers like Dale and Leena Tripathi, from the International Institute of Tropical Agriculture in Kenya, have begun experimenting with CRISPR technology. Where GMOs have a foreign gene inserted into the organism, CRISPR allows for the organisms genes to be edited. In the case of Dale, hes discovered a dormant gene in the Cavendish he hopes to activate.

The technique is perhaps best described by Jennifer Kuzma, co-director of the Genetic Engineering and Society Center at North Carolina State University. In an interview with Gastropod, she likened DNA to a book and CRISPR to a pen: You can go in and you can edit the letters in a word, or you can change different phrases, or you can edit whole paragraphs at very specific locations.

CRISPR and GMO are further differentiatedin terms of consumer perception. As a December 2018 study published in Global Food Security found, 47 per cent of Canadian respondents were willing to eat both GM and CRISPR foods, but participants across the board (in Australia, Belgium, Canada, France and the U.S.) were more apt to eat CRISPR than GM food.

Nevertheless, editing the genes of the banana is still in the early stages. Dale told Nature that itll be a couple of years before these get into the field for trials. Can the Cavendish banana wait that long?

In a recent interview with KCRW, Dan Koeppel, author of Banana: The Fate of the Fruit that Changed the World, said I think the time has come to stop looking at bananas as just one kind of fruit when there are thousands. Just as the range of apples at our fingertips is rich and getting richer, perhaps all the different varieties of bananas will prove ripe for discovery.

See more here:
The world's banana crops are under threat from a deadly fungus. Is gene editing the answer? - National Post

Posted in Genetic Engineering | Comments Off on The world’s banana crops are under threat from a deadly fungus. Is gene editing the answer? – National Post

Researching the Future of Cancer Treatment – Southern Newsroom

Posted: November 8, 2019 at 12:42 am

Maria Todd would probably prefer that I write this story about well, anyone else but her. When I first interviewed her and began with the warm-up question of how long shes been researching and teaching biology at Southwestern (the answer is 18 years, since 2001), she very quickly shifted focus to talking about a remarkable undergraduate she taught years ago who is now an oncologist. When she publishes her research, she gives credit to every person who sends her samples because naming them as contributors will, she says, help them get grantsand if theyre getting grants, that helps the whole community. If youre lucky enough to be one of her students or have a cup of tea with her, youll notice that she exhibits a generosity of spirit and that quintessential self-deprecatory Anglo-Irish sensibility that immediately draws you in.

And if you didnt know any better, youd almost never guess that this utterly unpretentious, quietly funny, and genuinely delightful individual is an expert in molecular biology and genetics who has made significant contributions to the progress of cancer research.

Dr. Maria ToddThe evolution of a scientist

A born biologist whose first memory is of crawling down the garden path behind her London home and being fascinated by ants and stones and leaves, Todd recalls that her early love of science was the product of curiosity and exploration. I remember as a child just staring at leaves and their veins, and my parents would allow me to dissect plants and flowers with kitchen knives, she says. Id look at a beautiful flower, and then I would dissect it to see what was inside. I had to understand how it worked. Im always appreciative of the beauty of nature, but I want to understand the mechanisms behind it.

With the loving encouragement of her parents, Todd analyzed specimens she discovered in London parks and by the seaside, experimented with chemistry sets at home, and tinkered with gadgets her father would bring home from his work as an electronics engineer. She eventually enrolled as an undergraduate at the University of Sussex, where Todd originally hoped to specialize in conservation biology and ecology, following in the footsteps of her hero, Jane Goodall. But a first-year course on molecular and population genetics captured her imagination. I knew then, at 19 years old, that this would revolutionize medicine, and I was completely seduced, she recounts. It changed my life. So she traded romantic visions of a future examining ferns on the moors of England for a more fitting career at the lab bench studying genetic engineering.

Her studies would continue during a Ph.D. program at Cambridge University, where she lived for one year in the former home of the father of evolutionary thinking. It was amazing to walk into the drawing room and think, This is where Charles Darwin sat and read his newspapers and worked on the Origin of Species, and here am I, a little 20-something geneticist, sitting in the same window seat perhaps where he sat and looking out onto the grounds, she recalls. It was a very magical experience. She then adds with a laugh, The rest of the accommodation was not magical and is best forgotten. Todd admits that she did sometimes feel rather intimidated while at Cambridge, where she was one of only two women in her medical research cohort and worked in a lab flanked by a pair of Nobel Prize winners. Like so many graduate students, she was periodically afflicted with impostor syndrome, wondering whether her admission to the program had been some sort of mistake or even a cruel sociological experiment. But once she began to build a community among other women scientists at the university, her confidence grew, and she knew that she and her colleagues did, in fact, belong.

The importance of good questions

Todd shares stories like these with her Southwestern students, bringing profound empathy to her teaching and mentorship of students. Most of my time is spent reassuring students, reminding them that theyre here for a reason, that they are good enough to be here, that they will excel here, that they are making a really valuable contribution to this community of learning, that we want them here, [and] that were learning from them just as they learn from us, she says. I always encourage students to ask questions and to share their ideas because their ideas might be the next great breakthrough. Its this approach to teaching that has understandably earned Todd multiple honors throughout her years at SU, including theExemplary Teaching Award from the Board of Higher Education and Ministry of the United Methodist Church and the Southwestern University Teaching Award.

As one might expect of the limelight-shy biology professor, Todd prefers that the camera's focus remain on her students, like Shi Solis '20 , rather than on her.Shi Solis 20, one of Todds current research assistants, can attest that her mentor has been a delight to work with. A methods course with Todd inspired the English major to add biology as her second major, but even more than her coursework, Solis feels that the productive failure of trial and error that characterizes any laboratory setting has really expanded her understanding of biology. Working with Dr. Todd is the best. Shes an angel, Solis remarks. I feel like we came in, and we werent super prepared in what it was like to do research, but shes the best teacher. Even if we dont know anything, she makes us feel that this is a learning environmentthat every minute in the lab is a learning experience.

Biology major Anthony Seek 20 agrees that the lab experience, even with all its mental hurdles, has been pretty awesome because its pushed him to consider not just the what but also the why of cell biology: I wanted to do this before I came here, and Im really excited I got the opportunity to do this and work with Dr. Todd. Shes amazing. I sat in on one of her classes before I came [to SU], and it was great. Shes the best person to work with.

Todds appreciation for Solis and Seek is conspicuous as she praises them for being such independent thinkers and doers. She says that working with undergraduates is fabulous and lovely because they bring youthful enthusiasm; they bring their curiosity. And something that I think is very special about undergraduates is that they ask questions that are quite basic, fundamental questions, and these are the best questions to ask in science. She explains that as more advanced researchers delve deeper into their fields, they tend to think of more sophisticated, complicated questions. But the best science is when we ask very straightforward questions, and students will do that, kind of pulling me up a little [because] maybe I had made an assumption about something . They also ask questions about mechanisms and cellular processes that really keep me on my toes in terms of staying up to date with the literature. And unlike how labs are often portrayed on television, Todd observes that laboratories are communities; no scientist works in isolation. Were highly collaborative, and were highly social creatures . Our students bring life and heart to the lab.

A common but understudied cancer

When students like Seek and Solis apply to work in Todds lab at Southwestern, they have to be highly conscientious, precise, and detail oriented. Thats because theyll be working with complex instruments and techniques that are difficult to learn and require weeks to months of practice to master, or, conversely, theyll be focusing for long periods on techniques that arent necessarily difficult but can be quite tedious.

Those students must possess physical and mental fortitudenot to mention a sense of respect for their materialsbecause they are working with cancer cells that are older than they are.

Todd and her students are studying uterine cancer, which, according to the nonprofit World Cancer Research Fund International, is the sixth most commonly occurring cancer in women (only breast, colorectal, lung, cervical, and thyroid cancers have higher incidences worldwide). More than 382,000 new cases of uterine cancer were reported in 2018, and approximately 76,000 patients die from the disease each year.

Elliot Hershbergn 18 and Sid Pradeep 17 worked alongside Professor Maria Todd in summer 2016.

Although uterine cancer is the most common gynecological cancer in the U.S., it is, paradoxically, also the least studied compared with ovarian, cervical, vaginal, and vulvar malignancieswhich is just one reason Todd and her longtime collaborator, fellow Southwestern Professor of Biology and Garey Chair in Biology Maria Cuevas, switched their research efforts from breast to uterine cancer several years ago while putting together an application for a National Institutes of Health grant. Todd believes its one of those cancers thats often overlooked by researchers because uterine cancer doesnt have the same advocacy groups that breast and ovarian cancers have enjoyed for the past 15 years. Those cancers have benefited from better research funding and more media coverage, likely because uterine cancer occurs less frequently than breast cancer does (one in 25 women versus one in seven, respectively) and is much easier to treat than ovarian cancer, which is often diagnosed too late to benefit from conventional therapies.

Todd says she and Cuevas were also compelled to refocus their research energies because they found something very startling and very striking: women of all races have about the same incidence of uterine cancer, but the mortality rate for African-American women with uterine cancer is 2-1/2 times that of all other women with the same disease. We were completely blown away, Todd recalls. Why is it that the uterine cancer rate is not higher in African-American women but they die at much higher rates?

Todd and Cuevas knew there were many possible answers: Perhaps African-American women were not being diagnosed early enough because of limited access to healthcare. Maybe cultural distrust between African-American women patientsof all socioeconomic classesand their primarily white male doctors was preventing those women from advocating for their own care. And/or perhaps implicit bias was keeping patients from receiving sufficiently aggressive treatment. But these would be sociological responses and therefore beyond the scope of Todd and Cuevass research. From a biological standpoint, however, the pair could investigate which kinds of uterine cancer African-American women were being diagnosed with: Was it the more treatable endometrial cancer (i.e., malignancy of the lining of the uterus), or was it the more difficult-to-treat myometrial cancer (i.e., malignancy of the muscular wall of the uterus)? And if they were to look at tumor samples from women across racial identities, would they see differences in the ability of cancer cells to stay adhered to one another, or would those cells break off more frequently, making it easier for tumors to migrate through the bloodstream and spread (i.e., metastasize) to a different part of the body?

From cancer research to (better) cancer treatment

To help answer such questions about what causes cancer to spread throughout the body, Todd and her undergraduate research assistantspositions made possible by her funding as Southwesterns first Ed and Suzanne Morrow Ellis Term Chairwork with immortalized uterine tumors from women. That is, normal cells eventually stop dividing, grow old, and die; cancer cells, however, have short-circuited that aging process, so they can grow and replicate in perpetuity. So when patients have a tumor removed, researchers can actually continue to grow and examine immortal cell lines derived from that tumor. Todd says, I say that to the students: Just think about what it is that youre handling here in these flasks. These are cancer cells that are immortal, and they will outlive us and your children and your grandchildren. So we do treat them with a certain amount of reverence, actually.

With all due reverence, Solis, Seek, and Todd are studying claudin-3 and claudin-4, just two members of a family of 24 tight-junction proteins that create watertight seals between adjacent cells and help hold those cells together. Although one might expect that having high levels of something called tight-junction proteins would mean that the connections between cells would be even stronger, it turns out that claudin-3 and -4 are abnormally elevated in uterine cancer cells, and that disproportion of proteins actually makes it easier for malignant cells to shear off, spread to another organ, and grow secondary tumors. Todd believes that down the road, if she and her fellow researchers can correlate high levels of claudin-3 and -4 with certain stages of uterine cancer, that correlation can prove useful not just as a diagnostic marker but also as a prognostic one. That is, a doctor could tell a patient how much cancer is in the body and better predict how the cancer will behave, including how it will respond to treatment.

Anthony Seek 20, one of Todd's current research assistants, looks forward to applying his SU lab experience to a future career in pediatric oncology.

But most exciting to meand something that my lab and my students are working onare the possible treatment applications, Todd shares. She and her collaborators have been able to use a molecule known as small interference RNA to decrease the excessive amounts of claudin-3 and -4 to normal levels, which prevents the uterine cancer cells from migrating or moving across membranes as quickly. The hope, then, is that by decreasing the levels of these proteins, scientists will eventually be able to stop uterine tumors from metastasizing.

Thats obviously my goal as a cancer researcher and I think the goal of most people who go into cancer research, Todd says. We might not see those clinical applications in our working lives, possibly not even in our lives, but we build on one anothers work. Shes hopeful that gene therapies similar to those she and her students are experimenting with will one day complement conventional cancer treatments such as surgery, chemotherapy, and radiation. Or rather, given the physical and emotional trauma of surgery and the side effects and risks of chemotherapy and radiationwhich can damage DNA, have adverse effects on neighboring healthy cells, and lead to mutations that cause secondary cancersTodd adds, Im hopeful that in our childrens generation, gene therapy will be part of the treatment program, and by the time they have children, gene therapy will be the major tailored form of therapy and we will eliminate chemotherapy drugs or radiation altogether.

In April 2020, Todd and Cuevas will present their research at the annual meeting of the American Association for Cancer Research, where the theme will be Turning Science into Lifesaving Cure. Todd looks forward to sharing their latest findings with their scholarly colleagues, and shes thankful for her Ellis Term Chair funding because it will support her travel to the conference and because it means that the research we can do at Southwestern is comparable to that at a large R1 [research] institution, and were really excited about that. But she and Cuevas are also dedicated to translating their knowledge in ways that will benefit their students beyond academic or professional development. In a biology class, its not just about preparing for medical school or graduate school or teaching or industry; its about learning about our own health, our own journey, and how our bodies change on a continuous basis, Todd explains. Its just so important from an intellectual standpoint to understand the structures, the functions, and the mechanisms. But its also important from a very human perspective to understand the emotional component, the biological component, and the psychological component that contribute to our own well-being.

Go here to see the original:
Researching the Future of Cancer Treatment - Southern Newsroom

Posted in Genetic Engineering | Comments Off on Researching the Future of Cancer Treatment – Southern Newsroom

Researchers Find Link Between Eye Disease And Degeneration Of The Brain – BioSpace

Posted: November 8, 2019 at 12:42 am

[2][2] https://www.sciencedirect.com/science/article/pii/S0092867417311315?via%3Dihub

Notes to Editor:

The research findings described in this media release can be found in the scientific journal JAMA, under the title, Association of genetic variants with primary open angle glaucoma among individuals with African ancestry by The Genetics of Glaucoma in people of African Descent (GGLAD) consortium.

The authors of the paper are:

Michael A Hauser, PhD1,2,3+; R Rand Allingham, MD2,3+; Tin Aung, MD, PhD3,4+; Carly J Van Der Heide, MD5+; Kent D Taylor, PhD6,7+; Jerome I Rotter, MD6+; Shih-Hsiu J Wang, MD, PhD 8+; Pieter WM Bonnemaijer, MD9,10+; Susan E Williams, MD11+; Sadiq M Abdullahi, MD12; Khaled K Abu-Amero, PhD13; Michael G. Anderson, MD5; Stephen Akafo MD14; Mahmoud B Alhassan MD12; Ifeoma Asimadu, MD15; Radha Ayyagari, PhD16; Saydou Bakayoko, MD17,18; Prisca Biangoup Nyamsi, MD19; Donald W Bowden, PhD20; William C Bromley, MD21; Donald L Budenz, MD22; Trevor R Carmichael, MD, PhD11; Pratap Challa, MD2; Yii-Der Ida Chen, PhD6,7, Chimdi M Chuka-Okosa, MD23; Jessica N Cooke Bailey, PhD24,25; Vital Paulino Costa, MD26; Dianne A Cruz, MS27; Harvey DuBiner, MD28; John F Ervin, BA29; Robert M Feldman, MD30; Miles Flamme-Wiese, BSE5; Douglas E Gaasterland, MD31; Sarah J Garnai, BS32; Christopher A Girkin, MD33; Nouhoum Guirou, MD17,18; Xiuqing Guo, PhD6; Jonathan L Haines, PhD24,25; Christopher J Hammond, MD34; Leon Herndon, MD2; Thomas J Hoffmann, PhD35,36; Christine M Hulette, MD8; Abba Hydara, MD37; Robert P Igo, Jr, PhD24; Eric Jorgenson, PhD38; Joyce Kabwe, MD39; Ngoy Janvier Kilangalanga, MD39; Nkiru Kizor-Akaraiwe, MD 15,40; Rachel W Kuchtey, MD, PhD41; Hasnaa Lamari, MD42; Zheng Li, MD, PhD43, Jeffrey M Liebmann, MD44; Yutao Liu, PhD45,46,47; Ruth JF Loos, PhD48,49; Monica B Melo, PhD50; Sayoko E Moroi, MD, PhD32; Joseph M Msosa, MD51; Robert F Mullins, PhD5; Girish Nadkarni, MD48,52; Abdoulaye Napo, MD17,18; Maggie C Y Ng, PhD20; Hugo Freire Nunes, PhD50; Ebenezer Obeng-Nyarkoh, MA21; Anthony Okeke, MD53; Suhanya Okeke, MD15,40; Olusegun Olaniyi, MD12; Olusola Olawoye, MD54; Mariana Borges Oliveira, MD50; Louise R Pasquale, MD55,56; Rodolfo A. Perez-Grossmann, MD57; Margaret A Pericak-Vance, PhD58; Xue Qin, PhD59; Michele Ramsay, PhD60; Serge Resnikoff, MD, PhD61,62; Julia E Richards, PhD32,63; Rui Barroso Schimiti, MD64; Kar Seng Sim, MS43; William E Sponsel, MD65,66; Paulo Vinicius Svidnicki, PhD50; Alberta AHJ Thiadens; MD, PhD9; Nkechinyere J Uche, MD23,40; Cornelia M van Duijn, PhD9; Jos Paulo Cabral de Vasconcellos, MD, PhD 26; Janey L Wiggs, MD, PhD 67,68; Linda M Zangwill, PhD16; Neil Risch, PhD35,36,38+; Dan Milea, MD, PhD3+,; Adeyinka Ashaye, MD54+,; Caroline CW Klaver, MD, PhD 9,69+,; Robert N Weinreb, MD16+,; Allison E Ashley Koch, PhD1+,; John H Fingert, MD, PhD 5+,; & Chiea Chuen Khor, MD, PhD 3,43+

1Department of Medicine, Duke University, Durham, NC, 2Department of Ophthalmology, Duke University, Durham, NC, 3Singapore Eye Research Institute, Singapore, 4Singapore National Eye Center, Singapore and Duke-NUS Medical School, Singapore, 5Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, 6The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 7Department of Pediatrics, Harbor-University of California, Los Angeles Medical Center, Torrance, CA, 8Department of Pathology, Duke University, Durham, NC, 9Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands, 10Rotterdam Eye Hospital, Rotterdam, The Netherlands, 11Division of Ophthalmology, Department of Neurosciences, University of the Witwatersrand, Johannesburg, South Africa, 12National Eye Centre, Kaduna, Nigeria, 13Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia, 14Unit of Ophthalmology, Department of Surgery, University of Ghana Medical School, Accra, Ghana, 15Department of Ophthalmology, ESUT Teaching Hospital Parklane, Enugu, Nigeria, 16Department of Ophthalmology, Hamilton Glaucoma Center, Shiley Eye Institute, University of California, San Diego, La Jolla, CA, 17Institut d'Ophtalmologie Tropicale de l'Afrique, Bamako, Mali, 18Universit des sciences des techniques et des technologies de Bamako, Bamako, Mali, 19Service spcialis d'ophtalmologie, Hpital Militaire de Rgion No1 de Yaound, Yaound, Cameroun, 20Department of Biochemistry, Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, 21Center for Human Genetics, Bar Harbor, ME, 22Department of Ophthalmology, University of North Carolina, Chapel Hill, NC, 23University of Nigeria Teaching Hospital, Ituku Ozalla, Enugu, Nigeria, 24Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 25Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, 26Department of Ophthalmology, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil, 27Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, 28Clayton Eye Care Center Management, Inc., Marrow, GA, 29Kathleen Price Bryan Brain Bank and Biorepository, Department of Neurology, Duke University, Durham, NC, 30Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 31The Emmes Corporation, Rockville, MD, 32Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, 33Department of Ophthalmology and Visual Sciences, University of Alabama Birmingham, Birmingham, AL, 34Section of Academic Ophthalmology, School of Life Course Sciences, FoLSM, King's College London, London, United Kingdom, 35Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, 36Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 37Sheikh Zayed Regional Eye Care Centre, Kanifing, The Gambia, 38Kaiser Permanente Northern California (KPNC), Division of Research, Oakland, CA, 39Department of Ophthalmology, Saint Joseph Hospital, Kinshasa, Limete, Democratic Republic of the Congo, 40The Eye Specialists Hospital, Enugu, Nigeria, 41Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, 42Clinique Spcialise en Ophtalmologie Mohammedia, Mohammedia, Morocco, 43Genome Institute of Singapore, Singapore, 44Bernard and Shirlee Brown Glaucoma Research Laboratory, Harkness Eye Institute, Columbia University Medical Center, New York, NY, 45Cellular Biology and Anatomy, Augusta University, Augusta, GA, 46James & Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, 47Center for Biotechnology & Genomic Medicine, Augusta University, Augusta, GA, 48The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 49The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 50Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil, 51Lions Sight-First Eye Hospital, Kamuzu Central Hospital, Lilongwe, Malawi, 52Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 53Nigerian Navy Reference Hospital, Ojo, Lagos, Nigeria, 54Department of Ophthalmology, University of Ibadan, Ibadan, Nigeria, 55Icahn School of Medicine at Mount Sinai, Department of Ophthalmology, New York, NY, 56Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, 57Instituto de Glaucoma y Catarata, Lima, Peru, 58John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 59Duke Molecular Physiology Institute, Duke University, Durham, NC, 60Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa, 61Brien Holden Vision Institute, Sydney, Australia, 62School of Optometry and Vision Science, University of New South Wales, Sydney, Australia, 63Department of Epidemiology, University of Michigan, Ann Arbor, MI, 64Hoftalon Hospital, Londrina, Brazil, 65San Antonio Eye Health, San Antonio, TX, 66Eyes of Africa, Child Legacy International (CLI) Hospital, Msundwe, Malawi, 67Harvard University Medical School, 68Massachusetts Eye and Ear Hospital, Boston, MA, 69Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands

+ Drs. Hauser, Allingham, Aung, Van Der Heide, Taylor, Rotter, Wang, Bonnemaijer, Williams, Risch, Milea, Ashaye, Klaver, Weinreb, Ashley Koch, Fingert, and Khor contributed to the work equally.

Author contributions: Drs Hauser (mike.hauser@duke.edu) and Khor (khorcc@gis.a-star.edu.sg) had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis

For media queries and clarifications, please contact:

Lyn LaiOfficer, Office of Corporate CommunicationsGenome Institute of Singapore, A*STARTel: +65 6808 8258Email: laiy@gis.a-star.edu.sg

Ravi ChandranCorporate CommunicationsSingapore National Eye CentreTel: +65 8121 8569Email: ravi.chandran@snec.com.sg

About A*STARs Genome Institute of Singapore (GIS)

The Genome Institute of Singapore (GIS) is an institute of the Agency for Science, Technology and Research (A*STAR). It has a global vision that seeks to use genomic sciences to achieve extraordinary improvements in human health and public prosperity. Established in 2000 as a centre for genomic discovery, the GIS will pursue the integration of technology, genetics and biology towards academic, economic and societal impact.

The key research areas at the GIS include Human Genetics, Infectious Diseases, Cancer Therapeutics and Stratified Oncology, Stem Cell and Regenerative Biology, Cancer Stem Cell Biology, Computational and Systems Biology, and Translational Research.

The genomics infrastructure at the GIS is utilised to train new scientific talent, to function as a bridge for academic and industrial research, and to explore scientific questions of high impact.

For more information about GIS, please visit http://www.a-star.edu.sg/gis.

About the Agency for Science, Technology and Research (A*STAR)

The Agency for Science, Technology and Research (A*STAR) is Singapore's lead public sector agency that spearheads economic oriented research to advance scientific discovery and develop innovative technology. Through open innovation, we collaborate with our partners in both the public and private sectors to benefit society.

As a Science and Technology Organisation, A*STAR bridges the gap between academia and industry. Our research creates economic growth and jobs for Singapore, and enhances lives by contributing to societal benefits such as improving outcomes in healthcare, urban living, and sustainability.

We play a key role in nurturing and developing a diversity of talent and leaders in our Agency and research entities, the wider research community and industry. A*STARs R&D activities span biomedical sciences and physical sciences and engineering, with research entities primarily located in Biopolis and Fusionopolis. For ongoing news, visit http://www.a-star.edu.sg/.

About Singapore Eye Research Institute (SERI)

Established in 1997, SERI is Singapores national research institute for ophthalmic and vision research. SERIs mission is to conduct high impact eye research with the aim to prevent blindness, low vision and major eye diseases common to Singaporeans and Asians. SERI has grown from a founding team of five in 1997 to a faculty of 220, encompassing clinician scientists, scientists, research fellows, PhD students and support staff. This makes SERI one of the largest research institutes in Singapore and the largest eye research institute in Asia-Pacific. In addition, SERI has over 250 adjunct faculties from various eye departments, biomedical institutes and tertiary centres in Singapore.

SERI has amassed an impressive array of more than 3,585 scientific papers as of July 2019, and has secured more than $314 million in external peer-reviewed competitive grants. To date, SERIs faculty has been awarded more than 568 national and international prizes and filed more than 130 patents. Serving as the research institute of the Singapore National Eye Centre and affiliated to the Duke-NUS Medical School, National University of Singapore, SERI undertakes vision research in collaboration with local clinical ophthalmic centres and biomedical research institutions, as well as major eye centres and research institutes throughout the world. Today, SERI is recognized as a pioneering centre for high quality eye research in Asia, with breakthrough discoveries that has translated to significant paradigm shift in eye care delivery. For more information, visit http://www.seri.com.sg

About Singapore National Eye Centre (SNEC)

Singapore National Eye Centre was incorporated in 1989 and commenced operations in 1990. It is the designated national centre within the public sector healthcare network, and spearheads and coordinates the provision of specialised ophthalmological services with emphasis on quality education and research. Since its opening in 1990, SNEC has achieved rapid growth and currently manages an annual workload of 400,000 outpatient visits and 40,000 major eye surgeries and lasers.

Ten subspecialties in Cataract and Comprehensive Ophthalmology, Corneal and External Eye Disease, Glaucoma, Neuro-Ophthalmology, Oculoplastics, Pediatric Ophthalmology and Strabismus, Refractive Surgery, Ocular Inflammation and Immunology, Medical Retina and Surgical Retina have been established to provide a full range of eye treatments from comprehensive to tertiary levels for the entire spectrum of eye conditions.

SNEC was accorded the Excellence for Singapore Award in 2003 for achieving excellence in the area of Ophthalmology, thrusting Singapore into international prominence. In 2006, SNEC received the first Minister for Health Award for public health. Clinician scientists from Singapore National Eye Centre and Singapore Eye Research Institute were awarded the prestigious President's Science and Technology Award in 2009, 2010 and 2014 for their outstanding contributions in translational, clinical and epidemiological research in cornea, retina and glaucoma. Visit us at http://www.snec.com.sg.

Read the original post:
Researchers Find Link Between Eye Disease And Degeneration Of The Brain - BioSpace

Posted in Genetic Engineering | Comments Off on Researchers Find Link Between Eye Disease And Degeneration Of The Brain – BioSpace

Glowing with the flow – Harvard School of Engineering and Applied Sciences

Posted: November 8, 2019 at 12:42 am

In the battle against heart disease, more than 400,000 coronary artery bypass grafting surgeries are performed in the U.S. each year.

While veins from a patients leg are often used in the surgical procedure, tissue-engineered vascular grafts (TEVG), which are grown outside the body using a patients endothelial cells, are proving to be an effective and increasingly popular technique.

The most common reasons for TEVG failure are conditions like blood clots, narrowing of the blood vessels, and atherosclerosis. But what if these grafts could be engineered to detect and even prevent those ailments from occurring?

A team of Harvard John A. Paulson School of Engineering and Applied Sciences students set out to answer that question for their project in this years International Genetically Engineered Machine Competition. The project, dubbed FlowGlo, seeks to use receptors that exist within the walls of human blood vessels to detect shear stress, a warning sign that a blood vessel may be narrowing.

Shear stress is important to detect because it is a marker of a lot of different cardiovascular diseases. When there is narrowing of a blood vessel due to a blood clot, shear stress jumps exponentially, maybe up to 10 times its normal level, said Teagan Stedman, S.B. 22, a bioengineering concentrator. Our idea is to link the activation of these receptors due to some level of shear stress to a modular response.

Shear stress is a function of viscosity and how rapidly different layers of fluid are flowing over each other through a blood vessel. Because the walls of the vessel must move and roll with the strain of blood flow, receptors naturally activate at different levels of shear stress.

For instance, when shear stress rises above 4 Pascals, channels open in one specific protein receptor, Piezo1, and calcium ions enter the cell, signaling the activation. The students engineered Piezo 1 and two other protein receptors to present different colored fluorescent proteins when that activation occurs.

Down the road, instead of using a fluorescent protein, you could possibly swap it out so the cells secrete some kind of clot busting protein to break up the clot and treat it on site, said Patrick Dickinson, A.B. 22, an applied math concentrator. Current clot-busting medication is delivered through an IV, and it is system-wide and much less targeted, so there are greater risks for side effects. We think this could be a more targeted treatment in the long run.

As part of their project, the team gathered feedback from Elena Aikawa, Professor of Medicine at the Harvard Medical School and Director of the Vascular Biology Program at Brigham and Womens Hospital, who studies tissue-engineered vascular grafts. They also conducted a survey to better understand public perception of genetic engineering ethics, since their technique would require engineered cells to be implanted in the human body.

As they gathered qualitative data, they worked long hours in the lab on intricate experiments. Since beginning the project this summer, the teammates overcame many challenges caused by the difficulty of cloning cells. Relying on the support of their mentor, Timothy Chang, a postdoctoral fellow in the lab of Pamela Silver at the Harvard Medical School, they brainstormed, troubleshot, and learned volumes about synthetic biology along the way.

I learned that biology is messy, Dickinson said. In a lab setting, there is a lot that is hard to predict. We certainly encountered a lot of frustration and stress along the way, but it was a good window into what research really is.

Now that the competition has concluded, the teams work will be included in the iGEM Registry of Standard Biological Parts, a repository of genetic parts that can be mixed and matched to build synthetic biology devices and systems.

For Rahel Imru, it is gratifying to know that future iGEM teams and research groups from around the world could someday build off the research she and her peers have done.

While the weeks leading up to the competition were a whirlwind, the experience was well worth the effort, said Imru, A.B. 21, a biomedical engineering concentrator.

This was my first lab experience, so I definitely learned a lot, she said. I look back and see how much weve grown. Maybe we didnt get all the data and results we wanted to by the end, but for the size of our team and the time that we had, seeing what we are able to accomplish is especially rewarding.

Continued here:
Glowing with the flow - Harvard School of Engineering and Applied Sciences

Posted in Genetic Engineering | Comments Off on Glowing with the flow – Harvard School of Engineering and Applied Sciences

How misguided regulation has kept a GMO ‘superfood’ off the market: Q&A with Golden Rice author Ed Regis – Genetic Literacy Project

Posted: November 8, 2019 at 12:42 am

For us in the West, the ferocious debate over genetic engineering isnt a matter of life and death. We argue about the safety of Impossible Burgers and the potential risks associated with new breeding techniques like CRISPR gene editing, but nobody will go hungry or die of malnutrition pending the outcome of these arguments. Sadly, the same isnt true in the developing world.

The tragic tale of global vitamin A deficiency (VAD) and the life-saving (but still unavailable) solution known as Golden Rice has been told millions of times, 246 million according to Google. But to briefly recap: roughly 250 million people, mostly preschool children in southeast Asia, are vitamin A deficient. Between 250,000 and 500,000 of them go blind every yearand half die within 12 months of losing their sight. Genetically engineered Golden Rice, fortified with the vitamin A precursor beta carotene, could alleviate much of this suffering without otherwise harming human health or the environment, according to a mountain of studies.

So why are so many people still dying of a preventable condition?

Thats the rather frustrating part of the story science writer Ed Regis examines in his new book Golden Rice: The Imperiled Birth of a GMO Superfood. In just over 200 pages, Regis gives a crash course on genetic engineering and explains the messy history of Golden Rice, disabusing the reader of many popular myths along the way. Environmental activist group Greenpeace, for example, is often identified in the press as the primary obstacle to releasing Golden Rice. Despite all its lobbying, however, the NGO has had a relatively minor impact on the crops development.

Instead of pointing the finger at Greenpeace, Regis says the blame lies mostly with overly cautious governments, many of which regulate GMOs as if they were biological weapons. Hoping to avoid the unintended (and so far undiscovered) consequences of growing genetically engineered crops, regulators unintentionally rob people of their eyesight and often their lives.

In a Q&A session with Genetic Literacy Project editor Cameron English, Regis offers a birds eye view of the ongoing controversy and highlights some lesser-known but still significant aspects of the Golden Rice story.

Cameron English: Golden Rice seems simple conceptually. As you point out, scientists just had to direct the plants existing biochemical machinery to synthesize beta carotene in the rice grain, as it does in the rest of the plant. Why did this prove so challenging to achieve in the lab?

For one thing, it had never been done beforerewriting a plants genes to make it express a trait that it normally did not have. Nobody was sure that it was even possible. There were different ways of accomplishing that goal, and there were a lot of technical difficulties in doing the actual hands-on lab work, and getting everything lined up correctly at the genetic level so that beta carotene would appear in the rice grain. There were incredible numbers of false starts, dead ends, and unforeseen technical problems to overcome, and it took years of trial and error for the inventors to get it all working properly. It was just a hard problem, both scientifically, in theory, and technologically, in practice.

CE: You write that Golden Rice could make VAD a thing of the past in developing Asian countries. Why is this biotech crop a better solution than alternative proposals, like distributing vitamin supplements?

Supplement programs have been tried, and of course they do some good, but the problem is that such programs require a substantial and permanent infrastructure. They require a supply chain, personnel to distribute the stuff, record keeping, and the like, plus sufficient and continuous funding to keep it all going across time. Also, there is no way to guarantee that supplements will reach every last person who needs them.

Golden Rice, by contrast, requires none of that. The seeds will be given at no cost to small landowner farmers, and the rice will be no more expensive to consumers than plain and ordinary white rice. Plus, theres the principle that Plants reproduce, pills dont. Once Golden Rice is introduced, its a system that just goes of itself. The product replaces what people already eat on a daily basis with something that could save their sight and lives in the process.

CE: Tell us the story about night blindness you recount from Catherine Prices book. Does that anecdote underscore the problem that Golden Rice could solve?

We in the rich, developed Western countries know practically nothing about [VAD]. We have virtually no experience of it because we get the micronutrients we need from ordinary foods and vitamin supplements. One of the first symptoms of vitamin A deficiency is night blindness, which means pretty much what it says. But to convey this as an actual, lived experience I quote from Catherine Prices excellent book, Vitamania, in which she describes what happens to vitamin A deficient children in poor, developing countries.

While they lead an active life during the day, they gradually withdraw and stop playing as twilight approaches. With the fall of night, they basically just sit in place and wait for help, because they have lost their sight in darkness, and their life grinds to a halt. In countries such as the Philippines, where people eat rice as a staple, at every meal, Golden Rice could prevent this from happening, and even reverse the symptoms in children already affected by VAD.

CE: You point out that Greenpeace struggled with a moral dilemma before forcefully coming out against Golden Rice. Tells about that situation.

In 2001, the year after the Golden Rice protype was announced in Science, a Greenpeace official by the name of Benedikt Haerlin visited Ingo Potrykus, the co-inventor, at his home in Switzerland. Haerlin discussed whether or not to make the provitamin A rice an exception to Greenpeaces otherwise absolute and rigid opposition to any and all genetically engineered foods. He had initially acknowledged that there was a moral difference between GMOs that were merely agriculturally superiorin being pesticide- or herbicide-resistant, for exampleand a GMO that was so nutritionally beneficial that it actually had the potential to save peoples lives and sight.

But apparently that distinction made no difference because in the end both Haerlin himself and Greenpeace as an organization soon took the view that Golden Rice had to be opposed, even stopped, no matter what its possible health benefits might be.

CE: Greenpeace also claimed that poverty and insufficiently diverse diet were the root causes of vitamin A deficiency. Therefore, they said, developing biofortified crops was misguided. That sounds like a reasonable argument, so whats wrong with Greenpeaces analysis here?

This is like arguing that until we find a cure for cancer we should not treat patients by means of surgery, chemotherapy or radiation therapy. This is totally illogical on the face of it. And the same is true of the argument that since poverty is the cause of the problem that therefore the only solution is to eradicate it. Everyones in favor of eradicating poverty, but there are things we can do in the interim while advancing that far-off and utopian goal, which arguably will take some time to accomplish. Biofortified Golden Rice, along with supplementation and a more diverse diet, can help prevent vitamin A deficiency. If a solution, or a set of solutions, is available, lets implement them while also striving to reduce poverty. Both can be done together, you dont have to choose between one and the other.

CE: Many people believe that Greenpeace and other anti-GMO groups are the main roadblock to getting Golden Rice into the hands of farmers. But you write that the activists dont deserve that much credit. What else has kept Golden Rice off the market?

Greenpeaces long history of anti-GMO rhetoric, diatribes, street demonstrations, protests, dressing up in monster crop costumes, and all the rest of it actually did nothing to halt research and development of Golden Rice. There are two reasons why it took 20 years to bring Golden Rice to the point where it won approval for release in four countries: Australia, New Zealand, the United States and Canada. The first is that it takes a long time to breed increasingly higher concentrations of beta carotene (or any other valuable trait) into new strains of rice (or any other plant). Plant breeding is not like a chemistry experiment that you can repeat immediately as many times as you want. Rather, plant growth is an inherently slow and glacial process that cant be [sped] up meaningfully except under certain special laboratory conditions that are expensive and hard to foster and sustain.

The second reason is the retarding force of government regulations on GMO crop development. Those regulations, which cover plant breeding, experimentation, and field trials, among other things, are so oppressively burdensome and costly that they make compliance inordinately time-consuming and expensive.

CE: Whats the Cartagena Protocol and how has it affected the development of Golden Rice?

The Cartagena Protocol was an international agreement, sponsored and developed by the United Nations, which aimed to ensure the safe handling, transport and use of living modified organisms (LMOs) resulting from modern biotechnology that may have adverse effects on biological diversity, taking into account also risks to human health.

On the face of it, this precautionary approach is plausible, even innocuous. In actual practice, the protocol amounts to a sweeping set of guidelines, requirements, and procedures pertaining to GMOs that were legally binding on the nations that were parties to the agreement, coupled with a set of mechanisms to enforce and ensure compliance. These oppressive and stifling rules and regulations soon turned into a nightmare for GMO developers, and did more than anything else to slow down the progress of Golden Rice.

Ingo Potrykus, the co-inventor of Golden Rice, has estimated that adherence to government regulations on GMOs resulting from the Cartagena Protocol and the precautionary principle, caused a delay of up to ten years in the development of the final product. That is a tragedy, caused by the very governments that are supposed to protect our health, but in this case did the opposite.

CE: Once a prototype of Golden Rice was developed, the prestigious science journal Nature refused to publish the study documenting the successful experiment. Why do you think Nature reacted that way, and what does it tell us about the cultural climate during the period when Golden Rice was first developed?

Well, I cant speak for the Nature editors, so in this case youre asking the wrong person. In my book, I quote what Ingo Potrykus had to say about the matter, which was:

The Nature editor did not even consider it worth showing the manuscript to a referee, and sent it back immediately. Even supportive letters from famous European scientists did not help. From other publications in Nature at that time we got the impression that Nature was more interested in cases which would rather question instead of support the value of genetic engineering technology.

And I will leave it at that.

CE: The classic objection to GMOs, including Golden Rice, is that theyre unnatural. Would you summarize your response to that claim in the book?

In the book I show that in fact most of the foods that we eat are unnatural in the sense that they are products of years of artificial selection, often using techniques other than conventional crossbreeding.

In particular I cite the example of Rio Red grapefruit, which is sold all over America and is not considered a GMO, despite the fact that its genes have been scrambled over the years by artificial means including radiation mutation breeding, in the form of thermal neutron (thN) bombardment, which was done at the Brookhaven National Laboratory. This highly mutant and genetically modified grapefruit variety is on file at the Joint FAO/IAEA Mutant Variety Database, at the headquarters of the International Atomic Energy Agency (IAEA), in Vienna, Austria. You can hardly get more unnatural than Rio Red grapefruit.

By contrast, there is a plant whose roots in the ground are potatoes, but whose above ground fruit are tomatoes. This is the so-called TomTato, and was created by exclusively conventional means, i.e., grafting, which goes back thousands of years. But which of the two is more unnaturalthe Rio Red grapefruit or the freakish TomTato? And why does it matter?

CE: There are a lot of transgenic crops being developed, so why did Golden Rice become such a lightening rod for controversy in the GMO debate?

Because if it gets approved, works, and ends up saving lives and sight, it will lead to greater acceptance of GMO foods in general, which is the very last thing that GMO opponents want. That cannot be said of any other GMO.

CE: Bangladesh appears poised to release Golden Rice before the end of 2019. Are you hopeful that farmers will soon have access to it, or do you foresee more political and regulatory obstacles getting in the way?

In the words of Jack Reacher (the hero of Lee Childs crime novels), Hope for the best, prepare for the worst. Seeing what has happened to Golden Rice over the course of 20 years, nothing would surprise me going forward. I would sort of be more surprised if Bangladesh approved it and it was grown and people ate it than if it were banned outright in the countries where its needed most. That is the most infuriating part of the whole story.

Ed Regisis a science writer whose work has appeared inScientific American,Harpers,Wired,Nature,Discover, and theNew York Times,among other publications. He is the author of ten books, includingWhat Is Life? Investigating the Nature of Life in the Age of Synthetic Biology.

Cameron J. English is the GLPs senior agricultural genetics and special projects editor. He co-hosts the Biotech Facts and Fallacies podcast. Follow him on Twitter @camjenglish

Read the original here:
How misguided regulation has kept a GMO 'superfood' off the market: Q&A with Golden Rice author Ed Regis - Genetic Literacy Project

Posted in Genetic Engineering | Comments Off on How misguided regulation has kept a GMO ‘superfood’ off the market: Q&A with Golden Rice author Ed Regis – Genetic Literacy Project

The Book Breakdown: Fits and starts the beginnings of modern science – Frederick News Post

Posted: November 8, 2019 at 12:42 am

At a 1661 meeting in London, Sir Robert Southwell was said to have produced something remarkable: the horn of a unicorn. The attendees drew a circle with the powder made from the horn and placed a spider in the middle. The arachnid quickly scurried away.

Such were the experiments carried out by the oldest scientific society in the world, the Royal Society of London. The organization has counted as its members Isaac Newton, Albert Einstein, Stephen Hawking and nearly 300 Nobel laureates. Adrian Tiniswood tells of the growing pains, internal conflicts and competing visions of the esteemed organization in The Royal Society & The Invention of Modern Science.

Were immediately put in the mindset of 17th-century Europeans with Tiniswoods opening words: Imagine a universe in which the sun revolved around the Earth.

That universe is what most people imagined when the Royal Society was founded in 1660. That century had seen Galileos condemnation by the Inquisition for teaching the heliocentric theory of the solar system. Protestant and Catholic theologians alike blasted the new experimental learning championed by Copernicus and Bacon.

The early members of the Royal Society, or fellows as theyre officially called, inhabited the two worlds of the popular religiosity of their day and the rigorous empiricism they pioneered. The questions the societys curator of experiments, Robert Hooke, sent to a correspondent in Iceland show the mindset of the early fellows: Would quicksilver congeal in the cold? What kind of substances were cast out of the burning mountain? How did whales breathe? Were there spirits, and if so what shape were they, and what did they say or do?

But The Royal Society isnt primarily an intellectual history. Tiniswood doesnt dwell much on the scientific advances made by the organizations luminaries. Its not a pop science book. It rather elaborates on the internal politics of the organization. Much of the work recounts how the societys scientists tried to maintain the balancing act of retaining the interest of the fellows while admitting a large number of aristocrats with little or no scientific training so the society could get the money and prestige to continue.

Tiniswood touches a little on the present day. The formerly insular organization has recently decided to have a more active engagement with the public by handing out numerous awards and grants, tackling issues such as climate change, artificial intelligence, genetic engineering and diversity within the science community. The book does, however, stick mostly to the early fellows and an expanded work would have been interesting to read.

The Royal Society shows the institutional foundation made by some of historys greatest scientists. Given the radical mission of the society in its early days and its long internal struggles, the fellows have lived their own motto, nullius in verba: take no ones word for it.

Original post:
The Book Breakdown: Fits and starts the beginnings of modern science - Frederick News Post

Posted in Genetic Engineering | Comments Off on The Book Breakdown: Fits and starts the beginnings of modern science – Frederick News Post

Keep Bioethics out of Elementary and High Schools – National Review

Posted: November 8, 2019 at 12:42 am

(Mike Blake/Reuters)

Bioethicist Jacob M. Appel wants the bioethics movement to educate your children about the policy and personal conundrums that involve medical care and health public policy. He claims that most of us give little thought to issues that may arise, such as end-of-life care and prenatal screening. Then, when an issue arises, people are unprepared to make wise and informed decisions. From, The Silent Crisis of Bioethics Illiteracy, published in Scientific American:

Change will only occur when bioethics is broadly incorporated into school curricula [at an early age] and when our nations thought leaders begin to place emphasis on the importance of reflecting meaningfully in advance upon these issues

Often merely recognizing such issues in advance is winning the greater part of the battle. Just as we teach calculus and poetry while recognizing that most students are unlikely to become mathematicians or bards, bioethics education offers a versatile skill set that can be applied to issues well outside the scientific arena. At present, bioethics is taught sporadically at various levels, but not with frequency, and even obtaining comprehensive data on its prevalence is daunting.

Is this really an appropriate field for children? Consider the issues with which bioethics grapples and whether elementary-, middle-, and high-school children have the maturity to grapple with them in a meaningful and deliberative way (not to mention, the acute potential that teachers will push their students in particular ideological directions):

Even if some students are mature enough to grapple with these issues thoughtfully, the next problem is that bioethics is extremely contentious and wholly subjective. Its not science, but focuses on questions of philosophy, morality, ideology, religion, etc.. Moreover, there is a dominant point-of-view among the most prominent voices in the field e.g., those who teach at leading universities and would presumably be tasked with writing the educational texts. These perspectives would unquestionably often stand in opposition to the moral values taught young students by their parents.

Appel is typical of the genus (if you will). He has called for paying women who plan to abort to gestate longer in their pregnancy so that more dead fetuses will be available sufficiently developed to be harvested for organs and used in experiments. He advocates mandatory termination of care for patients who are diagnosed as persistently unconscious to save resources for what he considers more important uses. He has also supported assisted suicide for the mentally ill.

Appels perspectives are not unique in bioethics. The movement went semi-berserk when President George W. Bush appointed the conservative bioethicist Leon Kass to head the Presidents Council on Bioethics one even called him an assassin for opposing human cloning research as many worked overtime to discredit the Councils work in the media.

Indeed, activists without a modifier like Catholic or pro-life before the term bioethicistare overwhelmingly very liberal politically and intensely secular in their approach. Most support an almost unlimited right to abortion, the legalization of assisted suicide, genetic engineering (once safe), and accept distinguishing between human beings and persons, that is, they deny universal human equality.

Some wish to repeal the dead donor rule that requires organ donors to be dead before their body parts are extracted an idea that admittedly remains somewhat controversial in the field. Most mainstream bioethicists deny the sanctity of human life and many think that an animal with a greater cognitive capacity has greater value than a human being with lower cognition. Add in the sectors general utilitarianish approach to health-care issues, such as supporting rationing, and the potential for propagandizing becomes clear.

With such opinions, often passionately held, how long would it be before early bioethics education devolved into rank proselytizing? But Wesley, Appel might say. the classes would be objective! Every side would be given equal and a respectful and accurate presentation.

Sure. If you believe that, you must think current sex education curricula and high school classes in social justice present all sides of those issues dispassionately and without attempt to persuade the students to particular points of view and cultural perspectives.

I have a deal for Appel: In-depth courses in bioethics should not be taught before college unless I get to write the textbooks! I promise to be objective and fairly present all sides. Honest!

Do you think he and his mainstream colleagues would approve of that deal?

Neither do I. And we shouldnt go along with his idea for the very same reason.

Go here to see the original:
Keep Bioethics out of Elementary and High Schools - National Review

Posted in Genetic Engineering | Comments Off on Keep Bioethics out of Elementary and High Schools – National Review

Why making healthy babies in space should be quite the adventure – Genetic Literacy Project

Posted: November 8, 2019 at 12:42 am

Earth is great and all, but with climate change and the extremely highly likely reemergence of dinosaursdue to genetic engineering, we might need to consider inhabiting other planets. Sending out a pioneering colony of carefully-selected humansis today science fiction but, someday, it might save our species.And, if we ever actually docolonize space, were going to need to have babies up there, which might turn out to be more complicated than it is on Earth.

Im not concerned about the actual baby making part we can figure that out with practice. The part thats tricky is the fine-tuned and carefully orchestrated process of human development, particularly in the brain. Cells inmicrogravitydontgrowexactly like cells on Earth, and a whole bunch of them in a developing babys brain may not grow exactly the same either.

Thankfully, theres a researcher for that.UC San Diego scientist Alysson Muotriisusingblossoming clumps of brain cells called brain organoids to understand how neurons proliferate, form synapses, and communicate but in space.

Inlate July, Muotri and his team sent a bunch of organoids to the International Space Station. Previous research has documented the proliferation ofHeLA cells,cancer cells,bone cellsand more, but there is limited information about the gravity-free growth of early brain cells, known as neural progenitor cells, or brain organoids. Suchorganoidshave proven to be a useful model for understanding brain development, so understanding how they develop in the microgravity of space could demonstrate the ways in which human brain development might be affected if we ever become a space-faring society.

Muotri has long been intrigued by research in space, especially theNASA twins study. A while ago, he half-seriously talked about the idea of doing his own biology space study with one of his collaborators, but nothing quite came of it. He dreamed of sending organoids to space, but didnt know if it was possible. Once he met an engineer who convinced him it was feasible to actually build a device to keep organoids alive in space, he decided it was time for takeoff.

Still, he had some trouble selling others, particularly granting organizations, on the idea. Hes funding the project out of his own salary savings and gifts to the lab, with the hope that his first wave of findings will draw attention to his work and convince funding agencies that his research is valuable.

Backed by his own money, the first task was figuring out how to keep the organoids healthyat the International Space Station.

Even on Earth, the organoids require a lot of care to ensure that they are at the proper temperature and growing conditions. For one, theyre kept in a shaker so that they are constantly suspended in a solution, without anchoring down to anything (though that wont be a problem in microgravity). But like living cells in a body, organoids require nutrients, and they also spit out waste. To support these processes, their solutions need to be changed, and the temperature and pH needs to be carefully maintained, like fish in a tank. Organoids require a lot of babysitting, and Muotri simply cant expect the astronauts to spend as much time caring for his cells as he and his students do back on Earth.

So, he collaborated withan engineering team from Kentucky that specializes in sending biological material into space.They developed a shiny red box called theSpace Tango CubeLab.

Space Tango may sound like abad 80s science fiction filmstarringAntonio Banderas, butits actually the name of the company, and the productsthey make aresomuch cooler than 80s sci-fi. The CubeLab essentially functions like a fully automated, climate-controlled mini-laboratory: it can change the media for the cells, monitor their growth, and send the data back to Earth. The astronauts just need to plug it in.

For this very first mission with the organoids, Muotri wants to see how the cells grow and proliferate. Based onprevious research,he predicts that The progenitor cells will proliferate faster and will probably generate a bigger organoid. Although a bigger brain sounds better, this might actually be a problem: if the brain and surrounding skull are too big, it might prevent birth through the birth canal. Its still speculation, but its entirely possible that maybe humans cannot have natural deliveries in space.

The other issue with faster brain development is that large brain volumes have been implicated in the development of autism spectrum disorder. In fact, having a larger brain circumference is one of the mostrobust biomarkers of autism. We dont fully understand how cell proliferation may later in life lead to intellectual problems or cognitive disability, so this gives us a model to understand that, Muotri hopes.

At the moment, we dont know much about the cellular mechanisms that microgravity could directly impact. Using genome sequencing and techniques to detectepigenetic signatures, Muotris team will look to see if the genomes of the organoids have changed. There is definitely an epigenetic signature that changes neurons in space, Muotri insists, thats what we want to figure out.

Of course, organoids cant capture brain developmentin uteroin its full complexity. However, this study could point us to important considerations before we pack our space bags. For example,itspossible that people with certain genetic backgrounds are less susceptible to the (lack of) pressures of microgravity and might fare better in space. However far-fetched, the social implications are staggering. If it turns out that some genetic backgrounds are better adapted to have babies in space, would this dictate who could become space-faring?

Lastly, Muotri would like to compare organoids generated from cells of healthypatients to those from people with Alzheimers or Parkinsons disease. In 2011, a lab down the hall from Muotris at UC San Diego showed thatneurons derived from schizophrenic patientswere different than those derived from neurotypical patients. However, similar in-the-dish research on diseases of the aging brain have been limited. Organoids closelyresembleyoung neural tissue, and it is a lot of work to keep them alive until they start to look like an aging brain. When Muotricompared neurotypical and Alzheimers organoids in Earths gravity, they were indistinguishable. However,this might not be true in space: Maybe in the microgravity of space the organoids will age faster, and we could reveal their [Alzheimers] phenotypes.

Muotri would also like to send the organoids up with even more sensors, including recording arrays that can actually measure the electrical activity of the organoids while theyre in space. Such data could provide clues about the functionality of these brain clumps, in addition to their genetic and anatomical signatures.

Muotris energy and enthusiasm for the project is palpable. But he has one big concern: when the mini-brains were sent into space, there was a 24-hour black out period during launch preparation over which the Space Tango couldnt send back data. Muotri confessed that this was his biggest worry for the mission. But, he still laughed heartily, We just have to hope that everything is going to be okay.

Ashley Juavinett, PhD is a neuroscientist, educator, and writer. She currently works as an Assistant Teaching Professor at UC San Diego, where she is developing novel approaches to teaching and mentoring folks in neuroscience. Follow her on Twitter @analog_ashley

A version of this article was originally published on Massives website as There might be some problems when we try to make babies in space and has been republished here with permission.

The rest is here:
Why making healthy babies in space should be quite the adventure - Genetic Literacy Project

Posted in Genetic Engineering | Comments Off on Why making healthy babies in space should be quite the adventure – Genetic Literacy Project

Modified Protein Enhances the Accuracy of CRISPR Gene Therapy – DocWire News

Posted: November 8, 2019 at 12:42 am

A new protein that can enhance the accuracy of CRISPR gene therapy was recently developed by researchers from City University of Hong Kong (CityU) and Karolinska Institutet. This work, published in the Proceedings of the National Academy of Sciences, could potentially have a strong impact on how gene therapies are administered in the future.

CRISPR-Cas9, often referred to as just CRISPR, is a powerful gene-editing technology that has the potential to treat a myriad of genetic diseases such as beta-thalassemia and sickle cell anemia. As opposed to traditional gene therapies, which involve the introduction of healthy copies of a gene to a patient, CRISPR repairs the genetic mutation underlying a disease to restore function.

CRISPR-Cas9 was discovered in the bacterial immune system, where it is used to defend against and deactivate invading viral DNA. Cas9 is an endonuclease, or an enzyme that can selectively cut DNA. The Cas9 enzyme is complexed with a guide RNA molecule to form what is known as CRISPR-Cas9. Cas9 is often referred to as the molecular scissors, being that they cut and remove defective portions of DNA. Being that it is not perfectly precise, the enzyme will sometimes make unintended cuts in the DNA that can cause serious consequences. For this reason, enhancing the precision of the CRISPR-Cas9 system is of paramount importance.

Two versions of Cas9 are currently being used in CRISPR therapies: SpCas9 (derived from the bacteriaStreptococcus pyogenes) and SaCas9 (derived fromStaphylococcus aureus). Researchers have engineered variants of the SpCas9 enzyme to improve its precision, but these variants are too large to fit into the adeno-associated viral (AAV) vector that is often used to administer CRISPR to living organisms. SaCas9, however, is a much smaller protein that can easily fit into AAV vectors to deliver gene therapy in vivo. Being that no SaCas9 variants with enhanced precision are currently available, these CityU researchers aimed to identify a viable variant.

This recent research led to the successful engineering of SaCas9-HF, a Cas9 variant with high accuracy in genome-wide targeting in human cells and preserved efficiency. This work was led by Dr. Zheng Zongli, Assistant Professor of Department of Biomedical Sciences at CityU and the Ming Wai Lau Centre for Reparative Medicine of Karolinska Institutet in Hong Kong, and Dr. Shi Jiahai, Assistant Professor of Department of Biomedical Sciences at CityU.

Their work was based on a rigorous evaluation of 24 targeted human genetic locations which compared the wild-type SaCas9 to the SaCas9-HF. The new Cas9 variant was found to reduce the off-target activity by about 90% for targets with very similar sequences that are prone to errors by the wild-type enzyme. For targets that pose less of a challenge to the wild-type enzyme, SaCas9-HF made almost no detectable errors.

Our development of this new SaCas9 provides an alternative to the wild-type Cas9 toolbox, where highly precise genome editing is needed, explained Zheng. It will be particularly useful for future gene therapy using AAV vectors to deliver genome editing drug in vivo and would be compatible with the latest prime editing CRISPR platform, which can search-and-replace the targeted genes.

Dr. Shi and Dr. Zheng are the corresponding authors of this publication. The first authors are PhD student Tan Yuanyan from CityUs Department of Biomedical Sciences and Senior Research Assistant Dr. Athena H. Y. Chu from Ming Wai Lau Centre for Reparative Medicine (MWLC) at Karolinska Institutet in Hong Kong. Other members of the research team were CityUs Dr. Xiong Wenjun, Assistant Professor of Department of Biomedical Sciences, research assistant Bao Siyu (now at MWLC), PhD students Hoang Anh Duc and Firaol Tamiru Kebede, and Professor Ji Mingfang from the Zhongshan Peoples Hospital.

Read more:
Modified Protein Enhances the Accuracy of CRISPR Gene Therapy - DocWire News

Posted in Genetic Engineering | Comments Off on Modified Protein Enhances the Accuracy of CRISPR Gene Therapy – DocWire News

Page 44«..1020..43444546..50..»