Page 50«..1020..49505152..»

Category Archives: Genetic Engineering

When genetic engineering is the environmentally friendly choice – Ensia

Posted: August 1, 2017 at 1:47 am

July 27, 2017 Which is more disruptive to a plant: genetic engineering or conventional breeding?

It often surprises people to learn that GE commonly causes less disruption to plants than conventional techniques of breeding. But equally profound is the realization that the latest GE techniques, coupled with a rapidly expanding ability to analyze massive amounts of genetic material, allow us to make super-modest changes in crop plant genes that will enable farmers to produce more food with fewer adverse environmental impacts. Such super-modest changes are possible with CRISPR-based genome editing, a powerful set of new genetic tools that is leading a revolution in biology.

My interest in GE crops stems from my desire to provide more effective and sustainable plant disease control for farmers worldwide. Diseases often destroy 10 to 15 percent of potential crop production, resulting in global losses of billions of dollars annually. The risk of disease-related losses provides an incentive to farmers to use disease-control products such as pesticides. One of my strongest areas of expertise is in the use of pesticides for disease control. Pesticides certainly can be useful in farming systems worldwide, but they have significant downsides from a sustainability perspective. Used improperly, they can contaminate foods. They can pose a risk to farm workers. And they must be manufactured, shipped and applied all processes with a measurable environmental footprint. Therefore, I am always seeking to reduce pesticide use by offering farmers more sustainable approaches to disease management.

What follows are examples of how minimal GE changes can be applied to make farming more environmentally friendly by protecting crops from disease. They represent just a small sampling of the broad landscape of opportunities for enhancing food security and agricultural sustainability that innovations in molecular biology offer today.

Genetically altering crops the way these examples demonstrate creates no cause for concern for plants or people. Mutations occur naturally every time a plant makes a seed; in fact, they are the very foundation of evolution. All of the food we eat has all kinds of mutations, and eating plants with mutations does not cause mutations in us.

Knocking Out Susceptibility

A striking example of how a tiny genetic change can make a big difference to plant health is the strategy of knocking out a plant gene that microorganisms can benefit from. Invading microorganisms sometimes hijack certain plant molecules to help themselves infect the plant. A gene that produces such a plant molecule is known as a susceptibility gene.

We can use CRISPR-based genome editing to create a targeted mutation in a susceptibility gene. A change of as little as a single nucleotide in the plants genetic material the smallest genetic change possible can confer disease resistance in a way that is absolutely indistinguishable from natural mutations that can happen spontaneously. Yet if the target gene and mutation site are carefully selected, a one-nucleotide mutation may be enough to achieve an important outcome.

There is a substantial body of research showing proof-of-concept that a knockout of a susceptibility gene can increase resistance in plants to a very wide variety of disease-causing microorganisms. An example that caught my attention pertained to powdery mildew of wheat, because fungicides (pesticides that control fungi) are commonly used against this disease. While this particular genetic knockout is not yet commercialized, I personally would rather eat wheat products from varieties that control disease through genetics than from crops treated with fungicides.

The Power of Viral Snippets

Plant viruses are often difficult to control in susceptible crop varieties. Conventional breeding can help make plants resistant to viruses, but sometimes it is not successful.

Early approaches to engineering virus resistance in plants involved inserting a gene from the virus into the plants genetic material. For example, plant-infecting viruses are surrounded by a protective layer of protein, called the coat protein. The gene for the coat protein of a virus called papaya ring spot virus was inserted into papaya. Through a process called RNAi, this empowers the plant to inactivate the virus when it invades. GE papaya has been a spectacular success, in large part saving the Hawaiian papaya industry.

Aerial view of a field trial showing virus-resistant papaya growing well while the surrounding susceptible papaya is severely damaged by the virus. Reproduced with permission from Gonsalves, D., et al. 2004. Transgenic virus-resistant papaya: From hope to reality in controlling papaya ringspot virus in Hawaii. APSnet Features. Online. DOI: 10.1094/APSnetFeature-2004-0704

Through time, researchers discovered that even just a very small fragment from one viral gene can stimulate RNAi-based resistance if precisely placed within a specific location in the plants DNA. Even better, they found we can stack resistance genes engineered with extremely modest changes in order to create a plant highly resistant to multiple viruses. This is important because, in the field, crops are often exposed to infection by several viruses.

Does eating this tiny bit of a viral gene sequence concern me? Absolutely not, for many reasons, including:

Tweaking Sentry Molecules

Microorganisms can often overcome plants biochemical defenses by producing molecules called effectors that interfere with those defenses. Plants respond by evolving proteins to recognize and disable these effector molecules. These recognition proteins are called R proteins (R standing for resistance). Their job is to recognize the invading effector molecule and trigger additional defenses. A third interesting approach, then, to help plants resist an invading microorganism is to engineer an R protein so that it recognizes effector molecules other than the one it evolved to detect. We can then use CRISPR to supply a plant with the very small amount of DNA needed to empower it to make this protein.

This approach, like susceptibility knockouts, is quite feasible, based on published research. Commercial implementation will require some willing private- or public-sector entity to do the development work and to face the very substantial and costly challenges of the regulatory process.

Engineered for Sustainability

The three examples here show that extremely modest engineered changes in plant genetics can result in very important benefits. All three examples involve engineered changes that trigger the natural defenses of the plant. No novel defense mechanisms were introduced in these research projects, a fact that may appeal to some consumers. The wise use of the advanced GE methods illustrated here, as well as others described elsewhere, has the potential to increase the sustainability of our food production systems, particularly given the well-established safety of GE crops and their products for consumption.

View original post here:
When genetic engineering is the environmentally friendly choice - Ensia

Posted in Genetic Engineering | Comments Off on When genetic engineering is the environmentally friendly choice – Ensia

Can genetic modification turn annual crops into perennials? – Genetic Literacy Project

Posted: August 1, 2017 at 1:47 am

The last several decades have witnessed a remarkable increase in crop yields doubling major grain crops since the 1950s. But a significant part of the world still suffers from malnutrition, and these gains in grains and other crops probably wont be enough to feed a growing global population.

These facts have put farmers and agricultural scientists on a quest to squeeze more yield from plants (and livestock), and how to make these yield increases more sustainable. The best land is already taken and could be altered by climate changes, so new crops may have to be grown in less hospitable locations, and the soils and nutrition in existing lands need to be better preserved.

Several methods are being used to boost yields with less fertilizer or pesticides, including traditional combination techniques, marker-assisted breeding, and, of course, trans- and cis-genic modifications.

One way to get more food from a plant is through another genetic switch. It may be possible to genetically, either through hybridization, mutagenesis, or genetic engineering to alter a plant so that it transforms from an annual (one you have to replant every year) to a perennial (which you plant once and can thrive for many years).

This video from Washington State University discusses some advantages of perennial crops:

Most staples, like corn, wheat, sorghum and other grains are annuals. About 75 percent of US and 69 percent of global croplands are cereal, oilseed and legumes, and all of those are annuals, said Jerry Glover, plant geneticist at the Land Institute in Salina, Kansas, and John Reganold, a geneticist at Washington State University. This means, they wrote:

They must be replanted each year from seed, require large amounts of expensive fertilizers and pesticides, poorly protect soil and water, and provide little habitat for wildlife. Their production emits significant greenhouse gases, contributing to climate change that can in turn have adverse effects on agricultural productivity.

Perennials, meanwhile, have longer growing seasons and more extensive roots, making them more productive, and more efficient at capturing nutrients and water from the soil. Replanting isnt necessary, reducing pesticide and fertilizer use, and reducing the need to use tractors and other mechanical planters in fields. Erosion also can be reduced. Its been estimated that annual grains can lose five times more water and 35 times more nitrate than perennial grains.All plants at one time were perennials, and breeders and farmers concentrated on breeding new annuals that could meet a farmers (and consumers) needs.

Now, the table has turned. Genetics may make the annual-to-perennial transformation easier.The switch to perennials is not a new avenue of research, but its been a rocky road. Scientists in the former USSR and the US tried to create perennial wheat in the 1960s, but the offspring plants were sterile and didnt deliver on desired traits. Since then, scientists worldwide have looked at deriving perennials from annual and perennial parents using molecular markers tied to desirable traits (and the genes responsible for them). This technique, and knowing the genotypes of more and more plants, has made it possible to combine desirable genes with traditional and genetic engineering methods to find these desirable perennial plants.

Glover has pointed out that molecular markers tied to desirable traits (higher yields, disease resistance, etc.) can allow for faster breeding by determining the sources of plant variation, and that plant genomics has facilitated the combination of genes without having to field test over years at a time. Genetic modifications can also help spur this along.

Andrew Paterson, head of the plant genome laboratory at the University of Georgia, has studied for years the development of perennial sorghum one of the top five cerealon the planet. Sorghums drought resistance has made it useful as a grain and biomass source in degraded soil, and a perennial version (which has happened spontaneously twice) could reduce drought losses even to other crops. Patersons genetic analysis of wild perennials and cultivated annuals has shown the genes involved in perennial ism and offered DNA markers for more precise breeding.

Techniques like CRISPR/Cas9, which can precisely edit, insert or delete genes at specific locations, are being studied for their possible role in transforming perennials, but a few challenges remain. Chung-Jui Tsai at the University of Georgia, recently showed that CRISPR could be used to alter genes in existing perennials (like fruit and nut trees, for example), once some hurdles like frequent polymorphisms and other variations could be overcome.

Still others are not so optimistic about using genetic modification to enact the perennial-annual switch. First, the whole field would require much more research funding than currently exists, Glover warns. Then, as Paterson told Brooke Borel in her article in Popular Science, perennial traits are much more complicated than those currently addressed by genetic engineering. We dont really know all of the genes involved, not yet:

We dont actually have any of the genes in hand. We know where they are in the genome and we are working on their locations more and more finely, but there arent any of these genes that we can yet point to the specific gene among the 30,000 or so in sorghum. Even if they did know the exact genes, most GMOs that are currently available only insert a single new trait rather than information from multiple genes. The technology isnt yet able to handle something so complicated as perennialism.

Andrew Porterfieldis a writer, editor and communications consultant for academic institutions, companies and non-profits in the life sciences. He is based in Camarillo, California. Follow@AMPorterfieldon Twitter.

Related Stories

See original here:
Can genetic modification turn annual crops into perennials? - Genetic Literacy Project

Posted in Genetic Engineering | Comments Off on Can genetic modification turn annual crops into perennials? – Genetic Literacy Project

We Need to Talk About Genetic Engineering – Commentary Magazine

Posted: August 1, 2017 at 1:47 am

What began as a broad-based and occasionally sympathetic conduit for anti-Trump activists has evolved into a platform for the maladjusted to receive unhealthy levels of public scrutiny. The cycle has become a depressingly familiar. A relatively obscure member of the political class achieves viral notoriety and becomes a figure of cult-like popularity with some uncompromising display of opposition toward the president only to humiliate themselves and their followers in short order.

Democratic Rep. Maxine Waters is not the first to be feted by liberals as the embodiment of noble opposition to authoritarianism. In May, the Center for American Progress blog dubbed her the patron saint of resistance politics. Left-leaning viral-politics websites now routinely praise Waters as a Trump-bashing resistance leader, the Democratic rock star of 2017, and an all-around badass for her unflagging commitment to trashing the president as a crooked and racist liar, the Daily Beast observed. Waters was even honored by an audience of tweens and entertainers at this years MTV Movie Awards. Even a modestly curious review of Waters record would have led more cautious political actors to keep their distance. Time bombs have a habit of going off.

Zero hour arrived late Friday evening when Waters broke the news of a forthcoming putsch. Mike Pence is somewhere planning an inauguration, the congresswoman from California wrote. Priebus and Spicer will lead the transition. That sounds crazy, but its a familiar kind of crazy.

Anyone who has followed the congresswomans career knows she has a history of making inflammatory assertions for the benefit of her audience. It only takes a cursory google search to discover that, in her decade in politics, Citizens for Responsibility and Ethics in Washington (CREW) has named her the most corrupt member of Congress four times and the misconduct of her chief of staff ensnared her in a House Ethics Committee probe. The Resistance is willing to overlook a plethora of flaws and misdeeds as long as their prior assumptions are validated.

This is not the first time its own heroes have undercut The Resistance.

National Reviews Charles C. W. Cooke recently demonstrated why Louise Mensch, formerly a prominent poster child for The Resistance, has a habit of seeing Russians behind every darkened corner. They are responsible for riots in Missouri, Democratic losses at the polls, and Anthony Weiners libido. In Menschs imagination, a secret Republican Guard is mere moments away from dispatching this administration amid some species of constitutional coup. Cooke also noted that Mensch was elevated to unearned status as a celebrity of the Resistance by the anti-Trump commentary class desperate for what she was selling.

Menschs star has faded, but not before she managed to embarrass those who invested confidence in her sources. Those who embraced her should have been more cautious in the process. Menschs British compatriots long ago caught onto her habit of lashing out at phantoms. A prudent political class would have given her a wide berth.

25-year-old Teen Vogue columnist Lauren Duca became a sensation last December when her article accusing the president of gas lighting the nation went viral. She was festooned with praise for her work from forlorn Democratsculminating in a letter of praise from Hillary Clintonand soon found herself the subject of fawning New York Times profiles and delivering college commencement addresses without any apparent effort to vet her work.

Duca, too, became a source of bias-confirming misinformation for the left. Cute pic of Trump getting tired of winning, she tweeted with the image of an airplane going down in flames. The tweet was quickly deleted, but not before it provided a means by which the pro-Trump right could credibly undermine her integrity.

Attributable only to a plague mass hysteria, liberal Trump opponents collectively determined last December that a paranoid, 127-tweet rant was a work of unpatrolled genius. That diatribe was the work of Eric Garland, a self-described D.C. technocrat based in Missouri whos now infamous game theory polemic was an example of what he calls his spastic historical and political narratives.

Journalists and political activists who surveyed his work declared it not just compelling anti-Trump prose but near historic in its brilliance. It was anything but. Laced with profanity, exaggerated misspellings to caricature his political opponents, and an offensively indiscreet application of the caps lock, Garland threaded 9/11, Al Gore, Hurricane Katrina, Edward Snowden, and Fox News to tell the tale of how Americas sovereignty was repeatedly violated. The Resistance abandoned its better judgment.

It wasnt long before Garland had humiliated anyone who ever treated him as a credible political observer. Rupert Murdoch is a threat to Western Civilization and a Russian operative, he wrote. I WONT BE THE FIRST GARLAND OF MY LINE TO SPILL BLOOD FOR AMERICA AND THE RIGHT SIDE OF HISTORY AND NEVER THE LAST, YOU F***ERS. This kind of hyperventilating excess came as no surprise to anyone who didnt read his manic thread through tears as they struggled to come to terms with the age of Trump.

If Democrats hope to strike a favorable contrast with a lackadaisical White House, theyre not well served by surrounding themselves with reckless people. Too often, the faces of The Resistance wither in the spotlight. A serious movement attracts serious opposition. A frivolous, self-gratifying movement, well, doesnt.

Read the original:
We Need to Talk About Genetic Engineering - Commentary Magazine

Posted in Genetic Engineering | Comments Off on We Need to Talk About Genetic Engineering – Commentary Magazine

genetic engineering | Definition, Process, & Uses …

Posted: July 10, 2017 at 6:46 am

Genetic engineering, the artificial manipulation, modification, and recombination of DNA or other nucleic acid molecules in order to modify an organism or population of organisms.

The term genetic engineering initially referred to various techniques used for the modification or manipulation of organisms through the processes of heredity and reproduction. As such, the term embraced both artificial selection and all the interventions of biomedical techniques, among them artificial insemination, in vitro fertilization (e.g., test-tube babies), cloning, and gene manipulation. In the latter part of the 20th century, however, the term came to refer more specifically to methods of recombinant DNA technology (or gene cloning), in which DNA molecules from two or more sources are combined either within cells or in vitro and are then inserted into host organisms in which they are able to propagate.

The possibility for recombinant DNA technology emerged with the discovery of restriction enzymes in 1968 by Swiss microbiologist Werner Arber. The following year American microbiologist Hamilton O. Smith purified so-called type II restriction enzymes, which were found to be essential to genetic engineering for their ability to cleave a specific site within the DNA (as opposed to type I restriction enzymes, which cleave DNA at random sites). Drawing on Smiths work, American molecular biologist Daniel Nathans helped advance the technique of DNA recombination in 197071 and demonstrated that type II enzymes could be useful in genetic studies. Genetic engineering based on recombination was pioneered in 1973 by American biochemists Stanley N. Cohen and Herbert W. Boyer, who were among the first to cut DNA into fragments, rejoin different fragments, and insert the new genes into E. coli bacteria, which then reproduced.

Most recombinant DNA technology involves the insertion of foreign genes into the plasmids of common laboratory strains of bacteria. Plasmids are small rings of DNA; they are not part of the bacteriums chromosome (the main repository of the organisms genetic information). Nonetheless, they are capable of directing protein synthesis, and, like chromosomal DNA, they are reproduced and passed on to the bacteriums progeny. Thus, by incorporating foreign DNA (for example, a mammalian gene) into a bacterium, researchers can obtain an almost limitless number of copies of the inserted gene. Furthermore, if the inserted gene is operative (i.e., if it directs protein synthesis), the modified bacterium will produce the protein specified by the foreign DNA.

A subsequent generation of genetic engineering techniques that emerged in the early 21st century centred on gene editing. Gene editing, based on a technology known as CRISPR-Cas9, allows researchers to customize a living organisms genetic sequence by making very specific changes to its DNA. Gene editing has a wide array of applications, being used for the genetic modification of crop plants and livestock and of laboratory model organisms (e.g., mice). The correction of genetic errors associated with disease in animals suggests that gene editing has potential applications in gene therapy for humans.

Genetic engineering has advanced the understanding of many theoretical and practical aspects of gene function and organization. Through recombinant DNA techniques, bacteria have been created that are capable of synthesizing human insulin, human growth hormone, alpha interferon, a hepatitis B vaccine, and other medically useful substances. Plants may be genetically adjusted to enable them to fix nitrogen, and genetic diseases can possibly be corrected by replacing dysfunctional genes with normally functioning genes. Nevertheless, special concern has been focused on such achievements for fear that they might result in the introduction of unfavourable and possibly dangerous traits into microorganisms that were previously free of theme.g., resistance to antibiotics, production of toxins, or a tendency to cause disease. Likewise, the application of gene editing in humans has raised ethical concerns, particularly regarding its potential use to alter traits such as intelligence and beauty.

In 1980 the new microorganisms created by recombinant DNA research were deemed patentable, and in 1986 the U.S. Department of Agriculture approved the sale of the first living genetically altered organisma virus, used as a pseudorabies vaccine, from which a single gene had been cut. Since then several hundred patents have been awarded for genetically altered bacteria and plants. Patents on genetically engineered and genetically modified organisms, particularly crops and other foods, however, were a contentious issue, and they remained so into the first part of the 21st century.

ethics: Bioethics

Read This Article

origins of agriculture: Genetic engineering

Read This Article

history of science: The 20th-century revolution

Read This Article

in genetics

ReadThisArticle

in DNA sequencing

ReadThisArticle

in recombinant DNA technology

ReadThisArticle

in George Ledyard Stebbins, Jr.

ReadThisArticle

in Sir Ian Wilmut

ReadThisArticle

in genetically modified organism (GMO)

ReadThisArticle

See the original post:
genetic engineering | Definition, Process, & Uses ...

Posted in Genetic Engineering | Comments Off on genetic engineering | Definition, Process, & Uses …

Writing the human genome – The Biological SCENE

Posted: July 10, 2017 at 6:46 am

[+]Enlarge

Credit: Will Ludwig/C&EN/Shutterstock

Synthetic biologists have been creating the genomes of organisms such as viruses and bacteria for the past 15 years. They aim to use these designer genetic codes to make cells capable of producing novel therapeutics and fuels. Now, some of these scientists have set their sights on synthesizing the human genomea vastly more complex genetic blueprint. Read on to learn about this initiative, called Genome Project-write, and the challenges researchers will faceboth technical and ethicalto achieve success.

Nineteenth-century novels are typically fodder for literature conferences, not scientific gatherings. Still, at a high-profile meeting of about 200 synthetic biologists in May, one presenter highlighted Mary Shelleys gothic masterpiece Frankenstein, which turns 200 next year.

Frankensteins monster, after all, is what many people think of when the possibility of human genetic engineering is raised, said University of Pennsylvania ethicist and historian Jonathan Moreno. The initiative being discussed at the New York City meetingGenome Project-write (GP-write)has been dogged by worries over creating unnatural beings. True, part of GP-write aims to synthesize from scratch all 23 chromosomes of the human genome and insert them into cells in the lab. But proponents of the project say theyre focused on decreasing the cost of synthesizing and assembling large amounts of DNA rather than on creating designer babies.

The overall project is still under development, and the projects members have not yet agreed on a specific road map for moving forward. Its also unclear where funding will come from.

What the members of GP-write do agree on is that creating a human genome from scratch is a tremendous scientific and engineering challenge that will hinge on developing new methods for synthesizing and delivering DNA. They will also need to get better at designing large groups of genes that work together in a predictable way, not to mention making sure that even larger assembliesgenomescan function.

GP-write consortium members argue that these challenges are the very thing that should move scientists to pick up the DNA pen and turn from sequence readers to writers. They believe writing the entire human genome is the only way to truly understand how it works. Many researchers quoted Richard Feynman during the meeting in May. The statement What I cannot create, I do not understand was found on the famed physicists California Institute of Technology blackboard after his death. I want to know the rules that make a genome tick, said Jef Boeke, one of GP-writes four coleaders, at the meeting.

To that end, Boeke and other GP-write supporters say the initiative will spur the development of new technologies for designing genomes with software and for synthesizing DNA. In turn, being better at designing and assembling genomes will yield synthetic cells capable of producing valuable fuels and drugs more efficiently. And turning to human genome synthesis will enable new cell therapies and other medical advances.

In 2010, researchers at the Venter Institute, including Gibson, demonstrated that a bacterial cell controlled by a synthetic genome was able to reproduce. Colonies formed by it and its sibling resembled a pair of blue eyes.

Credit: Science

Genome writers have already synthesized a few complete genomes, all of them much less complex than the human genome. For instance, in 2002, researchers chemically synthesized a DNA-based equivalent of the poliovirus RNA genome, which is only about 7,500 bases long. They then showed that this DNA copy could be transcribed by RNA polymerase to recapitulate the viral genome, which replicated itselfa demonstration of synthesizing what the authors called a chemical [C332,652H492,388N98,245O131,196P7,501S2,340] with a life cycle (Science 2002, DOI: 10.1126/science.1072266).

After tinkering with a handful of other viral genomes, in 2010, researchers advanced to bacteria, painstakingly assembling a Mycoplasma genome just over about a million bases in length and then transplanting it into a host cell.

Last year, researchers upped the ante further, publishing the design for an aggressively edited Escherichia coli genome measuring 3.97 million bases long (Science, DOI: 10.1126/science.aaf3639). GP-write coleader George Church and coworkers at Harvard used DNA-editing softwarea kind of Google Docs for writing genomesto make radical systematic changes. The so-called rE.coli-57 sequence, which the team is currently synthesizing, lacks seven codons (the three-base DNA words that code for particular amino acids) compared with the normal E. coli genome. The researchers replaced all 62,214 instances of those codons with DNA base synonyms to eliminate redundancy in the code.

Status report International teams of researchers have already synthesized six of yeast's 16 chromosomes, redesigning the organism's genome as part of the Sc2.0 project.

Bacterial genomes are no-frills compared with those of creatures in our domain, the eukaryotes. Bacterial genomes typically take the form of a single circular piece of DNA that floats freely around the cell. Eukaryotic cells, from yeast to plants to insects to people, confine their larger genomes within a cells nucleus and organize them in multiple bundles called chromosomes. An ongoing collaboration is now bringing genome synthesis to the eukaryote realm: Researchers are building a fully synthetic yeast genome, containing 17 chromosomes that range from about 1,800 to about 1.5 million bases long. Overall, the genome will contain more than 11 million bases.

The synthetic genomes and chromosomes already constructed by scientists are by no means simple, but to synthesize the human genome, scientists will have to address a whole other level of complexity. Our genome is made up of more than 3 billion bases across 23 paired chromosomes. The smallest human chromosome is number 21, at 46.7 million baseslarger than the smallest yeast chromosome. The largest, number 1, has nearly 249 million. Making a human genome will mean making much more DNA and solving a larger puzzle in terms of assembly and transfer into cells.

Today, genome-writing technology is in what Boeke, also the director for the Institute of Systems Genetics at New York University School of Medicine, calls the Gutenberg phase. (Johannes Gutenberg introduced the printing press in Europe in the 1400s.) Its still early days.

DNA synthesis companies routinely create fragments that are 100 bases long and then use enzymes to stitch them together to make sequences up to a few thousand bases long, about the size of a gene. Customers can put in orders for small bits of DNA, longer strands called oligos, and whole geneswhatever they needand companies will fabricate and mail the genetic material.

Although the technology that makes this mail-order system possible is impressive, its not prolific enough to make a human genome in a reasonable amount of time. Estimates vary on how long it would take to stitch together a more than 3 billion-base human genome and how much it would cost with todays methods. But the ballpark answer is about a decade and hundreds of millions of dollars.

Synthesis companies could help bring those figures down by moving past their current 100-base limit and creating longer DNA fragments. Some researchers and companies are moving in that direction. For example, synthesis firm Molecular Assemblies is developing an enzymatic process to write long stretches of DNA with fewer errors.

Synthesis speeds and prices have been improving rapidly, and researchers expect they will continue to do so. From my point of view, building DNA is no longer the bottleneck, says Daniel G. Gibson, vice president of DNA technology at Synthetic Genomics and an associate professor at the J. Craig Venter Institute (JCVI). Some way or another, if we need to build larger pieces of DNA, well do that.

Gibson isnt involved with GP-write. But his research showcases what is possible with todays toolseven if they are equivalent to Gutenbergs movable type. He has been responsible for a few of synthetic biologys milestones, including the development of one of the most commonly used genome-assembly techniques.

The Gibson method uses chemical means to join DNA fragments, yielding pieces thousands of bases long. For two fragments to connect, one must end with a 20- to 40-base sequence thats identical to the start of the next fragment. These overlapping DNA fragments can be mixed with a solution of three enzymesan exonuclease, a DNA polymerase, and a DNA ligasethat trim the 5 end of each fragment, overlap the pieces, and seal them together.

To make the first synthetic bacterial genome in 2008, that of Mycoplasma genitalium, Gibson and his colleagues at JCVI, where he was a postdoc at the time, started with his eponymous in vitro method. They synthesized more than 100 fragments of synthetic DNA, each about 5,000 bases long, and then harnessed the prodigious DNA-processing properties of yeast, introducing these large DNA pieces to yeast three or four at a time. The yeast used its own cellular machinery to bring the pieces together into larger sequences, eventually producing the entire Mycoplasma genome.

Next, the team had to figure out how to transplant this synthetic genome into a bacterial cell to create what the researchers called the first synthetic cell. The process is involved and requires getting the bacterial genome out of the yeast, then storing the huge, fragile piece of circular DNA in a protective agarose gel before melting it and mixing it with another species of Mycoplasma. As the bacterial cells fuse, some of them take in the synthetic genomes floating in solution. Then they divide to create three daughter cells, two containing the native genomes, and one containing the synthetic genome: the synthetic cell.

When Gibsons group at JCVI started building the synthetic cell in 2004, we didnt know what the limitations were, he says. So the scientists were cautious about overwhelming the yeast with too many DNA fragments, or pieces that were too long. Today, Gibson says he can bring together about 25 overlapping DNA fragments that are about 25,000 bases long, rather than three or four 5,000-base segments at a time.

Gibson expects that existing DNA synthesis and assembly methods havent yet been pushed to their limits. Yeast might be able to assemble millions of bases, not just hundreds of thousands, he says. Still, Gibson believes it would be a stretch to make a human genome with this technique.

One of the most ambitious projects in genome writing so far centers on that master DNA assembler, yeast. As part of the project, called Sc2.0 (a riff on the funguss scientific name, Saccharomyces cerevisiae), an international group of scientists is redesigning and building yeast one synthetic chromosome at a time. The yeast genome is far simpler than ours. But like us, yeasts are eukaryotes and have multiple chromosomes within their nuclei.

Synthetic biologists arent interested in rebuilding existing genomes by rote; they want to make changes so they can probe how genomes work and make them easier to build and reengineer for practical use. The main lesson learned from Sc2.0 so far, project scientists say, is how much the yeast chromosomes can be altered in the writing, with no apparent ill effects. Indeed, the Sc2.0 sequence is not a direct copy of the original. The synthetic genome has been reduced by about 8%. Overall, the research group will make 1.1 million bases worth of insertions, deletions, and changes to the yeast genome (Science 2017, DOI: 10.1126/science.aaf4557).

So far, says Boeke, whos also coleader of Sc2.0, teams have finished or almost finished the first draft of the organisms 16 chromosomes. Theyre also working on a neochromosome, one not found in normal yeast. In this chromosome, the designers have relocated all DNA coding for transfer RNA, which plays a critical role in protein assembly. The Sc2.0 group isolated these sequences because scientists predicted they would cause structural instability in the synthetic chromosomes, says Joel Bader, a computational biologist at Johns Hopkins University who leads the projects software and design efforts.

The team is making yeast cells with a new chromosome one at a time. The ultimate goal is to create a yeast cell that contains no native chromosomes and all 17 synthetic ones. To get there, the scientists are taking a relatively old-fashioned approach: breeding. So far, theyve made a yeast cell with three synthetic chromosomes and are continuing to breed it with strains containing the remaining ones. Once a new chromosome is in place, it requires some patching up because of recombination with the native chromosomes. Its a process, but it doesnt look like there are any significant barriers, Bader says. He estimates it will take another two to three years to produce cells with the entire Sc2.0 genome.

So far, even with these significant changes to the chromosomes, the yeast lives at no apparent disadvantage compared with yeast that has its original chromosomes. Its surprising how much you can torture the genome with no effect, Boeke says.

Boeke and Bader have founded a start-up company called Neochromosome that will eventually use Sc2.0 strains to produce large protein drugs, chemical precursors, and other biomolecules that are currently impossible to make in yeast or E. coli because the genetic pathways used to create them are too complex. With synthetic chromosomes well be able to make these large supportive pathways in yeast, Bader predicts.

Whether existing genome-engineering methods like those used in Sc2.0 will translate to humans is an open question.

Bader believes that yeast, so willing to take up and assemble large amounts of DNA, might serve as future human-chromosome producers, assembling genetic material that could then be transferred to other organisms, perhaps human cells. Transplanting large human chromosomes would be tricky, Synthetic Genomics Gibson says. First, the recipient cell must be prepped by somehow removing its native chromosome. Gibson expects physically moving the synthetic chromosome would also be difficult: Stretches of DNA larger than about 50,000 bases are fragile. You have to be very gentle so the chromosome doesnt breakonce its broken, its not going to be useful, he says. Some researchers are working on more direct methods for cell-to-cell DNA transfer, such as getting cells to fuse with one another.

Once the scientists solve the delivery challenge, the next question is whether the transplanted chromosome will function. Our genomes are patterned with methyl groups that silence regions of the genome and are wrapped around histone proteins that pack the long strands into a three-dimensional order in cells nuclei. If the synthetic chromosome doesnt have the appropriate methylation patterns, the right structure, it might not be recognized by the cell, Gibson says.

Biologists might sidestep these epigenetic and other issues by doing large-scale DNA assembly in human cells from the get-go. Ron Weiss, a synthetic biologist at Massachusetts Institute of Technology, is pushing the upper limits on this sort of approach. He has designed methods for inserting large amounts of DNA directly into human cells. Weiss endows human cells with large circuits, which are packages of engineered DNA containing groups of genes and regulatory machinery that will change a cells behavior.

In 2014, Weiss developed a landing pad method to insert about 64,000-base stretches of DNA into human and other mammalian cells. First, researchers use gene editing to create the landing pad, which is a set of markers at a designated spot on a particular chromosome where an enzyme called a recombinase will insert the synthetic genetic material. Then they string together the genes for a given pathway, along with their regulatory elements, add a matching recombinase site, and fashion this strand into a circular piece of DNA called a plasmid. The target cells are then incubated with the plasmid, take it up, and incorporate it at the landing site (Nucleic Acids Res. 2014, DOI: 10.1093/nar/gku1082).

This works, but its tedious. It takes about two weeks to generate these cell lines if youre doing well, and the payload only goes into a few of the cells, Weiss explains. Since his initial publication, he says, his team has been able to generate cells with three landing pads; that means they could incorporate a genetic circuit thats about 200,000 bases long.

Weiss doesnt see simple scale-up of the landing pad method as the way forward, though, even setting aside the tedium. He doesnt think the supersized circuits would even function in a human cell because he doesnt yet know how to design them.

The limiting factor in the size of the circuit is not the construction of DNA, but the design, Weiss says. Instead of working completely by trial and error, bioengineers use computer models to predict how synthetic circuits or genetic edits will work in living cells of any species. But the larger the synthetic element, the harder it is to know whether it will work in a real cell. And the more radical the deletion, the harder it is to foresee whether it will have unintended consequences and kill the cell. Researchers also have a hard time predicting the degree to which cells will express the genes in a complex synthetic circuita lot, a little, or not at all. Gene regulation in humans is not fully understood, and rewriting on the scale done in the yeast chromosome would have far less predictable outcomes.

Besides being willing to take up and incorporate DNA, yeast is relatively simple. Upstream from a yeast gene, biologists can easily find the promoter sequence that turns it on. In contrast, human genes are often regulated by elements found in distant regions of the genome. That means working out how to control large pathways is more difficult, and theres a greater risk that changing the genetic sequencesuch as deleting what looks like repetitive nonsensewill have unintended, currently unpredictable, consequences.

Gibson notes that even in the minimal cell, the organism with the simplest known genome on the planet, biologists dont know what one-third of the genes do. Moving from the simplest organism to humans is a leap into the unknown. One design flaw can change how the cell behaves or even whether the cells are viable, Gibson says. We dont have the design knowledge.

Many scientists believe this uncertainty about design is all the more reason to try writing human and other large genomes. People are entranced with the perfect, Harvards Church says. But engineering and medicine are about the pretty good. I learn much more by trying to make something than by observing it.

Others arent sure that the move from writing the yeast genome to writing the human genome is necessary, or ethical. When the project to write the human genome was made public in May 2016, the founders called it Human Genome Project-write. They held the first organizational meeting behind closed doors, with no journalists present. A backlash ensued.

In the magazine Cosmos, Stanford University bioengineer Drew Endy and Northwestern University ethicist Laurie Zoloth in May 2016 warned of unintended consequences of large-scale changes to the genome and of alienating the public, potentially putting at risk funding for the synthetic biology field at large. They wrote that the synthesis of less controversial and more immediately useful genomes along with greatly improved sub-genomic synthesis capacities should be pursued instead.

GP-write members seem to have taken such criticisms to heart, or come to a similar conclusion on their own. By this Mays conference, human was dropped from the projects name. Leaders emphasized that the human genome would be a subproject proceeding on a conservative timescale and that ethicists would be involved at every step along the way. We want to separate the overarching goal of technology development from the hot-button issue of human genome writing, Boeke explains.

Bringing the public on board with this kind of project can be difficult, says Alta Charo, a professor of law and bioethics at the University of Wisconsin, Madison, who is not involved with GP-write. Charo cochaired a National Academy of Sciences study on the ethics and governance of human gene editing, which was published in February.

She says the likelihood of positive outcomes, such as new therapies or advances in basic science, must be weighed against potential unintended consequences or unforeseen uses of genome writing. People see their basic values at stake in human genetic engineering. If scientists achieve their goalsmaking larger scale genetic engineering routine and more useful, and bringing it to the human genomemajor changes are possible to what Charo calls the fabric of our culture and society. People will have to decide whether they feel optimistic about that or not. (Charo does.)

Given humans cautiousness, Charo imagines in early times we might have decided against creating fire, saying, Lets live without that; we dont need to create this thing that might destroy us. People often see genetic engineering in extreme terms, as a fire that might illuminate human biology and light the way to new technologies, or one that will destroy us.

Charo says the GP-write plan to keep ethicists involved going forward is the right approach and that its difficult to make an ethical or legal call on the project until its leaders put forward a road map.

The group will announce a specific road map sometime this year, but it doesnt want to be restrictive ahead of time. You know when youre done reading something, Boeke said at the meeting in May. But writing has an artistic side to it, he added. You never know when youre done.

Katherine Bourzac is a freelance science writer based in San Francisco.

Excerpt from:
Writing the human genome - The Biological SCENE

Posted in Genetic Engineering | Comments Off on Writing the human genome – The Biological SCENE

America’s First Free-Roaming Genetically Engineered Insects Are … – Gizmodo

Posted: July 10, 2017 at 6:46 am

Diamondback moths may be a mere half-inch in length, but their voracious appetite for Brussels sprouts, kale and cauliflower make them a major pain for farmers. This week, the U.S. Department of Agriculture approved a potential solution: moths genetically engineered to contain a special gene that makes them gradually die off. A field trial slated to take place in a small area of upstate New York will become the first wild release of an insect modified using genetic engineering in the US.

The moths have been engineered by the British biotech firm Oxitec, the same company that last year caused a stir with its plans to release genetically modified, Zika-fighting mosquitoes in the Florida Keys. The diamond back moths take a similar approach to the mosquitoes, modifying male mosquitoes to limit the population over time by passing on a gene to offspring when it mates with wild females that causes female moths to die before they reach maturity.

The technique is a riff on an approach used to manage agricultural pests since the 1950s, known as sterile insect technique. Using radiation, scientists made insects like the screwworm unable to produce viable offspring. By 1982, screwworm was eradicated from the US using this alternative to pesticides. In Silent Spring Rachel Carson suggested this approach was the solution to the dangers of harmful pesticides agricultural producers required to protect their crops. The problem was that it did not work on every insectin many cases, it simply left irradiated insects too weak to compete for mates with their healthier kin.

Diamondback moths are a sizable problem for farmers, and a problem thats growing as the moths develop resistance to traditional pesticides. They do about $5 billion in damage to cruciferous crops worldwide every year. In the upcoming trial, a team at Cornell University will oversee the release of the genetically engineered moths in a 10-acre field owned by Cornell in Geneva, New York.

After a review found that the field trial is unlikely to impact either the environment or humans, the USDA issued a permit that allows for the release of up to 30,000 moths per week over several months. It is caterpillars that damage crops, so the plan to release adult males that produce unviable offspring should not cause any additional crop damage. And any surviving moths will likely be killed off by pesticides or upstate New Yorks frigid winter, according to the report submitted to the USDA.

The plan to release modified mosquitoes in the Keys attracted much local ireafter initially getting the greenlight from the FDA, the project was ultimately stalled by a local vote and forced to find a new location for a trial.

In upstate New York, too, the moths have stirred up a debate over GMOs for the past several years, though the plan has not been met with quite the same level of opposition. The approval process through the USDA rather than the FDA, too, was much swifter.

In laboratory and greenhouse trials, the modified mosquito was reportedly effective in decreasing the overall population. But tests still need to determine how it will fare in open air.

Oxitec has released its engineered mosquitoes Brazil, Grand Cayman, and Panama, and still plans to go ahead with a field trial in the Keys. In December, the company announced plans for field trials of a genetically modified Mediterranean fruit fly in Western Australia. It is also working on genetically engineering several other agricultural pests, including Drosophila suzukii and the Olive fly.

Read more:
America's First Free-Roaming Genetically Engineered Insects Are ... - Gizmodo

Posted in Genetic Engineering | Comments Off on America’s First Free-Roaming Genetically Engineered Insects Are … – Gizmodo

Stanford’s Final Exams Pose Question About the Ethics of Genetic Engineering – Futurism

Posted: July 10, 2017 at 6:46 am

In BriefThe age of gene editing and creation will be upon us in thenext few decades, with the first lifeform having already beenprinted. Stanford University questions the ethics of prospectivestudents by asking a question we should all be thinking about. Stanfords Moral Pickle

When bioengineering students sit down to take their final exams for Stanford University,they are faced with a moral dilemma, as well as a series of grueling technical questions that are designed to sort the intellectual wheat from the less competent chaff:

If you and your future partner are planning to have kids, would you start saving money for college tuition, or for printing the genome of your offspring?

The question is a follow up to At what point will the cost of printing DNA to create a human equal the cost of teaching a student in Stanford? Both questions refer to the very real possibility that it may soon be in the realm of affordability to print off whatever stretch of DNA you so desire, using genetic sequencing and a machine capable of synthesizing the four building blocks of DNA A, C, G, and T into whatever order you desire.

The answer to the time question, by the way, is 19 years, given that the cost of tuition at Stanford remains at $50,000 and the price of genetic printing continues the 200-fold decrease that has occurred over the last 14 years. Precursory work has already been performed; a team lead by Craig Venter created the simplest life form ever known last year.

Stanfords moral question, though, is a little trickier. The question is part of a larger conundrum concerning humans interfering with their own biology; since the technology is developing so quickly, the issue is no longer whether we can or cant,but whether we should or shouldnt. The debate has two prongs: gene editing and life printing.

With the explosion of CRISPR technology many studies are due to start this year the ability to edit our genetic makeup will arrive soon. But how much should we manipulate our own genes? Should the technology be a reparative one, reserved for making sick humans healthy again, or should it be used to augment our current physical restrictions, making us bigger, faster, stronger, and smarter?

The question of printing life is similar in some respects; rather than altering organisms to have the desired genetic characteristics, we could print and culture them instead billions have already been invested. However, there is theadditional issue of playing God by sidestepping the methods of our reproduction that have existed since the beginning of life. Even if the ethical issue of creation was answered adequately, there are the further questions ofwho has the right to design life, what the regulations would be, and the potential restrictions on the technology based on cost; if its too pricey, gene editing could be reserved only for the rich.

It is vital to discuss the ethics of gene editing in order to ensure that the technology is not abused in the future. Stanfords question is praiseworthy because it makes todays students, who will most likely be spearheading the technologys developments, think about the consequences of their work.

Read more:
Stanford's Final Exams Pose Question About the Ethics of Genetic Engineering - Futurism

Posted in Genetic Engineering | Comments Off on Stanford’s Final Exams Pose Question About the Ethics of Genetic Engineering – Futurism

Free genetic engineering Essays and Papers – 123helpme

Posted: November 20, 2016 at 7:46 am

Title Length Color Rating The Effects of Genetic Engineering on Agriculture - Genetic engineering is a way in which specific genes for an animal or plant can be extracted, and reproduced to form a new animal or plant. These new organisms will express the required trait for that gene. This practice is a very controversial topic within the scientific world. It is being implemented in various areas such as agriculture even though there are many alternatives that can be found for genetic engineered crops, such as organic materials and reducing leeching of the soil. The controversy regarding this practice occurs as it is believed to contribute both negative and positive implications and dangers, not only to oneself but the environment as a whole.... [tags: Genetic Engineering ] :: 5 Works Cited 1303 words (3.7 pages) Strong Essays [preview] Pros and Cons of Genetic Engineering - Genetic Engineering is highly controversial since some people believe that genetic engineering is playing God. As this fact there is opposition to the progression of the field by people who do not see the value in genetic engineering, or they fear what genetic engineering may lead to for us as people. There is a history of discover that belongs to genetic engineering, which has led to numerous products that have emerged which have brought numerous applications to the society of the world. Though there are benefits to genetic engineering, there are also drawbacks to genetic engineering including ethical and legal issues that are dealt with in todays society in order to try and regulate the... [tags: Genetic Engineering] :: 8 Works Cited 2049 words (5.9 pages) Term Papers [preview] The Benefits of Genetic Engineering - Almost three decades ago, on July 25, 1978, Louise Brown, the first test tube baby was born (Baird 1). With this birth another controversy broke out, do humans have the right to make life. Most of the concern comes from the fear of control over the production and development of human beings. But, those who are against cloning would most likely look the other way if they needed gene therapy after receiving a grim diagnosis. There are many aspects of genetic engineering and to thoroughly understand it looking into each is absolutely necessary.... [tags: Genetic Engineering ] :: 6 Works Cited 1443 words (4.1 pages) Powerful Essays [preview] The Ethics of Genetic Engineering - The Problem Genetic engineering has been around since the 1960s although major experiments have not been really noticed until the 1990s. The science comes in different forms the two major being cloning and genetic reconstruction. Cloning is the duplicating of one organism and making an exact copy. For example in 1996 the creation of the clone sheep named Dolly the first mammal to be cloned which was a great achievement. The other form, genetic reconstruction, is used to replace genes within humans to help or enhance the life of an unborn child for a medical reason or just for the preference of a parent.... [tags: Genetic Engineering ] :: 5 Works Cited 1437 words (4.1 pages) Powerful Essays [preview] Apocalyptic Visions of Genetic Engineering - Global warming, nuclear winter, microscopic black holessociety views all these as apocalyptic phenomena resulting from the accelerating rate of discovery in the fields of science and technology. Opinions on fields like climate change and atomic weaponry certainly have a basis in scientific evidence, but many other apocalyptic reactions derive from hypothetical situations and thought experiments. To further examine public opinions on scientific fields, we can examine genetic engineering (GE). The possibilities of GE have prompted many ethicists to provide commentary on the topic, opening a dialogue between policy and experimentation in order to address topics such as genetically modified cro... [tags: Genetic Engineering] :: 7 Works Cited 2203 words (6.3 pages) Term Papers [preview] The Genetic Engineering Industry - Ever wish chocolate was healthy and could have the same nutrients and vitamins as fruit and vegetables. Food, one of three necessities of life, affects every living organism on Earth. Although some foods are disliked because of taste or health issues, recent discovery will open up new prosperities and growth in agriculture. Genetic engineering has the capability to make foods taste better, increase nutrient value, and even engineer plants to produce aids for deadly health issues. Every day the progress, understanding, and development of genetic engineering is digging deeper and with this knowledge virtually anything is possible.... [tags: Genetic Engineering ] :: 7 Works Cited 1806 words (5.2 pages) Term Papers [preview] Genetic Engineering in Humans - Author Chuck Klosterman said, The simple truth is that were all already cyborgs more or less. Our mouths are filled with silver. Our nearsighted pupils are repaired with surgical lasers. We jam diabetics full of delicious insulin. Almost 40 percent of Americans now have prosthetic limbs. We see to have no qualms about making post-birth improvements to our feeble selves. Why are we so uncomfortable with pre-birth improvement? Despite Klostermans accurate observation, there are reasons people are wearisome toward pre-birth enhancement.... [tags: Genetic Engineering ] 859 words (2.5 pages) Better Essays [preview] Genetic Engineering: The Impact of Human Manipulation - The scenes of a science fiction movie show presumably unrealistic scientific inventions. In today's world, time travel, cloning, and even light sabers are some of the countless topics that are seemingly unattainable and just ideas of the imagination. Saying that these events are feasible would be completely absurd. However, with recent scientific advancements, science fiction is now becoming more of a reality rather than a fantasy. Nevertheless, only about twenty-five years ago, genetic engineering fell into this same, idealistic category.... [tags: Genetic Engineering ] :: 6 Works Cited 1725 words (4.9 pages) Better Essays [preview] Genetic Engineering: A Major Advancement for Mankind - As the Biochemist Isaac Asimov once said, "The advancement of Genetic Engineering makes it quite conceivable that we will design our own evolutionary progress. Scientists have always thought about new ways to progress through technology in our era, and in 1946, scientists discover that Genetic material from different viruses can be combined to form a new type of virus. This was a major discovery that trickles down to the modern era of Genetics. Current scientists have pioneered new ways to decode human DNA, beating the $3 billion government-run Genome project to its goal.... [tags: Genetic Engineering] :: 10 Works Cited 973 words (2.8 pages) Strong Essays [preview] Genetic Engineering: Is the Human Race Ready? - It is incredible to see how far genetic engineering has come. Humans, plants, and any living organism can now be manipulated. Scientists have found ways to change humans before they are even born. They can remove, add, or alter genes in the human genome. Making things possible that humans (even thirty years ago) would have never imagined. Richard Hayes claims in SuperSize Your Child. that genetic engineering needs to have limitations. That genetic engineering should be used for medical purposes, but not for genetic modification that could open the door to high-tech eugenic engineering (188).... [tags: Genetic Engineering] 1455 words (4.2 pages) Powerful Essays [preview] The Dark Side of Genetic Engineering - I never knew what genetic engineering was until I watched a special on the Discovery channel. The special showed scientists forming the first perfect embryo. What was very shocking was that the scientists kept asking each other what traits this embryo should compose of. To me that was disturbing and unethical to make a living human being based on what traits the parents would want them to have. This process goes against nature just as Francis Bacon said if we would control nature, we must first obey her (Fox 193).... [tags: Genetic Engineering Essays] 1104 words (3.2 pages) Strong Essays [preview] Historical Background Of Genetic Engineering - DNA is the material that gives us our personality, our looks, and our thought processes, good or bad, DNA controls all of this. DNA full name is Deoxyribonucleic Acid. It is called that because it is missing one oxygen atom, and it is located in the nucleus. It is also in the form of an acid. DNA is made up of four subunits: Adenine, Thymine, Guanine and Cytosine. During the production of RNA, the messenger of DNA, Uracil is used instead of thymine. A small segment of this DNA is called a gene.... [tags: dna, Genetic Engineering, genes] :: 8 Works Cited 1513 words (4.3 pages) Powerful Essays [preview] Genetic Engineering Is Not Safe - Genetic engineering is the intended modification to an organisms genetic makeup. There have been no continuing studies on this topic or action so there is no telling whether or not it is harmless. Genetic engineering is not safe because scientists have no absolute knowledge about living systems. Given that, they are unable to do DNA surgery without creating mutations. Any interference on an organisms genetic makeup can cause permanent damage, hereditary defects, lack of nutritious food, or a spread of dangerous diseases.... [tags: Genetic Engineering Essays] :: 5 Works Cited 994 words (2.8 pages) Good Essays [preview] Genetic Engineering: A Step Forward - Genetic engineering (GE) refers to the technique of modification or manipulation of genes (the biological material or chemical blue print that determines a living organisms traits) from one organism to another thus giving bacteria, plants, and animals, new features. The technique of selecting the best seed or the best traits of plants has been around for centuries. Humans have learned to graft (fuse) and hybridize (cross breed) plants, creating dwarfs and other useful forms since at least 1000 B.C.... [tags: Genetic Engineering Essays] 498 words (1.4 pages) Strong Essays [preview] Benefits of Genetic Engineering - Genetic Engineering is an idea that we can ponder on quiet days. The creation of altered DNA is an enticing aspect that can greatly influence the average human life. The research of genetic engineering is an ongoing exploration that may never end. I am a supporter of a genetic engineering. There are three basic beneficial basis of genetic engineering. Those are genetically altered crops, the creation of medicines, and the creation of organs so that many lives could be saved. Genetically altered crops are very beneficial to third world countries.... [tags: Genetic Engineering, DNA, ] :: 3 Works Cited 455 words (1.3 pages) Strong Essays [preview] Understanding Genetic Engineering - What if cancer could be cured by eating a pear. Or if a crop of wheat could be developed so that it never rotted. These may sound like science fiction but they're not as strange as they first seem to be, and may even be reality in the future. Fifteen years ago who would have thought that plants could be created to be immune to pesticides or that it would be possible to create a sheep that is exactly like its parent in every physical way. And yet both of these currently exist due to genetic engineering.... [tags: Genetic Engineering ] :: 13 Works Cited 1820 words (5.2 pages) Term Papers [preview] Genetic Engineering: Annotated Bibliography - Genetic Engineering. The World Book Encyclopedia. 2008 ed. This encyclopedia was extremely helpful. In not knowing all of the exact terms and basic knowledge of genetic engineering, it helped inform any reader of all this and more. The pages that had information on genetics and genetic engineering, had detailed definitions and descriptions for all the terms and ideas. Instead of focusing more towards the future of genetic engineering, it gave numerous facts about the technology and accomplishments of today.... [tags: Annotated Bibliographies, Genetic Engineering] 879 words (2.5 pages) Strong Essays [preview] Is Genetic Engineering Superior or Appalling? - Genetic engineering has changed a lot through the years. It is now possible not to only be able to genetically engineer just plants but also animals and people, plants especially. There are many different kind of plants that have been genetically modified. Genetic engineering is not all good but it is also not all bad. Genetic Engineering will come together the more you read. Plants are not the only thing getting bigger because of genetic engineering modifying the sizes. Animals are starting to become a bigger part of genetic engineering.... [tags: genetic plants,polar tree, genetic engineering] :: 7 Works Cited 1183 words (3.4 pages) Strong Essays [preview] Genetic Engineering: The Negative Impacts of Human Manipulation - The scenes of a science fiction movie show presumably unrealistic scientific inventions. In today's world, time travel and cloning are only two of the countless topics that are seemingly unattainable ideas of the imagination. Saying that these events are within reach would be completely absurd. However, with recent scientific advancements, science fiction is now becoming more of a reality rather than a fantasy. Nevertheless, only about twenty-five years ago, genetic engineering fell into this same, idealistic category.... [tags: Genetic Engineering ] :: 6 Works Cited 1675 words (4.8 pages) Powerful Essays [preview] Genetic Engineering: Major Advancement or Major Setback? - As the Biochemist Isaac Asimov once said, "The advancement of Genetic Engineering makes it quite conceivable that we will design our own evolutionary progress. Scientists have always thought about new ways to progress through technology in this era, and in 1946, scientists discovered that Genetic material from different viruses can be combined to form a new type of virus. This was a major discovery that trickles down to the modern era of Genetics. Current scientists have pioneered new ways to decode human DNA, beating the $3 billion government-run Genome project to its goal.... [tags: Genetic Engineering ] :: 10 Works Cited 1335 words (3.8 pages) Strong Essays [preview] Human Genetic Engineering in Beneficial to Society - Even after thousands of years of evolution, the human race is not perfect: it is ravaged by disease and limited by nature. Yet, in recent times, researchers have begun to ascertain an advanced understanding of the underlying genetic code of humanity. The Human Genome Project, now complete, has provided a map of the intricacies in human DNA, allowing researchers to begin looking at the purpose of each gene. When combined with selective embryo implantation, which is used occasionally today to avoid hereditary diseases or to choose gender, genetic discoveries can become a sort of artificial evolution.... [tags: Pro Human Genetic Engineering] :: 8 Works Cited 1484 words (4.2 pages) Powerful Essays [preview] Genetic Engineering - Just imagine the scene: and newlywed wife and husband are sitting down with a catalog, browsing joyously, pointing and awing at all the different options, fantasizing about all the possibilities that could become of their future. Is this a catalog for new furniture. No. This catalog for all features, phenotype and genotype, for the child they are planning to have. It is basically a database for parents to pick and choose all aspects of their children, from the sex of the child, to looks, and even to personality traits.... [tags: Genetic Engineering] 1131 words (3.2 pages) Good Essays [preview] Genetic Engineering - Genes are, basically, the blueprints of our body which are passed down from generation to generation. Through the exploration of these inherited materials, scientists have ventured into the recent, and rather controversial, field of genetic engineering. It is described as the "artificial modification of the genetic code of a living organism", and involves the "manipulation and alteration of inborn characteristics" by humans (Lanza). Like many other issues, genetic engineering has sparked a heated debate.... [tags: Genetic Engineering ] :: 7 Works Cited 1882 words (5.4 pages) Term Papers [preview] Genetic Engineering: The End of Life as We Know It - Prior to 1982, genetic engineering was a relatively new branch of science. Today, scientists have a firm understanding of genetics and its importance to the living world. Genetic engineering allows us to influence the laws of nature in ways favorable to ourselves. Although promising in its achievements, it also has the potential for abuse. If engineering of this caliber were to be used for anything other than the advancement of the human race, the effects could be devastating. If precautions are not implemented on this science, parents might use it solely for eugenic purposes.... [tags: Genetic Engineering Essays] 773 words (2.2 pages) Better Essays [preview] Genetic Engineering: The Next Technological Leap or a Disruption to the Natural Order of Our Planet? - While walking down the produce aisle at your local grocery store, have you ever questioned where the assortment of goods came from. When asked, perhaps your first thought would likely be from a local farm or orchard. But what if I were to tell you that those very goods could in fact be from a far less obvious third choice. What if someone told you that those pretty peaches on display were meticulously grown in a laboratory to bring forth predetermined traits. As futuristic as it may sound, this type of technology is no longer science fiction but has become a new reality.... [tags: Genetic Engineering ] :: 3 Works Cited 936 words (2.7 pages) Better Essays [preview] The Need for Policy Makers to Regulate Human Genetic Engineering - Human genetic engineering (HGE), a prevalent topic for scientists in research, is the process of manipulating genes in the human genome. Potentially, scientists can use the process of HGE to alter many biological and psychological human traits by gene modification. Currently, however, there is a large deficiency in information regarding HGE and its effects to the human body; creating a need for scientists to conduct more research and tests. Because of the many unknowns involving HGE it is necessary for policy makers to regulate HGE for the use by scientists.... [tags: Human Genetic Engineering] :: 2 Works Cited 1249 words (3.6 pages) Strong Essays [preview] The Pros and Cons of Genetic Engineering - Genetic engineering is a process in which scientists transfer genes from one species to another totally unrelated species. Usually this is done in order to get one organism to produce proteins, which it would not naturally produce. The genes taken from one species, which code for a particular protein, are put into cells of another species, using a vector. This can result in the cells producing the desired protein. It is used for producing proteins which can be used by humans, such as insulin for diabetics and is also used to make organisms better at surviving, for example genetically modifying a plant so that it can survive in acidic soil.... [tags: Genetic Engineering Essays] 1054 words (3 pages) Better Essays [preview] Genetic Engineering: The Controversy of Genetic Screening - The Controversy of Genetic Screening Craig Ventor of Celera Genomics, Rockville, MD, and Francis Collins of the National Institutes of Health and Wellcome Trust, London, England, simultaneously presented the sequence of human DNA in June of 2000, accomplishing the first major endeavor of the Human Genome Project (HGP) (Ridley 2). As scientists link human characteristics to genes-segments of DNA found on one or more of the 23 human chromosomes-prospects for genetic engineering will increase dramatically.... [tags: Genetic Engineering Essays] :: 4 Works Cited 1609 words (4.6 pages) Powerful Essays [preview] An Enhanced Genotype: Ethical Issues Involved with Genetic Engineering and their Impact as Revealed by Brave New World - An Enhanced Genotype: Ethical Issues Involved with Genetic Engineering and their Impact as Revealed by Brave New World Human society always attempts to better itself through the use of technology. Thus far, as a species, we have already achieved much: mastery of electronics, flight, and space travel. However, the field in which the most progress is currently being made is Biology, specifically Genetic Engineering. In Aldous Huxleys Brave New World, humanity has taken control of reproduction and biology in the same way that we have mastered chemistry and physics.... [tags: Genetic Engineering ] :: 6 Works Cited 2288 words (6.5 pages) Term Papers [preview] The Benefits of Genetic Engineering - Outline I. Thesis statement: The benefits of genetic engineering far outweigh its potential for misuse. II. Genetic Engineering A. Definition of Genetic Engineering. (#6) B. Who invented Genetic Engineering Gregor Mendel (Christopher Lampton #7) Thomas Hunt Morgan (Christopher Lampton #7) III. Benefits of Genetic Engineering A. Genetic Screening (Laurence E. Karp #4) B. Gene Therapy (Renato Dulbecco #6) C. Cloning D. Genetic Surgery (Christopher Lampton #7) E. Benefits in Agriculture (David Pimentel and Maurizio G.... [tags: Genetic Engineering Research Papers] :: 15 Works Cited 2500 words (7.1 pages) Strong Essays [preview] The Benefits of Genetic Engineering - The selective Engineering of Genetics is invaluable to the health and happiness of humans. The importance of this issue has played second fiddle to the arguments, for and against genetic engineering. This essay will discuss the impact of genetic engineering on everyday life, for example genetic disorders, disease and how its impact on life in the world today. Although the opinions differ greatly, the benefits are substantial. Firstly, an increasing importance is being placed on the role of genetic engineering in the use of riding the incidence of genetic disorders.... [tags: Genetic Engineering Essays] :: 8 Works Cited 1176 words (3.4 pages) Strong Essays [preview] The Benefits of Genetic Engineering - What exactly is genetic engineering. A simple definition of genetic engineering is the ability to isolate DNA pieces that contain selected genes of other species(Muench 238). Genetic engineering has been the upcoming field of biology since the early nineteen seventies. The prosperous field has benefits for both the medical and also the agricultural field. The diminishing of diseases, especially congenital disorders, reduction of pollution, eradication of world hunger, and increased longevity are just some of the possibilities which scientists foresee.... [tags: Genetic Engineering Essays] 1146 words (3.3 pages) Strong Essays [preview] Genetic Engineering Is Not Ethical - For many years, genetic engineering has been a topic in heated debates. Scientists propose that genetic engineering far outweighs its risks in benefits and should be further studied. Politicians argue that genetic engineering is largely unethical, harmful, and needs to have strong limitations. Although genetic engineering may reap benefits to modern civilization, it raises questions of human ethics, morality, and the limitations we need to set to protect humanity. Though there is harsh criticism from politicians, scientists continue to press forward saying that genetic engineering is of utmost importance to help and improve society.... [tags: Genetic Engineering is Immoral ] :: 5 Works Cited 1490 words (4.3 pages) Strong Essays [preview] Is Genetic Engineering Ethically Correct? - Over the past few years, genetic engineering has come a long way from its roots. What spawned as just a project for understanding has now become quite powerful. An article written by Michael Riess aided me in gaining some knowledge of the ethical dilemmas faced in the field of genetic engineering. Suppose you and your partner both discover that you are carriers of a genetic defect known as cystic fibrosis, and the two of you are expecting a baby. Genetic screening gives you the opportunity to use antenatal diagnosis to see if the baby will have cystic fibrosis or not (Reiss).... [tags: Genetic Engineering Essays] :: 2 Works Cited 715 words (2 pages) Strong Essays [preview] The Benefits of Genetic Engineering - The engineering of deoxyribonucleic acid (DNA) is entirely new, yet genetics, as a field of science, has fascinated mankind for over 2,000 years. Man has always tried to bend nature around his will through selective breeding and other forms of practical genetics. Today, scientists have a greater understanding of genetics and its role in living organisms. Unfortunately, some people are trying to stop further studies in genetics, but the research being conducted today will serve to better mankind tomorrow.... [tags: Genetic Engineering Essays] 1109 words (3.2 pages) Strong Essays [preview] The Benefits of Genetic Engineering - Many people are envied or deprecated because of certain traits they are born with. Those that are envied are a select few, which in turn is why they are envied. When one child in a nursery has a toy, he is coveted by all the other children in the nursery. He will be idolized, and nearly every child will want to be his friend. However, there will also those that want the toy for themselves. The children that are jealous will do whatever they can to get the toy. The jealous children often resort to violence, and this is true in all aspects of life.... [tags: Genetic Engineering Essays] 975 words (2.8 pages) Strong Essays [preview] Genetic Engineering and the Media - Genetic engineering and its related fields have stimulated an extremely controversial scientific debate about cloning for the last decade. With such a wide range of public opinions, it is hard to find any middle ground. Some feel that improving the genes of future children will help mankind make a major evolutionary step forward. Others agree that there could be dangerous unforeseen consequences in our genetic futures if we proceed with such endeavors. A third group warns that the expense of genetic enhancement will further separate the wealthy from the poor and create a super race. Popular magazines and the Internet are two of the major arenas in which this debate has been hotly cont... [tags: Genetic Engineering Essays] :: 21 Works Cited 1731 words (4.9 pages) Powerful Essays [preview] The FDA Should Prohibit Genetic Engineering - Abstract: Recent developments in genomic research have enabled humans to manipulate the genes of living organisms with genetic engineering. Scientists have used this momentous technology in environmental and most recently, agricultural spheres. However, the United States Food and Drug Administration (FDA) does not require that genetically altered foods be labeled as such. As a result, there is no protection against humans' ability to construct organisms that nature never intended to exist and to threaten nature's carefully balanced environment. Is it ethically responsible for the government to allow scientists to continue with these advances if they do not understand their consequences.... [tags: Genetic Engineering, Genetic Ethics] :: 10 Works Cited 2439 words (7 pages) Powerful Essays [preview] Genetic Engineering is Immoral - Genetic engineering gives the power to change many aspects of nature and could result in a lot of life-saving and preventative treatments. Today, scientists have a greater understanding of genetics and its role in living organisms. However, if this power is misused, the damage could be very great. Therefore, although genetic engineering is a field that should be explored, it needs to be strictly regulated and tested before being put into widespread use. Genetic engineering has also, opened the door way to biological solutions for world problems, as well as aid for body malfunctions.... [tags: Genetic Engineering Essays] 423 words (1.2 pages) Strong Essays [preview] Genetic Engineering is Unethical - Just as the success of a corporate body in making money need not set the human condition ahead, neither does every scientific advance automatically make our lives more meaningful'; (Wald 45). These words were spoken by a Nobel Prize winning biologist and Harvard professor, George Wald, in a lecture given in 1976 on the Dangers of Genetic Engineering. This quotation states that incredible inventions, such as genetic engineering, are not always beneficial to society. Genetic engineering is altering the genetic material of cells and/or organisms in order to make them capable of making new substances or performing new functions'; (Wald 45).... [tags: Genetic Engineering is Immoral] :: 3 Works Cited 1141 words (3.3 pages) Better Essays [preview] Genetic Engineering is Unethical - Genetic engineering is a technology that has been created to alter DNA of different species to try and make them more improved. This essay will discuss the eugenics, the religious point of view about genetic engineering, genetically modified food and the genetic screening of embryos. In this essay it will be said wether genetic engineering is ethical or unethical. During 1924 Hitler said that everyone needs to be blond hair, blue eyes and white. This is known as Eugenics, thanks to a new science known as biotechnology in a few decades.... [tags: Genetic Engineering Essays] 492 words (1.4 pages) Strong Essays [preview] Genetic Engineering: Playing God - Current technology has made what once seemed impossible, mapping the human genome, a reality within the next decade. What began over forty years ago with the discovery of the basic structure of DNA has evolved into the Human Genome Project. This is a fifteen-year, three billion dollar effort to sequence the entire human genetic code. The Project, under the direction of the U.S. National Institute of Health and the department of Energy is ahead of schedule in mapping what makes up an individual's genetic imprint.... [tags: Genetic Engineering Essays] 634 words (1.8 pages) Strong Essays [preview] Genetic Engineering: Playing God - Regenerating extinct species, engineering babies that are born without vital body organs, this is what the use of genetic engineering brings to the world. In Greek myth, an chimera was a part lion, part goat, part dragon that lived in Lycia; in real life, its an animal customized with genes of different species. In reality, it could be a human-animal mixture that could result in horror for the scientific community. In myth the chimera was taken down by the warrior Bellerophon, the biotech version faces platoons of lawyers, bioethicists, and biologists (Hager).... [tags: Genetic Engineering Essays] :: 8 Works Cited 1804 words (5.2 pages) Strong Essays [preview] Genetic Engineering Research Paper - I. Introduction In the past three decades, scientists have learned how to mix and match characteristics among unrelated creatures by moving genes from one creature to another. This is called genetic engineering. Genetic Engineering is prematurely applied to food production. There are estimates that food output must increase by 60 percent over the next 25 years to keep up with demand. Thus, the result of scientist genetically altering plants for more consumption. The two most common methods for gene transfer are biological and electromechanical.... [tags: Science Biology Genetic Engineering Essays] :: 3 Works Cited 1347 words (3.8 pages) Strong Essays [preview] Human Genetic Engineering: Unnatural Selection - Introduction Technology has a significant influence across the world, as it has become a fast growing field. Modern biotechnology has been in the major forefront of this influence. From the discovery of DNA to the cloning of various animals, the study of genetic engineering has changed the way society views life. However, does genetic engineering have the capacity to influence the world to its best abilities. Products, which are genetically engineered, may cause severe negative effects on our society.... [tags: Genetic Engineering Essays] :: 3 Works Cited 1509 words (4.3 pages) Strong Essays [preview] Genetic Engineering - At the Roslin Institute in Edinburgh, Scotland, Dr. Keith Campbell, director of embryology at PPL therapeutics in Roslin, and his colleague Dr. Ian Wilmut worked together on a project to clone a sheep, Dolly, from adult cells. On February 22, 1997, they finally succeeded. Dolly was the only lamb born from 277 fusions of oocytes with udder cells. Wilmut says there were so many failures because it is difficult to ensure that the empty oocytes and the donor cell are at the same stage of the cell division cycle.To clone Dolly, basically scientists took an unfertilized egg cell, removed the nucleus, replaced it with cells taken from the organism to be cloned, put it into an empty egg cell which... [tags: Genetic Engineering Essays] 1446 words (4.1 pages) Strong Essays [preview] Genetic Engineering: Our Key to a Better World - What is genetic engineering one might ask and why is there so much moral controversy surrounding the topic. Genetic engineering as defined by Pete Moore, "is the name given to a wide variety of techniques that have one thing in common: they all allow the biologist to take a gene from one cell and insert it into another" (SS1). Such techniques included in genetic engineering (both "good" and "bad") are, genetic screening both during the fetal stage and later in life, gene therapy, sex selection in fetuses, and cloning.... [tags: Genetic Engineering Essays] :: 3 Works Cited 1117 words (3.2 pages) Better Essays [preview] Genetic Engineering and Cryonic Freezing: A Modern Frankenstein? - Genetic Engineering and Cryonic Freezing: A Modern Frankenstein. In Mary Shelley's Frankenstein, a new being was artificially created using the parts of others. That topic thus examines the ethics of "playing God" and, though written in 1818, it is still a relevant issue today. Genetic engineering and cryogenic freezing are two current technologies related to the theme in the novel of science transcending the limits of what humans can and should do. Genetic engineering is widely used today.... [tags: Genetic Engineering Essay Examples] :: 5 Works Cited 1507 words (4.3 pages) Powerful Essays [preview] Genetic Engineering: The Tremendous Benefits Outweigh the Risks - Wouldn't it be great to improve health care, improve agriculture, and improve our quality of life. Genetic engineering is already accomplishing those things, and has the potential to accomplish much more. Genetic engineering, also referred to as biotechnology, is a fairly new science where the genes of an organism are modified to change the features of an organism or group of organisms. Genes are found in the DNA (deoxyribonucleic acid) of an organism, and each gene controls a specific trait of an organism.... [tags: Genetic Engineering Essay Examples] :: 7 Works Cited 2253 words (6.4 pages) Powerful Essays [preview] Genetic Engineering Brings More Harm Than Good - Until the recent demise of the Soviet Union, we lived under the daily threat of nuclear holocaust extinguishing human life and the entire biosphere. Now it looks more likely that total destruction will be averted, and that widespread, but not universally fatal, damage will continue to occur from radiation accidents from power plants, aging nuclear submarines, and perhaps the limited use of tactical nuclear weapons by governments or terrorists. What has gone largely unnoticed is the unprecedented lethal threat of genetic engineering to life on the planet.... [tags: Genetic Engineering Essays] 1953 words (5.6 pages) Strong Essays [preview] Genetic Engineering New Teeth - The article I read was about some scientists that were able to grow teeth inside rats bodies. This project was led by Pamela C. Yelick, a scientist for Forsyth Institute, and the project was conducted in Massachusetts. Joseph P. Vacanti, a tissue engineer at Massachusetts General Hospital, and Yelick had the idea for the experiment. Vacanti had previously worked with rats and he found that cells will naturally organize themselves into tissues and other complex structures if they are placed in the right environment.... [tags: Genetic Engineering Essays] 736 words (2.1 pages) Strong Essays [preview] Ethics of Human Cloning and Genetic Engineering - INTRODUCTION When the Roslin Institute's first sheep cloning work was announced in March 1996 the papers were full of speculation about its long-term implications. Because of this discovery, the medias attention has focused mainly on discussion of the possibility, of cloning humans. In doing so, it has missed the much more immediate impact of this work on how we use animals. It's not certain this would really lead to flocks of cloned lambs in the fields of rural America, or clinically reproducible cuts of meat on the supermarket shelves.... [tags: Genetic Engineering Essays] :: 9 Works Cited 1845 words (5.3 pages) Strong Essays [preview] We Must Educate Ourselves Before Passing Laws Restricting Cloning and Genetic Engineering - Biotechnology and genetic engineering involve the cloning of animal cells and organisms, but they also involve the alteration of an organism in an effort to make it more perfect, whether it is a crop, an animal, or even a human being. Obviously the cloning of humans or the cloning of human cells is much different than the cloning of genetically superior livestock or a better quality, higher yielding food crop, and people throughout the world realize this. The cloning of human beings has become one of the worst fears in our society today and for that reason many laws have been passed throughout European countries and North America in an effort to ban human cloning.... [tags: Genetic Engineering Essays] :: 4 Works Cited 1937 words (5.5 pages) Powerful Essays [preview] The Benefits of Human Genetic Engineering - Pre-implantation genetic diagnosis is a revolutionary procedure that utilizes in vitro fertilization to implant a healthy egg cell into the mothers uterus after it is screened for mutations or other abnormalities. That way, only healthy eggs can develop to term and become beautiful, bouncing boys or girls. Designer babies have a bright future in the face of science because they are genetically engineered to be: disease free; viable donors for a sibling or parent; and with optional elimination of any severe cosmetic disorders that might develop,without risk to human diversity in the future.... [tags: Pre-implantation genetic diagnosis, PGD] :: 6 Works Cited 1650 words (4.7 pages) Powerful Essays [preview] Genetic Engineering The Perfect Child - Modern society has an unquestionable preoccupation with perfection. Indulging in our vanities with things such as plastic surgery, veneers, botox, collagen, hair dye, and so on, have become a part of the socially acceptable norm. People do these things, and more, in an attempt to become their ideal selves. However, many are taking these practices to a completely new extreme, and are not stopping at just altering their own physical characteristics. With recent advances in medical science and technology, couples are now able to genetically modify embryos to create their ideal children.... [tags: Pre-Implantation Genetic Diagnosis] :: 2 Works Cited 1022 words (2.9 pages) Strong Essays [preview] The Morals and Ethics of Genetic Engineering - Introduction Widely considered a revolutionary scientific breakthrough, genetic engineering has been on a path toward changing the world since its introduction in 1973 by Stanley Cohen and Herbert Boyer (What). However, as genetic engineering slowly permeates the lives of humanity, the morals and ethics behind what are now common practices are entering public attention, and as a culture we are left to question whether the change brought on by such a discovery bring benefits and positive change, or damage and destruction.... [tags: genetics, theology, bioethics, DNA, GMOs] :: 13 Works Cited 3322 words (9.5 pages) Research Papers [preview] The Human Genetic Engineering Debate - Science is moving forward at an increasing rate every day. Just in the past decade, there have been numerous new discoveries in astronomy, chemistry, geology, paleontology, and many more scientific fields. However, some of the fastest growing subjects are in the field of biological sciences, more specifically genetics. Over the past twenty years a new genetic science known as genetic engineering has come to prominence. Genetic engineering is the direct manipulation of an organisms genome using biotechnology, including a humans genome.... [tags: Genetics, Science Ethics] :: 9 Works Cited 1838 words (5.3 pages) Better Essays [preview] Genetic Engineering in the Modern World - Advances in biotechnology can be looked at two ways; both, positive and negative. People can also differ in what would qualify as a positive and negative way. Some may think that tinkering with Deoxyribonucleic acid also know as DNA, should not be allowed at all for any reason. Others may believe that manipulating human DNA can have many different beneficial outcomes. Biotechnology and genetic engineering can be looked at in two very different ways; can either be misused or unethical or it can be beneficial, ethical, and used for the better kind.... [tags: biotechnology, DNA, abortion] :: 1 Works Cited 966 words (2.8 pages) Better Essays [preview] Genetic Engineering and the Pursuit of Perfection - Research Paper Rough Draft In the year 2050, a young boy nervously rehearses what hes going to say as he approaches the cheerleader hes been too nervous to approach for the past month. But as he draws near, a jock pushes his books out of his hands. Hes teased, being the school wimp. They call him names like undesirable, god-child, and in-valid. Of course nobody cares for a less-than-perfect child whose genetic makeup was left to fate. With the introduction of genetic engineering into society, people like this young boy simply have no hope for competing against the likes of the genetically reimagined, perfect jock, people engineered to be unflawed.... [tags: Perfection, Body Image, Technology] :: 10 Works Cited 1898 words (5.4 pages) Powerful Essays [preview] Genetic Engineering: Pros and Cons - Our world has finally begun its long-predicted descent into the depths of chaos. We may not yet realize it, but more and more problems plague the very state of our humanity with each passing day, such as cancer, famine, genetic disorders, and social elitism. It seems as though there is little hope, although a new solution has finally emerged, in the form of genetic engineering. It is apparent, however, that currently we cannot proceed, because while there are an abundant amount of advantages to genetic engineering, it is not a utopian process; criticism includes its practicality, theological implications, and changes in modern social structure.... [tags: Eugenics, Ethics] :: 5 Works Cited 1212 words (3.5 pages) Strong Essays [preview] Is Genetic Engineering Ethically Right? - Described at its most simple, ethics can be described as a socially constructed set of behaviours and beliefs deemed either acceptable or unacceptable by the vast majority of people. Ethical beliefs can vary somewhat from person to person and are ever changing and malleable (www.ncbi.nlm.gov/pubmed/15289521). There are three main ethical theories used by present day philosophers; these are Meta-ethics, Normative ethics and Applied ethics. Meta-ethics focuses on the nature of moral judgement and the foundation of ethical principles.... [tags: DNA, gene, diabetis] :: 10 Works Cited 1191 words (3.4 pages) Strong Essays [preview] Genetic Engineering and the Public - Genetic Engineering and the Publics Uses of Genetic Engineering Opinions about genetic engineering range from disgust to awe. These opinions may also depend on what type of animal is being genetically manipulated, how such manipulation is being done, and for what reasons. In California, pet fish that have been genetically altered to fluoresce (glofish) have been restricted for sale.[1] Yet, for the rest of the United States these fish are found in several species, varieties and morphs. In California, Commissioner of Californias Fish and Game, Sam Schuchat, felt that there was a difference in genetic modification depending on the use of the product made.[2] The use of genetic engineering f... [tags: Stake Holders, Science, Dialogue] :: 6 Works Cited 877 words (2.5 pages) Better Essays [preview] Genetic Engineering: A Good Thing? - Today there are many definitions of Genetic Engineering, such as Genetic Engineering is a laboratory technique used by scientists to change the DNA of living organisms (Kowalski) and Genetic Engineering refers to the modification or manipulation of a living organisms genes (Genetic). No matter the wording all definitions of genetic engineering refers to somehow changing an organisms genetic identity. Many people today support genetic engineering because it has many potential benefits for today's society; however, it also has many potential threats associated with it.... [tags: argumentative, persuasive, informative] :: 19 Works Cited 1928 words (5.5 pages) Powerful Essays [preview] Genetic Engineering and its Drawbacks - In the past few years, there have been numerous technological advances, one of them being genetic engineering. Scientists are experimenting with genes and animals to create everything from a Day-Glo pet fish to a pig whose liver could be used in a liver transplant for humans. Scientists argue that genetic engineering can be used to test medicinal products without putting humans at risk, to battle diseases and to make a body with a stronger immune system, amongst many other reasons, which they claim are to improve the outcome of the human race.... [tags: gene, transplant, animal testing] :: 9 Works Cited 911 words (2.6 pages) Better Essays [preview] The Perfect Child: Genetic Engineering - Have you ever wondered what it would be like if you could produce the perfect child. You picked their eye color, hair color, body type, even intelligence level. Instead of waiting nine months to see what your child looks like; you will already know because you chose their outer appearance. Improvements in science, has given way to the idea of allowing people to choose their offsprings physical attributes. This new concept is known as designer babies. A designer baby according to the oxford dictionary is a baby whose genetic makeup has been artificially selected by genetic engineering, combined with in vitro fertilization to ensure the presence or absence of particular genes or characteris... [tags: Designer Babies, Stem Cells] :: 5 Works Cited 899 words (2.6 pages) Better Essays [preview] Cons of Genetic Modification of Plants - In our everyday lives we have a substantial need for food. Everyone on planet earth needs food to survive from day to day, so engineers have begun mutating plants and crops to create a better source of nutrition to the population. Scientists are pushing the boundaries in order to create the most bountiful crops and, in turn, healthier people. Imagine what could happen if there were larger harvests, more succulent fruits and nutritious vegetables. Our imagination can run wild with the endless possibilities of genetic alteration of food.... [tags: Genetic Engineering ] :: 5 Works Cited 1011 words (2.9 pages) Strong Essays [preview] Germline Engineering and Reprogenetic Technologies - Modern technologies are constantly advancing in a multitude of ways to the degree that scientists have gained enough knowledgeable about the human genome to be able to find specific genes during the embryonic stage of reproduction. Scientists have already begun to use this knowledge to allow parents the ability to select the sex of their child and screen for genetic diseases via preimplantation genetic diagnosis (PGD) with in vitro fertilization (IVF). Sex-selection has already created world-wide discussion regarding the ethics of such a situation.... [tags: Genetic Engineering ] :: 4 Works Cited 2055 words (5.9 pages) Term Papers [preview] Genetic Engineering and Experimentation - ... However, Ill be using it in the context that it is the experimentation of genetic engineering to see if its safe for the public. While you might think genetic engineering/experimentation is all fun and games while youre having your genes modified to make you smarter, or prettier, or something like that, there are consequences and dangers that can come with that modification. Then again, once perfected, genetic engineering could do a lot of good for humanity and society in general. Eliminate diseases, fix mental and psychological disabilities, maybe even (and semi-hopefully) keep people from being outright stupid.... [tags: Science, Controversy] :: 4 Works Cited 880 words (2.5 pages) Better Essays [preview] The Genetic Engineering Debate - In recent discussions of genetic engineering, a controversial issue has been whether genetic engineering is ethical or not. In The Person, the Soul, and Genetic Engineering, JC Polkinghorne discusses about the moral status of the very early embryo and therapeutic cloning. J. H. Brookes article Commentary on: The Person, the Soul, and Genetic Engineering comments and state opinions that counter Polkinghornes article. On the other hand John Harriss Goodbye Dolly? The Ethics of Human Cloning examines the possible uses and abuses of human cloning and draw out the principal ethical dimensions, both of what might be done and its meaning, and of public and official response (353).... [tags: Ethical Dilemma, Embryos With Dignity] :: 4 Works Cited 1403 words (4 pages) Powerful Essays [preview] Ethics of Genetic Modification Technology - Modern society is on the verge of a biotechnological revolution: the foods we eat no longer serve simply to feed us, but to feed entire nations, to withstand natural disasters, and to deliver preventative vaccination. Much of this technology exists due to the rapid development of genetic modification, and todays genetically modified crops are only the tip of the proverbial iceberg. Says Robert T. Fraley, chief technology officer for biotech giant Monsanto, Its like computers in the 1960s. We are just at the beginning of the explosion of technology we are going to see." Biotechnologys discontents are numerous and furious, declaring the efforts of corporations of Monsanto to be dangerous... [tags: Genetic Engineering] 776 words (2.2 pages) Better Essays [preview] Xerosotmia and genetic engineering - All around the globe, predominantly in the United States and in Europe, there are technological advances in science that affects the way people live. In recent years, genetically modified organisms (GMOs) have replaced peoples diet with genetically altered foods, which has affected human health. In a broad view, GMOs are created by splicing genes of different species that are combined through genetic engineering, consequently improving the resulting organism. Large corporations who choose to use Xerosotmia i i make larger profits with less time and effort involved (ABNE).... [tags: biology, genetically modified organisms] :: 4 Works Cited 1309 words (3.7 pages) Powerful Essays [preview] The Dangers of Genetic Engineering - Genetically manipulating genes to create certain traits in a human embryo is impossible at this point. Perhaps it will never happen. It is not inevitable in the long run, as some scientists pragmatically point out. (Embgen). It is, however, something that dominates modern day discussion concerning genetics and therefore must be addressed with care and consideration. There are many ways that gene manipulation could come about. Advances in spermatogenesis as well as the field of assisted reproductive technology, as seen in In Vitro Fertilization clinics, point toward methods that could house the systematic alteration of genetic information in reproductive cells. Transpl... [tags: Genetic Manipulation Essays] :: 5 Works Cited 1033 words (3 pages) Strong Essays [preview] Engineering the Perfect Human - For centuries, mankind has been fascinated by the idea of perfection. In recent decades, the issue has been raised regarding the perfect human and whether scientists are able to engineer and create this. Attempts have been made in the past to engineer this said perfect human, through eugenics and scientific racism, but until now, these attempts have been ineffective. Only now, with modern technology, are scientists able to make more significant progress in altering the human genome to the produce desired characteristics of perfection.... [tags: Genetic Engineering ] :: 21 Works Cited 1831 words (5.2 pages) Term Papers [preview] Can Genetic Modification Benefit Humanity? - Throughout the course of human history, new technological advancements have always created opposing views, and conflict between the different groups that hold them. Today, one of the greatest technological controversies is over the morals and practicality of genetically modifying crops and animals. Reasons for doing so vary from making them more nutritious to making plants more bountiful to allowing organisms to benefit humans in ways never before possible. Genetic engineering is a process in which genes within the DNA of one organism are removed and placed into the DNA of another, a reshuffling of genesfrom one species to another (Steinbrecher qtd.... [tags: Genetic Engineering] 1676 words (4.8 pages) Powerful Essays [preview] Genetic Engineering - In the field of animal and human genetic engineering there is much more speculation, than fact, because very little has actually been tested in the real world. Firstly, theres a big question mark over safety of genetic engineering. In addition, genetic engineering can cause greater problems than that what we have today. Moreover, we can create a injustice world between Designer vs Non-designer children. Furthermore, genetic engineering is a type of murder because of the process of genetically modifying a baby.... [tags: designer babies, perfect baby] :: 5 Works Cited 911 words (2.6 pages) Better Essays [preview] Genetic Engineering - Imagine a world where diseases can be found and prevented before they happen. This would be a future possibility if genetic engineering became more advanced. Genetic engineering is when parts of DNA are spliced into another piece of DNA which give new traits to the organism containing the DNA. Through continued research in the field of genetics, techniques such as mapping genomes and splicing DNA can be used beneficially to improve on existing organisms and their traits. To help understand genetic engineering, it is important to understand its history.... [tags: Cloning] :: 4 Works Cited 894 words (2.6 pages) Better Essays [preview] Genetic Engineering - In the 21st century, times are changing. Everyday objects are becoming perfect with alterations to their system. These alterations are not only occurring on man-made objects, but also on natural organisms, such as newborn babies. Science has come a long way to being able to have the capability to alter pre-born babies to a parents desire. There are four arguments that can be considered when discussing this topic, including nature and three others. While many scientific minds are all for creating perfection in a child, many different groups of minds are arguing this act against nature should be abolished from scientists minds.... [tags: Ethics] 888 words (2.5 pages) Better Essays [preview] Genetic Engineering - I, as a Christian, believe that the traits of a child are a blessing to a parent in one-way or another. Although I hold this true, I actually wouldnt mind being able to design my own baby. I mean, I could root out all of the bad traits, and add the ones I want. I would make my child a girl with olive skin, brown hair, bright green eyes, and to have the dancing feet of Fosse, the facial expressions of Liz Taylor, and the vocal chords of Lea Michelle. I want her to be a star of the screen or stage.... [tags: controversy, genes, physical traits, flaws] :: 3 Works Cited 890 words (2.5 pages) Better Essays [preview] Genetic Engineering - Moore's law, the statement that technologies will double every two years is a very thought-provoking inception for technologist and scientist (Moore's Law par.1). Numerous people are thrilled about this commandment while others are petrified. Why an individual might be troubled by technology one might inquire. Well there are many arguments that claim that technology is contrary to itself, nature, and humans. The unpretentious fact is technology is cohesive within the humanoid existence and will linger as time travels on.... [tags: genetically modified foods] :: 13 Works Cited 1461 words (4.2 pages) Powerful Essays [preview] Human Genetic Engineering: Dreams and Nightmares - Technological breakthroughs and advancements have occurred so rapidly since the dawn of the information age, that one often overlooks the great power humanity holds over the building blocks of life itself. While our understanding and mapping of Deoxyribonucleic acid (DNA) sequences has been slow coming since Friedrich Mieschers isolation of the double-helix shaped molecule, efforts in recent decades to map the human genome have opened many doors to the potential manipulation of lifes basic elements.... [tags: human genome, human genetics, cloning] :: 7 Works Cited 1162 words (3.3 pages) Strong Essays [preview]

Original post:
Free genetic engineering Essays and Papers - 123helpme

Posted in Genetic Engineering | Comments Off on Free genetic engineering Essays and Papers – 123helpme

Gene therapy – Wikipedia

Posted: November 20, 2016 at 7:46 am

Gene therapy is the therapeutic delivery of nucleic acid polymers into a patient's cells as a drug to treat disease.[1] The first attempt at modifying human DNA was performed in 1980 by Martin Cline, but the first successful and approved[by whom?] nuclear gene transfer in humans was performed in May 1989.[2] The first therapeutic use of gene transfer as well as the first direct insertion of human DNA into the nuclear genome was performed by French Anderson in a trial starting in September 1990.

Between 1989 and February 2016, over 2,300 clinical trials had been conducted, more than half of them in phase I.[3]

It should be noted that not all medical procedures that introduce alterations to a patient's genetic makeup can be considered gene therapy. Bone marrow transplantation and organ transplants in general have been found to introduce foreign DNA into patients.[4] Gene therapy is defined by the precision of the procedure and the intention of direct therapeutic effects.

Gene therapy was conceptualized in 1972, by authors who urged caution before commencing human gene therapy studies.

The first attempt, an unsuccessful one, at gene therapy (as well as the first case of medical transfer of foreign genes into humans not counting organ transplantation) was performed by Martin Cline on 10 July 1980.[5][6] Cline claimed that one of the genes in his patients was active six months later, though he never published this data or had it verified[7] and even if he is correct, it's unlikely it produced any significant beneficial effects treating beta-thalassemia.[8]

After extensive research on animals throughout the 1980s and a 1989 bacterial gene tagging trial on humans, the first gene therapy widely accepted as a success was demonstrated in a trial that started on September 14, 1990, when Ashi DeSilva was treated for ADA-SCID.[9]

The first somatic treatment that produced a permanent genetic change was performed in 1993.[10]

This procedure was referred to sensationally and somewhat inaccurately in the media as a "three parent baby", though mtDNA is not the primary human genome and has little effect on an organism's individual characteristics beyond powering their cells.

Gene therapy is a way to fix a genetic problem at its source. The polymers are either translated into proteins, interfere with target gene expression, or possibly correct genetic mutations.

The most common form uses DNA that encodes a functional, therapeutic gene to replace a mutated gene. The polymer molecule is packaged within a "vector", which carries the molecule inside cells.

Early clinical failures led to dismissals of gene therapy. Clinical successes since 2006 regained researchers' attention, although as of 2014, it was still largely an experimental technique.[11] These include treatment of retinal diseases Leber's congenital amaurosis[12][13][14][15] and choroideremia,[16]X-linked SCID,[17] ADA-SCID,[18][19]adrenoleukodystrophy,[20]chronic lymphocytic leukemia (CLL),[21]acute lymphocytic leukemia (ALL),[22]multiple myeloma,[23]haemophilia[19] and Parkinson's disease.[24] Between 2013 and April 2014, US companies invested over $600 million in the field.[25]

The first commercial gene therapy, Gendicine, was approved in China in 2003 for the treatment of certain cancers.[26] In 2011 Neovasculgen was registered in Russia as the first-in-class gene-therapy drug for treatment of peripheral artery disease, including critical limb ischemia.[27] In 2012 Glybera, a treatment for a rare inherited disorder, became the first treatment to be approved for clinical use in either Europe or the United States after its endorsement by the European Commission.[11][28]

Following early advances in genetic engineering of bacteria, cells, and small animals, scientists started considering how to apply it to medicine. Two main approaches were considered replacing or disrupting defective genes.[29] Scientists focused on diseases caused by single-gene defects, such as cystic fibrosis, haemophilia, muscular dystrophy, thalassemia and sickle cell anemia. Glybera treats one such disease, caused by a defect in lipoprotein lipase.[28]

DNA must be administered, reach the damaged cells, enter the cell and express/disrupt a protein.[30] Multiple delivery techniques have been explored. The initial approach incorporated DNA into an engineered virus to deliver the DNA into a chromosome.[31][32]Naked DNA approaches have also been explored, especially in the context of vaccine development.[33]

Generally, efforts focused on administering a gene that causes a needed protein to be expressed. More recently, increased understanding of nuclease function has led to more direct DNA editing, using techniques such as zinc finger nucleases and CRISPR. The vector incorporates genes into chromosomes. The expressed nucleases then knock out and replace genes in the chromosome. As of 2014 these approaches involve removing cells from patients, editing a chromosome and returning the transformed cells to patients.[34]

Gene editing is a potential approach to alter the human genome to treat genetic diseases,[35] viral diseases,[36] and cancer.[37] As of 2016 these approaches were still years from being medicine.[38][39]

Gene therapy may be classified into two types:

In somatic cell gene therapy (SCGT), the therapeutic genes are transferred into any cell other than a gamete, germ cell, gametocyte or undifferentiated stem cell. Any such modifications affect the individual patient only, and are not inherited by offspring. Somatic gene therapy represents mainstream basic and clinical research, in which therapeutic DNA (either integrated in the genome or as an external episome or plasmid) is used to treat disease.

Over 600 clinical trials utilizing SCGT are underway in the US. Most focus on severe genetic disorders, including immunodeficiencies, haemophilia, thalassaemia and cystic fibrosis. Such single gene disorders are good candidates for somatic cell therapy. The complete correction of a genetic disorder or the replacement of multiple genes is not yet possible. Only a few of the trials are in the advanced stages.[40]

In germline gene therapy (GGT), germ cells (sperm or eggs) are modified by the introduction of functional genes into their genomes. Modifying a germ cell causes all the organism's cells to contain the modified gene. The change is therefore heritable and passed on to later generations. Australia, Canada, Germany, Israel, Switzerland and the Netherlands[41] prohibit GGT for application in human beings, for technical and ethical reasons, including insufficient knowledge about possible risks to future generations[41] and higher risks versus SCGT.[42] The US has no federal controls specifically addressing human genetic modification (beyond FDA regulations for therapies in general).[41][43][44][45]

The delivery of DNA into cells can be accomplished by multiple methods. The two major classes are recombinant viruses (sometimes called biological nanoparticles or viral vectors) and naked DNA or DNA complexes (non-viral methods).

In order to replicate, viruses introduce their genetic material into the host cell, tricking the host's cellular machinery into using it as blueprints for viral proteins. Scientists exploit this by substituting a virus's genetic material with therapeutic DNA. (The term 'DNA' may be an oversimplification, as some viruses contain RNA, and gene therapy could take this form as well.) A number of viruses have been used for human gene therapy, including retrovirus, adenovirus, lentivirus, herpes simplex, vaccinia and adeno-associated virus.[3] Like the genetic material (DNA or RNA) in viruses, therapeutic DNA can be designed to simply serve as a temporary blueprint that is degraded naturally or (at least theoretically) to enter the host's genome, becoming a permanent part of the host's DNA in infected cells.

Non-viral methods present certain advantages over viral methods, such as large scale production and low host immunogenicity. However, non-viral methods initially produced lower levels of transfection and gene expression, and thus lower therapeutic efficacy. Later technology remedied this deficiency[citation needed].

Methods for non-viral gene therapy include the injection of naked DNA, electroporation, the gene gun, sonoporation, magnetofection, the use of oligonucleotides, lipoplexes, dendrimers, and inorganic nanoparticles.

Some of the unsolved problems include:

Three patients' deaths have been reported in gene therapy trials, putting the field under close scrutiny. The first was that of Jesse Gelsinger in 1999.[52] One X-SCID patient died of leukemia in 2003.[9] In 2007, a rheumatoid arthritis patient died from an infection; the subsequent investigation concluded that the death was not related to gene therapy.[53]

In 1972 Friedmann and Roblin authored a paper in Science titled "Gene therapy for human genetic disease?"[54] Rogers (1970) was cited for proposing that exogenous good DNA be used to replace the defective DNA in those who suffer from genetic defects.[55]

In 1984 a retrovirus vector system was designed that could efficiently insert foreign genes into mammalian chromosomes.[56]

The first approved gene therapy clinical research in the US took place on 14 September 1990, at the National Institutes of Health (NIH), under the direction of William French Anderson.[57] Four-year-old Ashanti DeSilva received treatment for a genetic defect that left her with ADA-SCID, a severe immune system deficiency. The effects were temporary, but successful.[58]

Cancer gene therapy was introduced in 1992/93 (Trojan et al. 1993).[59] The treatment of glioblastoma multiforme, the malignant brain tumor whose outcome is always fatal, was done using a vector expressing antisense IGF-I RNA (clinical trial approved by NIH n 1602, and FDA in 1994). This therapy also represents the beginning of cancer immunogene therapy, a treatment which proves to be effective due to the anti-tumor mechanism of IGF-I antisense, which is related to strong immune and apoptotic phenomena.

In 1992 Claudio Bordignon, working at the Vita-Salute San Raffaele University, performed the first gene therapy procedure using hematopoietic stem cells as vectors to deliver genes intended to correct hereditary diseases.[60] In 2002 this work led to the publication of the first successful gene therapy treatment for adenosine deaminase-deficiency (SCID). The success of a multi-center trial for treating children with SCID (severe combined immune deficiency or "bubble boy" disease) from 2000 and 2002, was questioned when two of the ten children treated at the trial's Paris center developed a leukemia-like condition. Clinical trials were halted temporarily in 2002, but resumed after regulatory review of the protocol in the US, the United Kingdom, France, Italy and Germany.[61]

In 1993 Andrew Gobea was born with SCID following prenatal genetic screening. Blood was removed from his mother's placenta and umbilical cord immediately after birth, to acquire stem cells. The allele that codes for adenosine deaminase (ADA) was obtained and inserted into a retrovirus. Retroviruses and stem cells were mixed, after which the viruses inserted the gene into the stem cell chromosomes. Stem cells containing the working ADA gene were injected into Andrew's blood. Injections of the ADA enzyme were also given weekly. For four years T cells (white blood cells), produced by stem cells, made ADA enzymes using the ADA gene. After four years more treatment was needed.[citation needed]

Jesse Gelsinger's death in 1999 impeded gene therapy research in the US.[62][63] As a result, the FDA suspended several clinical trials pending the reevaluation of ethical and procedural practices.[64]

The modified cancer gene therapy strategy of antisense IGF-I RNA (NIH n 1602)[65] using antisense / triple helix anti IGF-I approach was registered in 2002 by Wiley gene therapy clinical trial - n 635 and 636. The approach has shown promising results in the treatment of six different malignant tumors: glioblastoma, cancers of liver, colon, prostate, uterus and ovary (Collaborative NATO Science Programme on Gene Therapy USA, France, Poland n LST 980517 conducted by J. Trojan) (Trojan et al., 2012). This antigene antisense/triple helix therapy has proven to be efficient, due to the mechanism stopping simultaneously IGF-I expression on translation and transcription levels, strengthening anti-tumor immune and apoptotic phenomena.

Sickle-cell disease can be treated in mice.[66] The mice which have essentially the same defect that causes human cases used a viral vector to induce production of fetal hemoglobin (HbF), which normally ceases to be produced shortly after birth. In humans, the use of hydroxyurea to stimulate the production of HbF temporarily alleviates sickle cell symptoms. The researchers demonstrated this treatment to be a more permanent means to increase therapeutic HbF production.[67]

A new gene therapy approach repaired errors in messenger RNA derived from defective genes. This technique has the potential to treat thalassaemia, cystic fibrosis and some cancers.[68]

Researchers created liposomes 25 nanometers across that can carry therapeutic DNA through pores in the nuclear membrane.[69]

In 2003 a research team inserted genes into the brain for the first time. They used liposomes coated in a polymer called polyethylene glycol, which, unlike viral vectors, are small enough to cross the bloodbrain barrier.[70]

Short pieces of double-stranded RNA (short, interfering RNAs or siRNAs) are used by cells to degrade RNA of a particular sequence. If a siRNA is designed to match the RNA copied from a faulty gene, then the abnormal protein product of that gene will not be produced.[71]

Gendicine is a cancer gene therapy that delivers the tumor suppressor gene p53 using an engineered adenovirus. In 2003, it was approved in China for the treatment of head and neck squamous cell carcinoma.[26]

In March researchers announced the successful use of gene therapy to treat two adult patients for X-linked chronic granulomatous disease, a disease which affects myeloid cells and damages the immune system. The study is the first to show that gene therapy can treat the myeloid system.[72]

In May a team reported a way to prevent the immune system from rejecting a newly delivered gene.[73] Similar to organ transplantation, gene therapy has been plagued by this problem. The immune system normally recognizes the new gene as foreign and rejects the cells carrying it. The research utilized a newly uncovered network of genes regulated by molecules known as microRNAs. This natural function selectively obscured their therapeutic gene in immune system cells and protected it from discovery. Mice infected with the gene containing an immune-cell microRNA target sequence did not reject the gene.

In August scientists successfully treated metastatic melanoma in two patients using killer T cells genetically retargeted to attack the cancer cells.[74]

In November researchers reported on the use of VRX496, a gene-based immunotherapy for the treatment of HIV that uses a lentiviral vector to deliver an antisense gene against the HIV envelope. In a phase I clinical trial, five subjects with chronic HIV infection who had failed to respond to at least two antiretroviral regimens were treated. A single intravenous infusion of autologous CD4 T cells genetically modified with VRX496 was well tolerated. All patients had stable or decreased viral load; four of the five patients had stable or increased CD4 T cell counts. All five patients had stable or increased immune response to HIV antigens and other pathogens. This was the first evaluation of a lentiviral vector administered in a US human clinical trial.[75][76]

In May researchers announced the first gene therapy trial for inherited retinal disease. The first operation was carried out on a 23-year-old British male, Robert Johnson, in early 2007.[77]

Leber's congenital amaurosis is an inherited blinding disease caused by mutations in the RPE65 gene. The results of a small clinical trial in children were published in April.[12] Delivery of recombinant adeno-associated virus (AAV) carrying RPE65 yielded positive results. In May two more groups reported positive results in independent clinical trials using gene therapy to treat the condition. In all three clinical trials, patients recovered functional vision without apparent side-effects.[12][13][14][15]

In September researchers were able to give trichromatic vision to squirrel monkeys.[78] In November 2009, researchers halted a fatal genetic disorder called adrenoleukodystrophy in two children using a lentivirus vector to deliver a functioning version of ABCD1, the gene that is mutated in the disorder.[79]

An April paper reported that gene therapy addressed achromatopsia (color blindness) in dogs by targeting cone photoreceptors. Cone function and day vision were restored for at least 33 months in two young specimens. The therapy was less efficient for older dogs.[80]

In September it was announced that an 18-year-old male patient in France with beta-thalassemia major had been successfully treated.[81] Beta-thalassemia major is an inherited blood disease in which beta haemoglobin is missing and patients are dependent on regular lifelong blood transfusions.[82] The technique used a lentiviral vector to transduce the human -globin gene into purified blood and marrow cells obtained from the patient in June 2007.[83] The patient's haemoglobin levels were stable at 9 to 10 g/dL. About a third of the hemoglobin contained the form introduced by the viral vector and blood transfusions were not needed.[83][84] Further clinical trials were planned.[85]Bone marrow transplants are the only cure for thalassemia, but 75% of patients do not find a matching donor.[84]

Cancer immunogene therapy using modified anti gene, antisense / triple helix approach was introduced in South America in 2010/11 in La Sabana University, Bogota (Ethical Committee 14.12.2010, no P-004-10). Considering the ethical aspect of gene diagnostic and gene therapy targeting IGF-I, the IGF-I expressing tumors i.e. lung and epidermis cancers, were treated (Trojan et al. 2016). [86][87]

In 2007 and 2008, a man was cured of HIV by repeated Hematopoietic stem cell transplantation (see also Allogeneic stem cell transplantation, Allogeneic bone marrow transplantation, Allotransplantation) with double-delta-32 mutation which disables the CCR5 receptor. This cure was accepted by the medical community in 2011.[88] It required complete ablation of existing bone marrow, which is very debilitating.

In August two of three subjects of a pilot study were confirmed to have been cured from chronic lymphocytic leukemia (CLL). The therapy used genetically modified T cells to attack cells that expressed the CD19 protein to fight the disease.[21] In 2013, the researchers announced that 26 of 59 patients had achieved complete remission and the original patient had remained tumor-free.[89]

Human HGF plasmid DNA therapy of cardiomyocytes is being examined as a potential treatment for coronary artery disease as well as treatment for the damage that occurs to the heart after myocardial infarction.[90][91]

In 2011 Neovasculgen was registered in Russia as the first-in-class gene-therapy drug for treatment of peripheral artery disease, including critical limb ischemia; it delivers the gene encoding for VEGF.[92][27] Neovasculogen is a plasmid encoding the CMV promoter and the 165 amino acid form of VEGF.[93][94]

The FDA approved Phase 1 clinical trials on thalassemia major patients in the US for 10 participants in July.[95] The study was expected to continue until 2015.[96]

In July 2012, the European Medicines Agency recommended approval of a gene therapy treatment for the first time in either Europe or the United States. The treatment used Alipogene tiparvovec (Glybera) to compensate for lipoprotein lipase deficiency, which can cause severe pancreatitis.[97] The recommendation was endorsed by the European Commission in November 2012[11][28][98][99] and commercial rollout began in late 2014.[100]

In December 2012, it was reported that 10 of 13 patients with multiple myeloma were in remission "or very close to it" three months after being injected with a treatment involving genetically engineered T cells to target proteins NY-ESO-1 and LAGE-1, which exist only on cancerous myeloma cells.[23]

In March researchers reported that three of five subjects who had acute lymphocytic leukemia (ALL) had been in remission for five months to two years after being treated with genetically modified T cells which attacked cells with CD19 genes on their surface, i.e. all B-cells, cancerous or not. The researchers believed that the patients' immune systems would make normal T-cells and B-cells after a couple of months. They were also given bone marrow. One patient relapsed and died and one died of a blood clot unrelated to the disease.[22]

Following encouraging Phase 1 trials, in April, researchers announced they were starting Phase 2 clinical trials (called CUPID2 and SERCA-LVAD) on 250 patients[101] at several hospitals to combat heart disease. The therapy was designed to increase the levels of SERCA2, a protein in heart muscles, improving muscle function.[102] The FDA granted this a Breakthrough Therapy Designation to accelerate the trial and approval process.[103] In 2016 it was reported that no improvement was found from the CUPID 2 trial.[104]

In July researchers reported promising results for six children with two severe hereditary diseases had been treated with a partially deactivated lentivirus to replace a faulty gene and after 732 months. Three of the children had metachromatic leukodystrophy, which causes children to lose cognitive and motor skills.[105] The other children had Wiskott-Aldrich syndrome, which leaves them to open to infection, autoimmune diseases and cancer.[106] Follow up trials with gene therapy on another six children with Wiskott-Aldrich syndrome were also reported as promising.[107][108]

In October researchers reported that two children born with adenosine deaminase severe combined immunodeficiency disease (ADA-SCID) had been treated with genetically engineered stem cells 18 months previously and that their immune systems were showing signs of full recovery. Another three children were making progress.[19] In 2014 a further 18 children with ADA-SCID were cured by gene therapy.[109] ADA-SCID children have no functioning immune system and are sometimes known as "bubble children."[19]

Also in October researchers reported that they had treated six haemophilia sufferers in early 2011 using an adeno-associated virus. Over two years later all six were producing clotting factor.[19][110]

Data from three trials on Topical cystic fibrosis transmembrane conductance regulator gene therapy were reported to not support its clinical use as a mist inhaled into the lungs to treat cystic fibrosis patients with lung infections.[111]

In January researchers reported that six choroideremia patients had been treated with adeno-associated virus with a copy of REP1. Over a six-month to two-year period all had improved their sight.[112][113] By 2016, 32 patients had been treated with positive results and researchers were hopeful the treatment would be long-lasting.[16] Choroideremia is an inherited genetic eye disease with no approved treatment, leading to loss of sight.

In March researchers reported that 12 HIV patients had been treated since 2009 in a trial with a genetically engineered virus with a rare mutation (CCR5 deficiency) known to protect against HIV with promising results.[114][115]

Clinical trials of gene therapy for sickle cell disease were started in 2014[116][117] although one review failed to find any such trials.[118]

In February LentiGlobin BB305, a gene therapy treatment undergoing clinical trials for treatment of beta thalassemia gained FDA "breakthrough" status after several patients were able to forgo the frequent blood transfusions usually required to treat the disease.[119]

In March researchers delivered a recombinant gene encoding a broadly neutralizing antibody into monkeys infected with simian HIV; the monkeys' cells produced the antibody, which cleared them of HIV. The technique is named immunoprophylaxis by gene transfer (IGT). Animal tests for antibodies to ebola, malaria, influenza and hepatitis are underway.[120][121]

In March scientists, including an inventor of CRISPR, urged a worldwide moratorium on germline gene therapy, writing scientists should avoid even attempting, in lax jurisdictions, germline genome modification for clinical application in humans until the full implications are discussed among scientific and governmental organizations.[122][123][124][125]

Also in 2015 Glybera was approved for the German market.[126]

In October, researchers announced that they had treated a baby girl, Layla Richards, with an experimental treatment using donor T-cells genetically engineered using TALEN to attack cancer cells. Two months after the treatment she was still free of her cancer (a highly aggressive form of acute lymphoblastic leukaemia [ALL]). Children with highly aggressive ALL normally have a very poor prognosis and Layla's disease had been regarded as terminal before the treatment.[127]

In December, scientists of major world academies called for a moratorium on inheritable human genome edits, including those related to CRISPR-Cas9 technologies[128] but that basic research including embryo gene editing should continue.[129]

In April the Committee for Medicinal Products for Human Use of the European Medicines Agency endorsed a gene therapy treatment called Strimvelis and recommended it be approved.[130][131] This treats children born with ADA-SCID and who have no functioning immune system - sometimes called the "bubble baby" disease. This would be the second gene therapy treatment to be approved in Europe.[132]

In October, Chinese scientists reported they had started a trial to genetically modify T-cells from 10 adult patients with lung cancer and reinject the modified T-cells back into their bodies to attack the cancer cells. The T-cells had the PD-1 protein (which stops or slows the immune response) removed using CRISPR-Cas9.[133][134]

Speculated uses for gene therapy include:

Gene Therapy techniques have the potential to provide alternative treatments for those with infertility. Recently, successful experimentation on mice has proven that fertility can be restored by using the gene therapy method, CRISPR.[135] Spermatogenical stem cells from another organism were transplanted into the testes of an infertile male mouse. The stem cells re-established spermatogenesis and fertility.[136]

Athletes might adopt gene therapy technologies to improve their performance.[137]Gene doping is not known to occur, but multiple gene therapies may have such effects. Kayser et al. argue that gene doping could level the playing field if all athletes receive equal access. Critics claim that any therapeutic intervention for non-therapeutic/enhancement purposes compromises the ethical foundations of medicine and sports.[138]

Genetic engineering could be used to change physical appearance, metabolism, and even improve physical capabilities and mental faculties such as memory and intelligence. Ethical claims about germline engineering include beliefs that every fetus has a right to remain genetically unmodified, that parents hold the right to genetically modify their offspring, and that every child has the right to be born free of preventable diseases.[139][140][141] For adults, genetic engineering could be seen as another enhancement technique to add to diet, exercise, education, cosmetics and plastic surgery.[142][143] Another theorist claims that moral concerns limit but do not prohibit germline engineering.[144]

Possible regulatory schemes include a complete ban, provision to everyone, or professional self-regulation. The American Medical Associations Council on Ethical and Judicial Affairs stated that "genetic interventions to enhance traits should be considered permissible only in severely restricted situations: (1) clear and meaningful benefits to the fetus or child; (2) no trade-off with other characteristics or traits; and (3) equal access to the genetic technology, irrespective of income or other socioeconomic characteristics."[145]

As early in the history of biotechnology as 1990, there have been scientists opposed to attempts to modify the human germline using these new tools,[146] and such concerns have continued as technology progressed.[147] With the advent of new techniques like CRISPR, in March 2015 a group of scientists urged a worldwide moratorium on clinical use of gene editing technologies to edit the human genome in a way that can be inherited.[122][123][124][125] In April 2015, researchers sparked controversy when they reported results of basic research to edit the DNA of non-viable human embryos using CRISPR.[135][148]

Regulations covering genetic modification are part of general guidelines about human-involved biomedical research.

The Helsinki Declaration (Ethical Principles for Medical Research Involving Human Subjects) was amended by the World Medical Association's General Assembly in 2008. This document provides principles physicians and researchers must consider when involving humans as research subjects. The Statement on Gene Therapy Research initiated by the Human Genome Organization (HUGO) in 2001 provides a legal baseline for all countries. HUGOs document emphasizes human freedom and adherence to human rights, and offers recommendations for somatic gene therapy, including the importance of recognizing public concerns about such research.[149]

No federal legislation lays out protocols or restrictions about human genetic engineering. This subject is governed by overlapping regulations from local and federal agencies, including the Department of Health and Human Services, the FDA and NIH's Recombinant DNA Advisory Committee. Researchers seeking federal funds for an investigational new drug application, (commonly the case for somatic human genetic engineering), must obey international and federal guidelines for the protection of human subjects.[150]

NIH serves as the main gene therapy regulator for federally funded research. Privately funded research is advised to follow these regulations. NIH provides funding for research that develops or enhances genetic engineering techniques and to evaluate the ethics and quality in current research. The NIH maintains a mandatory registry of human genetic engineering research protocols that includes all federally funded projects.

An NIH advisory committee published a set of guidelines on gene manipulation.[151] The guidelines discuss lab safety as well as human test subjects and various experimental types that involve genetic changes. Several sections specifically pertain to human genetic engineering, including Section III-C-1. This section describes required review processes and other aspects when seeking approval to begin clinical research involving genetic transfer into a human patient.[152] The protocol for a gene therapy clinical trial must be approved by the NIH's Recombinant DNA Advisory Committee prior to any clinical trial beginning; this is different from any other kind of clinical trial.[151]

As with other kinds of drugs, the FDA regulates the quality and safety of gene therapy products and supervises how these products are used clinically. Therapeutic alteration of the human genome falls under the same regulatory requirements as any other medical treatment. Research involving human subjects, such as clinical trials, must be reviewed and approved by the FDA and an Institutional Review Board.[153][154]

Gene therapy is the basis for the plotline of the film I Am Legend[155] and the TV show Will Gene Therapy Change the Human Race?.[156]

More here:
Gene therapy - Wikipedia

Posted in Genetic Engineering | Comments Off on Gene therapy – Wikipedia

Genetic Engineering in Agriculture | Union of Concerned …

Posted: November 16, 2016 at 3:45 pm

While the risks of genetic engineering are often exaggerated or misrepresented, GE crops do have the potential to cause a variety of health problems and environmental impacts. For instance, they may spread undesirable traits to weeds and non-GE crops, produce new allergens and toxins, or harm animals that consume them.

At least one major environmental impact of genetic engineering has already reached critical proportions: overuse of herbicide-tolerant GE crops has spurred an increase in herbicide use and an epidemic of herbicide-resistant "superweeds," which will lead to even more herbicide use.

How likely are other harmful GE impacts to occur? This is a difficult question to answer. Each crop-gene combination poses its own set of risks. While risk assessments are conducted as part of GE product approval, the data are generally supplied by the company seeking approval, and GE companies use their patent rights to exercise tight control over research on their products.

In short, there is a lot we don't know about the long-term and epidemiological risks of GEwhich is no reason for panic, but a good reason for caution, particularly in view of alternatives that are more effective and economical.

Read more here:
Genetic Engineering in Agriculture | Union of Concerned ...

Posted in Genetic Engineering | Comments Off on Genetic Engineering in Agriculture | Union of Concerned …

Page 50«..1020..49505152..»