Monthly Archives: June 2020

Cell Harvesting Market 2020 Statistics Report with COVID-19 Effects on Industry by 2026 | PerkinElmer (US), Brandel (US), TOMTEC (US) – Jewish Life…

Posted: June 17, 2020 at 9:45 am

LOS ANGELES, United States:

The global Cell Harvesting market has been garnering remarkable momentum in the recent years. The steadily escalating demand due to improving purchasing power is projected to bode well for the global market. QY Researchs latest publication, titled global Cell Harvesting market, offers an insightful take on the drivers and restraints present in the market. It assesses the historical data pertaining to the global Cell Harvesting market and compares it to the current market trends to give the readers a detailed analysis of the trajectory of the market.

Get the Sample of this Report with Detail TOC and List of [emailprotected]https://www.qyresearch.com/sample-form/form/1533016/global-cell-harvesting-market

The research report covers the trends that are currently implemented by the major manufacturers in the Cell Harvesting market including adoption of new technology, government investments on R&D, shifting in perspective towards sustainability, and others. Additionally, the researchers have also provided the figures necessary to understand the manufacturer and its contribution to both regional and global market:

Key Players:

PerkinElmer (US),Brandel (US),TOMTEC (US),Pall Corporation (Danaher),Connectorate (Switzerland),Scinomix (US),ADSTEC (Japan),Sartorius,Terumo Corporation

Due to the pandemic, we have included a special section on the Impact of COVID 19 on the Cell Harvesting Market which would mention How the Covid-19 is Affecting the Cell Harvesting Industry, Market Trends and Potential Opportunities in the COVID-19 Landscape, Covid-19 Impact on Key Regions and Proposal for Cell Harvesting Players to Combat Covid-19 Impact.

The research report is broken down into chapters, which are introduced by the executive summary. Its the introductory part of the chapter, which includes details about global market figures, both historical and estimates. The executive summary also provides a brief about the segments and the reasons for the progress or decline during the forecast period. The insightful research report on the global Cell Harvesting market includes Porters five forces analysis and SWOT analysis to understand the factors impacting consumer and supplier behavior.

Market Segments Covered:

Global Cell Harvesting Market Segmentation by Product:ManualAutomated

Global Cell Harvesting Market Segmentation by Application:BiopharmaceuticalStem Cell Research

Regions Covered in the Global Cell Harvesting Market:

The Middle East and Africa (GCC Countries and Egypt) North America (the United States, Mexico, and Canada) South America (Brazil etc.) Europe (Turkey, Germany, Russia UK, Italy, France, etc.) Asia-Pacific (Vietnam, China, Malaysia, Japan, Philippines, Korea, Thailand, India, Indonesia, and Australia)

The report answers important questions that companies may have when operating in the global Cell Harvesting market. Some of the questions are given below:

What will be the size of the global Cell Harvesting market in 2025? What is the current CAGR of the global Cell Harvesting market? Which product is expected to show the highest market growth? Which application is projected to gain a lions share of the global Cell Harvesting market? Which region is foretold to create the most number of opportunities in the global Cell Harvesting market? Will there be any changes in market competition during the forecast period? Which are the top players currently operating in the global Cell Harvesting market? How will the market situation change in the coming years? What are the common business tactics adopted by players? What is the growth outlook of the global Cell Harvesting market?

The scope of the Report:

The report segments the global Cell Harvesting market on the basis of application, type, service, technology, and region. Each chapter under this segmentation allows readers to grasp the nitty-gritties of the market. A magnified look at the segment-based analysis is aimed at giving the readers a closer look at the opportunities and threats in the market. It also address political scenarios that are expected to impact the market in both small and big ways.The report on the global Cell Harvesting market examines changing regulatory scenario to make accurate projections about potential investments. It also evaluates the risk for new entrants and the intensity of the competitive rivalry.

Ask for Customized Report as per Your [emailprotected]https://www.qyresearch.com/customize-request/form/1533016/global-cell-harvesting-market

Strategic Points Covered in TOC:

1 Report Overview1.1 Study Scope1.2 Key Market Segments1.3 Players Covered: Ranking by Cell Harvesting Revenue1.4 Market by Type1.4.1 Global Cell Harvesting Market Size Growth Rate by Type: 2020 VS 20261.4.2 Manual1.4.3 Automated1.5 Market by Application1.5.1 Global Cell Harvesting Market Share by Application: 2020 VS 20261.5.2 Biopharmaceutical1.5.3 Stem Cell Research1.6 Study Objectives1.7 Years Considered

2 Global Growth Trends2.1 Global Cell Harvesting Market Perspective (2015-2026)2.2 Global Cell Harvesting Growth Trends by Regions2.2.1 Cell Harvesting Market Size by Regions: 2015 VS 2020 VS 20262.2.2 Cell Harvesting Historic Market Share by Regions (2015-2020)2.2.3 Cell Harvesting Forecasted Market Size by Regions (2021-2026)2.3 Industry Trends and Growth Strategy2.3.1 Market Top Trends2.3.2 Market Drivers2.3.3 Market Challenges2.3.4 Porters Five Forces Analysis2.3.5 Cell Harvesting Market Growth Strategy2.3.6 Primary Interviews with Key Cell Harvesting Players (Opinion Leaders)

3 Competition Landscape by Key Players3.1 Global Top Cell Harvesting Players by Market Size3.1.1 Global Top Cell Harvesting Players by Revenue (2015-2020)3.1.2 Global Cell Harvesting Revenue Market Share by Players (2015-2020)3.1.3 Global Cell Harvesting Market Share by Company Type (Tier 1, Tier 2 and Tier 3)3.2 Global Cell Harvesting Market Concentration Ratio3.2.1 Global Cell Harvesting Market Concentration Ratio (CR5 and HHI)3.2.2 Global Top 10 and Top 5 Companies by Cell Harvesting Revenue in 20193.3 Cell Harvesting Key Players Head office and Area Served3.4 Key Players Cell Harvesting Product Solution and Service3.5 Date of Enter into Cell Harvesting Market3.6 Mergers & Acquisitions, Expansion Plans

4 Market Size by Type (2015-2026)4.1 Global Cell Harvesting Historic Market Size by Type (2015-2020)4.2 Global Cell Harvesting Forecasted Market Size by Type (2021-2026)

5 Market Size by Application (2015-2026)5.1 Global Cell Harvesting Market Size by Application (2015-2020)5.2 Global Cell Harvesting Forecasted Market Size by Application (2021-2026)

6 North America6.1 North America Cell Harvesting Market Size (2015-2020)6.2 Cell Harvesting Key Players in North America (2019-2020)6.3 North America Cell Harvesting Market Size by Type (2015-2020)6.4 North America Cell Harvesting Market Size by Application (2015-2020)

7 Europe7.1 Europe Cell Harvesting Market Size (2015-2020)7.2 Cell Harvesting Key Players in Europe (2019-2020)7.3 Europe Cell Harvesting Market Size by Type (2015-2020)7.4 Europe Cell Harvesting Market Size by Application (2015-2020)

8 China8.1 China Cell Harvesting Market Size (2015-2020)8.2 Cell Harvesting Key Players in China (2019-2020)8.3 China Cell Harvesting Market Size by Type (2015-2020)8.4 China Cell Harvesting Market Size by Application (2015-2020)

9 Japan9.1 Japan Cell Harvesting Market Size (2015-2020)9.2 Cell Harvesting Key Players in Japan (2019-2020)9.3 Japan Cell Harvesting Market Size by Type (2015-2020)9.4 Japan Cell Harvesting Market Size by Application (2015-2020)

10 Southeast Asia10.1 Southeast Asia Cell Harvesting Market Size (2015-2020)10.2 Cell Harvesting Key Players in Southeast Asia (2019-2020)10.3 Southeast Asia Cell Harvesting Market Size by Type (2015-2020)10.4 Southeast Asia Cell Harvesting Market Size by Application (2015-2020)

11 India11.1 India Cell Harvesting Market Size (2015-2020)11.2 Cell Harvesting Key Players in India (2019-2020)11.3 India Cell Harvesting Market Size by Type (2015-2020)11.4 India Cell Harvesting Market Size by Application (2015-2020)

12 Central & South America12.1 Central & South America Cell Harvesting Market Size (2015-2020)12.2 Cell Harvesting Key Players in Central & South America (2019-2020)12.3 Central & South America Cell Harvesting Market Size by Type (2015-2020)12.4 Central & South America Cell Harvesting Market Size by Application (2015-2020)

13 Key Players Profiles13.1 PerkinElmer (US)13.1.1 PerkinElmer (US) Company Details13.1.2 PerkinElmer (US) Business Overview13.1.3 PerkinElmer (US) Cell Harvesting Introduction13.1.4 PerkinElmer (US) Revenue in Cell Harvesting Business (2015-2020))13.1.5 PerkinElmer (US) Recent Development13.2 Brandel (US)13.2.1 Brandel (US) Company Details13.2.2 Brandel (US) Business Overview13.2.3 Brandel (US) Cell Harvesting Introduction13.2.4 Brandel (US) Revenue in Cell Harvesting Business (2015-2020)13.2.5 Brandel (US) Recent Development13.3 TOMTEC (US)13.3.1 TOMTEC (US) Company Details13.3.2 TOMTEC (US) Business Overview13.3.3 TOMTEC (US) Cell Harvesting Introduction13.3.4 TOMTEC (US) Revenue in Cell Harvesting Business (2015-2020)13.3.5 TOMTEC (US) Recent Development13.4 Pall Corporation (Danaher)13.4.1 Pall Corporation (Danaher) Company Details13.4.2 Pall Corporation (Danaher) Business Overview13.4.3 Pall Corporation (Danaher) Cell Harvesting Introduction13.4.4 Pall Corporation (Danaher) Revenue in Cell Harvesting Business (2015-2020)13.4.5 Pall Corporation (Danaher) Recent Development13.5 Connectorate (Switzerland)13.5.1 Connectorate (Switzerland) Company Details13.5.2 Connectorate (Switzerland) Business Overview13.5.3 Connectorate (Switzerland) Cell Harvesting Introduction13.5.4 Connectorate (Switzerland) Revenue in Cell Harvesting Business (2015-2020)13.5.5 Connectorate (Switzerland) Recent Development13.6 Scinomix (US)13.6.1 Scinomix (US) Company Details13.6.2 Scinomix (US) Business Overview13.6.3 Scinomix (US) Cell Harvesting Introduction13.6.4 Scinomix (US) Revenue in Cell Harvesting Business (2015-2020)13.6.5 Scinomix (US) Recent Development13.7 ADSTEC (Japan)13.7.1 ADSTEC (Japan) Company Details13.7.2 ADSTEC (Japan) Business Overview13.7.3 ADSTEC (Japan) Cell Harvesting Introduction13.7.4 ADSTEC (Japan) Revenue in Cell Harvesting Business (2015-2020)13.7.5 ADSTEC (Japan) Recent Development13.8 Sartorius13.8.1 Sartorius Company Details13.8.2 Sartorius Business Overview13.8.3 Sartorius Cell Harvesting Introduction13.8.4 Sartorius Revenue in Cell Harvesting Business (2015-2020)13.8.5 Sartorius Recent Development13.9 Terumo Corporation13.9.1 Terumo Corporation Company Details13.9.2 Terumo Corporation Business Overview13.9.3 Terumo Corporation Cell Harvesting Introduction13.9.4 Terumo Corporation Revenue in Cell Harvesting Business (2015-2020)13.9.5 Terumo Corporation Recent Development

14 Analysts Viewpoints/Conclusions

15 Appendix15.1 Research Methodology15.1.1 Methodology/Research Approach15.1.2 Data Source15.2 Disclaimer15.3 Author Details

About Us:QYResearch always pursuits high product quality with the belief that quality is the soul of business. Through years of effort and supports from huge number of customer supports, QYResearch consulting group has accumulated creative design methods on many high-quality markets investigation and research team with rich experience. Today, QYResearch has become the brand of quality assurance in consulting industry.

Contact US:QY Research, INC.17890 Castleton, Suite 218,Los Angeles, CA 91748USA: +1 626 428 8800India: +91 9766 478 224Email [emailprotected]Web http://www.qyresearch.com

Here is the original post:
Cell Harvesting Market 2020 Statistics Report with COVID-19 Effects on Industry by 2026 | PerkinElmer (US), Brandel (US), TOMTEC (US) - Jewish Life...

Posted in Stem Cell Research | Comments Off on Cell Harvesting Market 2020 Statistics Report with COVID-19 Effects on Industry by 2026 | PerkinElmer (US), Brandel (US), TOMTEC (US) – Jewish Life…

UCLA receives nearly $14 million from NIH to investigate gene therapy to combat HIV – Newswise

Posted: June 17, 2020 at 9:45 am

Newswise UCLA researchers and colleagues have received a $13.65 million grant from the National Institutes of Health to investigate and further develop an immunotherapy known as CAR T, which uses genetically modified stem cells to target and destroy HIV.

The five-year grant, part of an NIH effort to develop gene-engineering technologies to cure HIV/AIDS, will fund a collaboration among UCLA; CSL-Behring, a biotechnology company in the United States and Australia; and the University of WashingtonFred Hutchinson Cancer Research Center.

Scott Kitchen, an associate professor of medicine in the division of hematology and oncology, and Irvin Chen, director of theUCLA AIDS Instituteat theDavid Geffen School of Medicine at UCLA,are leading the effort. The project will build on their previous research using CAR T therapy to combat the virus, which is constantly mutating and difficult to beat.

The overarching goal of our proposed studies is to identify a newgene therapy strategy to safely and effectively modify a patients own stem cells to resist HIV infection andsimultaneously enhance their ability to recognize and destroy infected cells in the body in hopes of curing HIV infection, said Kitchen, who also directs the humanized mouse core laboratory for UCLAsCenter for AIDS ResearchandJonsson Comprehensive Cancer Center.It is a huge boost to our efforts at UCLA and elsewhere to find a creative strategy to defeat HIV.

The only known cure of an HIV-infected person was announced in 2008. The famous Berlin patient received a stem cell transplant from a donor whose cells naturally lacked a crucial receptor that HIV binds to in order to kill cells and destroy the immune system. The main problems with this approach, the researchers say, are that the donor and recipient have to be highly matched often a rare event and that it often fails to produce a sufficient amount of HIV-protected cells that can clear the virus from the body.

Transplantation of blood-forming stem cells has been the only treatment strategy that has resulted ina functional cure for HIV infection, Kitchen said. Over 13 years after the first successfully cured HIV-infected patient, there is a substantial need to develop strategies that are capable of being used on everyone with HIV infection.

One of those strategies, CAR T, has been the subject ofongoing researchat UCLA by Chen, Kitchen and others. This approach involves genetically engineering a patients own blood-forming stem cells to carry genes for chimeric antigen receptors, or CARs. Once these stem cells are modified and transplanted back into the patient, they form specialized infection-fighting white blood cells known as T cells in this case, CAR T cells that specifically seek out and kill HIV-infected cells. In a recent study, the UCLA scientists found that engineered CAR T cells not only destroyed infected cells but also lived for more than two years the length of the study.

The thinking behind the NIH-funded project, the researchers say, is that a combination of CARs and broadly neutralizing antibodies may be a long-lasting, perhaps permanent, cure for HIV.

Our work under the NIH grant will provide a great deal of insight into ways the immune response can be modified to better fight HIV infection, said Chen, who is a professor of medicine and of microbiology, immunology and molecular genetics at the Geffen School of Medicine. The development of this unique strategy that allows the body to develop multiple ways to attack HIV could have an impact on other diseases as well, including the development of similar approaches targeting other types of chronic viral infections and cancers.

Read more:
UCLA receives nearly $14 million from NIH to investigate gene therapy to combat HIV - Newswise

Posted in Stem Cell Research | Comments Off on UCLA receives nearly $14 million from NIH to investigate gene therapy to combat HIV – Newswise

Adipose Tissue-derived Stem Cell Therapy Market Statistics, Facts and Figures, Investment Trends, Key Players and Forecast by 2026 – Weekly Wall

Posted: June 17, 2020 at 9:45 am

Los Angeles, United State: QY Research recently published a research report titled, Global Adipose Tissue-derived Stem Cell Therapy Market Research Report 2020-2026. The research report attempts to give a holistic overview of the Adipose Tissue-derived Stem Cell Therapy market by keeping the information simple, relevant, accurate, and to the point. The researchers have explained each aspect of the market thoroughmeticulous research and undivided attention to every topic. They have also provided data in statistical data to help readers understand the whole market. The Adipose Tissue-derived Stem Cell Therapy Market report further provides historic and forecast data generated through primary and secondary research of the region and their respective manufacturers.

Get Full PDF Sample Copy of Report: (Including Full TOC, List of Tables & Figures, Chart) https://www.qyresearch.com/sample-form/form/1798005/covid-19-impact-on-global-adipose-tissue-derived-stem-cell-therapy-market

Global Adipose Tissue-derived Stem Cell Therapy Market report section gives special attention to the manufacturers in different regions that are expected to show a considerable expansion in their market share. Additionally, it underlines all the current and future trends that are being adopted by these manufacturers to boost their current market shares. This Adipose Tissue-derived Stem Cell Therapy Market report Understanding the various strategies being carried out by various manufacturers will help reader make right business decisions.

Key Players Mentioned in the Global Adipose Tissue-derived Stem Cell Therapy Market Research Report: , AlloCure, Antria, Celgene Corporation, Cellleris, Corestem, Cytori Therapeutics, Intrexon, Mesoblast, Pluristem Therapeutics, Tissue Genesis, BioRestorative Therapies, Celltex Therapeutics Corporation, iXCells Biotechnologies, Pluristem Therapeutics, Cyagen, Lonza Adipose Tissue-derived Stem Cell Therapy

Global Adipose Tissue-derived Stem Cell Therapy Market Segmentation by Product: , Therapeutic Application, Research Application

Global Adipose Tissue-derived Stem Cell Therapy Market Segmentation by Application: , Autologous Stem Cells, Allogeneic Stem Cells Adipose Tissue-derived Stem Cell Therapy

The Adipose Tissue-derived Stem Cell Therapy market is divided into the two important segments, product type segment and end user segment. In the product type segment it lists down all the products currently manufactured by the companies and their economic role in the Adipose Tissue-derived Stem Cell Therapy market. It also reports the new products that are currently being developed and their scope. Further, it presents a detailed understanding of the end users that are a governing force of the Adipose Tissue-derived Stem Cell Therapy market.

In this chapter of the Adipose Tissue-derived Stem Cell Therapy Market report, the researchers have explored the various regions that are expected to witness fruitful developments and make serious contributions to the markets burgeoning growth. Along with general statistical information, the Adipose Tissue-derived Stem Cell Therapy Market report has provided data of each region with respect to its revenue, productions, and presence of major manufacturers. The major regions which are covered in the Adipose Tissue-derived Stem Cell Therapy Market report includes North America, Europe, Central and South America, Asia Pacific, South Asia, the Middle East and Africa, GCC countries, and others.

Key questions answered in the report:

Request for customization in Report: https://www.qyresearch.com/customize-request/form/1798005/covid-19-impact-on-global-adipose-tissue-derived-stem-cell-therapy-market

Table od Content

1 Report Overview1.1 Study Scope1.2 Key Market Segments1.3 Players Covered: Ranking by Adipose Tissue-derived Stem Cell Therapy Revenue1.4 Covid-19 Implications on Market by Type1.4.1 Global Adipose Tissue-derived Stem Cell Therapy Market Size Growth Rate by Type: 2020 VS 20261.4.2 Autologous Stem Cells1.4.3 Allogeneic Stem Cells1.5 Market by Application1.5.1 Global Adipose Tissue-derived Stem Cell Therapy Market Share by Application: 2020 VS 20261.5.2 Therapeutic Application1.5.3 Research Application1.6 Coronavirus Disease 2019 (Covid-19): Adipose Tissue-derived Stem Cell Therapy Industry Impact1.6.1 Covid-19 Impact: Global GDP Growth, 2019, 2020 and 2021 Projections1.6.2 Covid-19 Impact: Commodity Prices Indices1.6.3 Covid-19 Impact: Global Major Government Policy 1.7 Study Objectives 1.8 Years Considered 2 Global Growth Trends2.1 Covid-19 Implications on Global Adipose Tissue-derived Stem Cell Therapy Market Perspective (2015-2026)2.2 Covid-19 Implications on Global Adipose Tissue-derived Stem Cell Therapy Growth Trends by Regions2.2.1 Adipose Tissue-derived Stem Cell Therapy Market Size by Regions: 2015 VS 2020 VS 20262.2.2 Adipose Tissue-derived Stem Cell Therapy Historic Market Share by Regions (2015-2020)2.2.3 Adipose Tissue-derived Stem Cell Therapy Forecasted Market Size by Regions (2021-2026) 2.3 Industry Trends and Growth Strategy 2.3.1 Market Top Trends 2.3.2 Market Drivers2.3.3 Market Challenges2.3.4 Porters Five Forces Analysis2.3.5 Adipose Tissue-derived Stem Cell Therapy Market Growth Strategy2.3.6 Primary Interviews with Key Adipose Tissue-derived Stem Cell Therapy Players (Opinion Leaders) 3 Covid-19 Implications on Competition Landscape by Key Players3.1 Global Top Adipose Tissue-derived Stem Cell Therapy Players by Market Size3.1.1 Global Top Adipose Tissue-derived Stem Cell Therapy Players by Revenue (2015-2020)3.1.2 Global Adipose Tissue-derived Stem Cell Therapy Revenue Market Share by Players (2015-2020)3.1.3 Global Adipose Tissue-derived Stem Cell Therapy Market Share by Company Type (Tier 1, Tier 2 and Tier 3)3.2 Global Adipose Tissue-derived Stem Cell Therapy Market Concentration Ratio3.2.1 Global Adipose Tissue-derived Stem Cell Therapy Market Concentration Ratio (CR5 and HHI)3.2.2 Global Top 10 and Top 5 Companies by Adipose Tissue-derived Stem Cell Therapy Revenue in 20193.3 Adipose Tissue-derived Stem Cell Therapy Key Players Head office and Area Served3.4 Key Players Adipose Tissue-derived Stem Cell Therapy Product Solution and Service3.5 Date of Enter into Adipose Tissue-derived Stem Cell Therapy Market3.6 Mergers & Acquisitions, Expansion Plans 4 Covid-19 Implications on Market Size by Type (2015-2026)4.1 Global Adipose Tissue-derived Stem Cell Therapy Historic Market Size by Type (2015-2020)4.2 Global Adipose Tissue-derived Stem Cell Therapy Forecasted Market Size by Type (2021-2026) 5 Covid-19 Implications on Market Size by Application (2015-2026)5.1 Global Adipose Tissue-derived Stem Cell Therapy Market Size by Application (2015-2020)5.2 Global Adipose Tissue-derived Stem Cell Therapy Forecasted Market Size by Application (2021-2026) 6 North America Impact of COVID-196.1 North America Adipose Tissue-derived Stem Cell Therapy Market Size (2015-2020)6.2 Adipose Tissue-derived Stem Cell Therapy Key Players in North America (2019-2020)6.3 North America Adipose Tissue-derived Stem Cell Therapy Market Size by Type (2015-2020)6.4 North America Adipose Tissue-derived Stem Cell Therapy Market Size by Application (2015-2020) 7 Europe Impact of COVID-197.1 Europe Adipose Tissue-derived Stem Cell Therapy Market Size (2015-2020)7.2 Adipose Tissue-derived Stem Cell Therapy Key Players in Europe (2019-2020)7.3 Europe Adipose Tissue-derived Stem Cell Therapy Market Size by Type (2015-2020)7.4 Europe Adipose Tissue-derived Stem Cell Therapy Market Size by Application (2015-2020) 8 China Impact of COVID-198.1 China Adipose Tissue-derived Stem Cell Therapy Market Size (2015-2020)8.2 Adipose Tissue-derived Stem Cell Therapy Key Players in China (2019-2020)8.3 China Adipose Tissue-derived Stem Cell Therapy Market Size by Type (2015-2020)8.4 China Adipose Tissue-derived Stem Cell Therapy Market Size by Application (2015-2020) 9 Japan Impact of COVID-199.1 Japan Adipose Tissue-derived Stem Cell Therapy Market Size (2015-2020)9.2 Adipose Tissue-derived Stem Cell Therapy Key Players in Japan (2019-2020)9.3 Japan Adipose Tissue-derived Stem Cell Therapy Market Size by Type (2015-2020)9.4 Japan Adipose Tissue-derived Stem Cell Therapy Market Size by Application (2015-2020) 10 Southeast Asia Impact of COVID-1910.1 Southeast Asia Adipose Tissue-derived Stem Cell Therapy Market Size (2015-2020)10.2 Adipose Tissue-derived Stem Cell Therapy Key Players in Southeast Asia (2019-2020)10.3 Southeast Asia Adipose Tissue-derived Stem Cell Therapy Market Size by Type (2015-2020)10.4 Southeast Asia Adipose Tissue-derived Stem Cell Therapy Market Size by Application (2015-2020) 11 India Impact of COVID-1911.1 India Adipose Tissue-derived Stem Cell Therapy Market Size (2015-2020)11.2 Adipose Tissue-derived Stem Cell Therapy Key Players in India (2019-2020)11.3 India Adipose Tissue-derived Stem Cell Therapy Market Size by Type (2015-2020)11.4 India Adipose Tissue-derived Stem Cell Therapy Market Size by Application (2015-2020) 12 Central & South America Impact of COVID-1912.1 Central & South America Adipose Tissue-derived Stem Cell Therapy Market Size (2015-2020)12.2 Adipose Tissue-derived Stem Cell Therapy Key Players in Central & South America (2019-2020)12.3 Central & South America Adipose Tissue-derived Stem Cell Therapy Market Size by Type (2015-2020)12.4 Central & South America Adipose Tissue-derived Stem Cell Therapy Market Size by Application (2015-2020) 13Key Players Profiles13.1 AlloCure13.1.1 AlloCure Company Details13.1.2 AlloCure Business Overview and Its Total Revenue13.1.3 AlloCure Adipose Tissue-derived Stem Cell Therapy Introduction13.1.4 AlloCure Revenue in Adipose Tissue-derived Stem Cell Therapy Business (2015-2020))13.1.5 AlloCure Recent Development and Reaction to COVID-1913.2 Antria13.2.1 Antria Company Details13.2.2 Antria Business Overview and Its Total Revenue13.2.3 Antria Adipose Tissue-derived Stem Cell Therapy Introduction13.2.4 Antria Revenue in Adipose Tissue-derived Stem Cell Therapy Business (2015-2020)13.2.5 Antria Recent Development and Reaction to COVID-1913.3 Celgene Corporation13.3.1 Celgene Corporation Company Details13.3.2 Celgene Corporation Business Overview and Its Total Revenue13.3.3 Celgene Corporation Adipose Tissue-derived Stem Cell Therapy Introduction13.3.4 Celgene Corporation Revenue in Adipose Tissue-derived Stem Cell Therapy Business (2015-2020)13.3.5 Celgene Corporation Recent Development and Reaction to COVID-1913.4 Cellleris13.4.1 Cellleris Company Details13.4.2 Cellleris Business Overview and Its Total Revenue13.4.3 Cellleris Adipose Tissue-derived Stem Cell Therapy Introduction13.4.4 Cellleris Revenue in Adipose Tissue-derived Stem Cell Therapy Business (2015-2020)13.4.5 Cellleris Recent Development and Reaction to COVID-1913.5 Corestem13.5.1 Corestem Company Details13.5.2 Corestem Business Overview and Its Total Revenue13.5.3 Corestem Adipose Tissue-derived Stem Cell Therapy Introduction13.5.4 Corestem Revenue in Adipose Tissue-derived Stem Cell Therapy Business (2015-2020)13.5.5 Corestem Recent Development and Reaction to COVID-1913.6 Cytori Therapeutics13.6.1 Cytori Therapeutics Company Details13.6.2 Cytori Therapeutics Business Overview and Its Total Revenue13.6.3 Cytori Therapeutics Adipose Tissue-derived Stem Cell Therapy Introduction13.6.4 Cytori Therapeutics Revenue in Adipose Tissue-derived Stem Cell Therapy Business (2015-2020)13.6.5 Cytori Therapeutics Recent Development and Reaction to COVID-1913.7 Intrexon13.7.1 Intrexon Company Details13.7.2 Intrexon Business Overview and Its Total Revenue13.7.3 Intrexon Adipose Tissue-derived Stem Cell Therapy Introduction13.7.4 Intrexon Revenue in Adipose Tissue-derived Stem Cell Therapy Business (2015-2020)13.7.5 Intrexon Recent Development and Reaction to COVID-1913.8 Mesoblast13.8.1 Mesoblast Company Details13.8.2 Mesoblast Business Overview and Its Total Revenue13.8.3 Mesoblast Adipose Tissue-derived Stem Cell Therapy Introduction13.8.4 Mesoblast Revenue in Adipose Tissue-derived Stem Cell Therapy Business (2015-2020)13.8.5 Mesoblast Recent Development and Reaction to COVID-1913.9 Pluristem Therapeutics13.9.1 Pluristem Therapeutics Company Details13.9.2 Pluristem Therapeutics Business Overview and Its Total Revenue13.9.3 Pluristem Therapeutics Adipose Tissue-derived Stem Cell Therapy Introduction13.9.4 Pluristem Therapeutics Revenue in Adipose Tissue-derived Stem Cell Therapy Business (2015-2020)13.9.5 Pluristem Therapeutics Recent Development and Reaction to COVID-1913.10 Tissue Genesis13.10.1 Tissue Genesis Company Details13.10.2 Tissue Genesis Business Overview and Its Total Revenue13.10.3 Tissue Genesis Adipose Tissue-derived Stem Cell Therapy Introduction13.10.4 Tissue Genesis Revenue in Adipose Tissue-derived Stem Cell Therapy Business (2015-2020)13.10.5 Tissue Genesis Recent Development and Reaction to COVID-1913.11 BioRestorative Therapies10.11.1 BioRestorative Therapies Company Details10.11.2 BioRestorative Therapies Business Overview and Its Total Revenue10.11.3 BioRestorative Therapies Adipose Tissue-derived Stem Cell Therapy Introduction10.11.4 BioRestorative Therapies Revenue in Adipose Tissue-derived Stem Cell Therapy Business (2015-2020)10.11.5 BioRestorative Therapies Recent Development and Reaction to COVID-1913.12 Celltex Therapeutics Corporation10.12.1 Celltex Therapeutics Corporation Company Details10.12.2 Celltex Therapeutics Corporation Business Overview and Its Total Revenue10.12.3 Celltex Therapeutics Corporation Adipose Tissue-derived Stem Cell Therapy Introduction10.12.4 Celltex Therapeutics Corporation Revenue in Adipose Tissue-derived Stem Cell Therapy Business (2015-2020)10.12.5 Celltex Therapeutics Corporation Recent Development and Reaction to COVID-1913.13 iXCells Biotechnologies10.13.1 iXCells Biotechnologies Company Details10.13.2 iXCells Biotechnologies Business Overview and Its Total Revenue10.13.3 iXCells Biotechnologies Adipose Tissue-derived Stem Cell Therapy Introduction10.13.4 iXCells Biotechnologies Revenue in Adipose Tissue-derived Stem Cell Therapy Business (2015-2020)10.13.5 iXCells Biotechnologies Recent Development and Reaction to COVID-1913.14 Pluristem Therapeutics10.14.1 Pluristem Therapeutics Company Details10.14.2 Pluristem Therapeutics Business Overview and Its Total Revenue10.14.3 Pluristem Therapeutics Adipose Tissue-derived Stem Cell Therapy Introduction10.14.4 Pluristem Therapeutics Revenue in Adipose Tissue-derived Stem Cell Therapy Business (2015-2020)10.14.5 Pluristem Therapeutics Recent Development and Reaction to COVID-1913.15 Cyagen10.15.1 Cyagen Company Details10.15.2 Cyagen Business Overview and Its Total Revenue10.15.3 Cyagen Adipose Tissue-derived Stem Cell Therapy Introduction10.15.4 Cyagen Revenue in Adipose Tissue-derived Stem Cell Therapy Business (2015-2020)10.15.5 Cyagen Recent Development and Reaction to COVID-1913.16 Lonza10.16.1 Lonza Company Details10.16.2 Lonza Business Overview and Its Total Revenue10.16.3 Lonza Adipose Tissue-derived Stem Cell Therapy Introduction10.16.4 Lonza Revenue in Adipose Tissue-derived Stem Cell Therapy Business (2015-2020)10.16.5 Lonza Recent Development and Reaction to COVID-19 14Analysts Viewpoints/Conclusions 15Appendix15.1 Research Methodology15.1.1 Methodology/Research Approach15.1.2 Data Source15.2 Disclaimer15.3 Author Details

About Us:

QY Research established in 2007, focus on custom research, management consulting, IPO consulting, industry chain research, data base and seminar services. The company owned a large basic data base (such as National Bureau of statistics database, Customs import and export database, Industry Association Database etc), experts resources (included energy automotive chemical medical ICT consumer goods etc.

See original here:
Adipose Tissue-derived Stem Cell Therapy Market Statistics, Facts and Figures, Investment Trends, Key Players and Forecast by 2026 - Weekly Wall

Posted in Stem Cell Research | Comments Off on Adipose Tissue-derived Stem Cell Therapy Market Statistics, Facts and Figures, Investment Trends, Key Players and Forecast by 2026 – Weekly Wall

AgeX Therapeutics : and Pluristyx Announce Manufacturing, Marketing, and Distribution Agreement to Expand Access to Clinical-Grade Human Pluripotent…

Posted: June 17, 2020 at 9:45 am

ALAMEDA - AgeX Therapeutics, Inc. ('AgeX': NYSE American: AGE), a biotechnology company developing therapeutics for human aging and regeneration, and Pluristyx, Inc. (Seattle, WA), an advanced therapy tools and services company serving customers in the rapidly growing fields of regenerative medicine and cellular and gene therapies, today announced they have entered into a Manufacturing, Marketing, and Distribution Agreement through which Pluristyx will undertake these activities on behalf of AgeX with respect to AgeX's research and clinical-grade ESI brand human embryonic stem cells, sometimes referred to as hESCs.

The agreement builds on Pluristyx's strategy to manufacture, market, and distribute high-quality standardized Ready-to-Use and Ready-to-Differentiate pluripotent stem cells to industry and academic scientists intent on developing therapeutic products to treat human disease. AgeX's ESI hESC lines are distinguished for being the first clinical-grade hESC lines created under current Good Manufacturing Practice (cGMP). The AgeX ESI hESC lines are listed on the National Institutes of Health (NIH) Stem Cell Registry and are among the best characterized and documented stem cell lines available worldwide.

The agreement is a key step in AgeX's licensing and collaboration strategy to facilitate industry and academic access to its hESC lines, its PureStem cell derivation and manufacturing platform, and its UniverCyte immunotolerance technology in order to generate near- and long-term revenues.

'A recent FDA IND clearance for a biotech company to begin a human trial for a cell therapy candidate derived from an AgeX ESI hESC line has amplified interest from industry and academia to utilize our cells in regenerative medicine. It is AgeX's goal to make its cell lines the gold standard when it comes to therapeutic products derived from pluripotent stem cells. We are delighted to be working with the Pluristyx team given their extensive cGMP manufacturing experience with pluripotent stem cells,' said Dr. Nafees Malik, Chief Operating Officer of AgeX.

'Pluristyx is excited to be working with AgeX and their ESI hESC lines. As AgeX intends to make their cell lines the gold standard, our aim is to disrupt and redefine stem cell therapy manufacturing with our proprietary, high-density format, Ready-to-Use and Ready-to-Differentiate hESC lines, which will dramatically reduce both cost and time in translating revolutionary therapies from bench to bedside,' said Dr. Benjamin Fryer, CEO of Pluristyx.

Academic and biopharma organizations will need to obtain separate commercial licenses from AgeX in order to advance their cellular product candidates generated from AgeX hESC lines into human clinical trials and commercialization. AgeX retains all rights to manufacture its own in-house cellular products as well as to extend license rights to other third parties.

About AgeX Therapeutics

AgeX Therapeutics, Inc. (NYSE American: AGE) is focused on developing and commercializing innovative therapeutics for human aging. Its PureStem and UniverCyte manufacturing and immunotolerance technologies are designed to work together to generate highly defined, universal, allogeneic, off-the-shelf pluripotent stem cell-derived young cells of any type for application in a variety of diseases with a high unmet medical need. AgeX has two preclinical cell therapy programs: AGEX-VASC1 (vascular progenitor cells) for tissue ischemia and AGEX-BAT1 (brown fat cells) for Type II diabetes. AgeX's revolutionary longevity platform induced Tissue Regeneration (iTR) aims to unlock cellular immortality and regenerative capacity to reverse age-related changes within tissues. AGEX-iTR1547 is an iTR-based formulation in preclinical development. HyStem is AgeX's delivery technology to stably engraft PureStem cell therapies in the body. AgeX's core product pipeline is intended to extend human healthspan. AgeX is seeking opportunities to establish licensing and collaboration arrangements around its broad IP estate and proprietary technology platforms and therapy product candidates.

About Pluristyx

Established in 2018, Pluristyx Inc. is a privately held, early-stage company providing a complete cell manufacturing solution. As an advanced therapy tools company, Pluristyx helps companies and researchers solve manufacturing challenges in the field of drug development, regenerative medicine, and cell and gene therapy. Pluristyx is led by a team with decades of industry experience each with specific expertise in key areas needed to develop and manufacture pluripotent stem cells. Pluristyx provides know how in every stage of the process from cell banking through scale-up of clinical grade material as well as all aspects of process development and manufacturing.

Forward-Looking Statements for AgeX

Certain statements contained in this release are 'forward-looking statements' within the meaning of the Private Securities Litigation Reform Act of 1995. Any statements that are not historical fact including, but not limited to statements that contain words such as 'will,' 'believes,' 'plans,' 'anticipates,' 'expects,' 'estimates' should also be considered forward-looking statements. Forward-looking statements involve risks and uncertainties. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the business of AgeX Therapeutics, Inc. and its subsidiaries, particularly those mentioned in the cautionary statements found in more detail in the 'Risk Factors' section of AgeX's most recent Annual Report on Form 10-K and Quarterly Report on Form 10-Q filed with the Securities and Exchange Commissions (copies of which may be obtained at http://www.sec.gov). Subsequent events and developments may cause these forward-looking statements to change. In addition, with respect to AgeX's Manufacturing, Marketing and Distribution Agreement with Pluristyx there is no assurance that (i) Pluristyx will generate significant sales of AgeX ESI hESC lines, or (ii) AgeX will derive significant revenue from sales of ESI hESC lines by Pluristyx. AgeX specifically disclaims any obligation or intention to update or revise these forward-looking statements as a result of changed events or circumstances that occur after the date of this release, except as required by applicable law.

Contact:

Andrea Park

Email: apark@agexinc.com

Originally posted here:
AgeX Therapeutics : and Pluristyx Announce Manufacturing, Marketing, and Distribution Agreement to Expand Access to Clinical-Grade Human Pluripotent...

Posted in Stem Cell Research | Comments Off on AgeX Therapeutics : and Pluristyx Announce Manufacturing, Marketing, and Distribution Agreement to Expand Access to Clinical-Grade Human Pluripotent…

Close to 2,000 Faculty, Staff Return to Work as Some Harvard Labs Resume Research Operations | News – Harvard Crimson

Posted: June 17, 2020 at 9:45 am

Nearly 2,000 faculty and staff members returned to scientific research laboratories at Harvard over the past week the first large scale return to work since campus shut down in mid-March due to the coronavirus pandemic.

University Provost Alan M. Garber 76 announced on May 4 that Harvard would begin a phased reopening of Harvards research labs, which he described as urgent.

The return to research operations is overseen by a Lab Reopening Committee, initially formed by Vice Provost for Research Richard D. McCullough in collaboration with Dean of Science Christopher J. Stubbs at Garber's request.

The labs operate in shifts and use physical distancing and personal protective protocols. They are modeled after guidelines used by University labs dedicated to COVID-19 research, which have remained open as essential work.

Naina Kurup, a postdoctoral fellow in the Chemistry Department, wrote in an email that the guidelines have contributed to a sense of security, though there has been a learning curve for certain requirements, like avoiding common spaces and completing online check-ins.

Nevertheless, Kurup wrote that she and others in the lab are slowly finding our groove again."

It's been exciting to see my worms come back to life again so I can start the experiments I was planning at home! she wrote.

Though researchers are social distancing, Professor of Engineering and Applied Sciences Conor J. Walsh said his labs ability to return to in-person experiments is positive, noting its work is experimental in nature and cannot be done at home.

For us, we're not able to do the types of research we are without being in the lab, he said.

Stem Cell and Regenerative Biology Professor Richard T. Lee 79, a former Crimson editor, said the reopening of his lab is crucial because its work relies on experiments.

We could write up some papers and write proposals, but we weren't getting new data, he said. We were very much shut down by the shutdown.

Still short of full capacity, Lee said researchers must be much more strategic about time spent in the lab.

We're trying to get those answers now as quickly as we can, he said. We're not at full capacity and so we have to be very careful about every person, hour in the lab.

Though Lee is overseeing the lab, he said that he himself has not returned to the lab, since his presence would take up one of the density spots the number of researchers authorized to work in the lab at a given time and.

Mohammed Mostafizur Rahman, a postdoctoral fellow in the Department of Molecular and Cellular Biology, said that he spent much of last week in preparation for future experiments.

For all the work that we shut down, we need time to ramp up as well, he said. This first week hasn't been really much work as much as prep for the work a lot of animal breeding, getting animals ready, getting your reagents ready.

Leonardo A. Sepulveda Duran, a postdoctoral fellow in the Chemistry Department, said that he, too, is seeking to be strategic about his work in case the pandemic closes labs again.

I'm focusing on just trying to get the most data I can in a few next months, so if we have to go into lockdown again, I can do the analysis of the data remotely, the same way I've been doing, Sepulveda Duran said. I imagine this is going to happen several times until we get a vaccine.

For now, though, most said they are happy to be back to work.

As an experimentalist, there's no other place you want to be than in your lab, Rahman said.

Staff writer Camille G. Caldera can be reached at camille.caldera@thecrimson.com. Follow her on Twitter @camille_caldera.

Staff writer Michelle G. Kurilla can be reached at michelle.kurilla@thecrimson.com. Follow her on Twitter @MichelleKurilla.

See more here:
Close to 2,000 Faculty, Staff Return to Work as Some Harvard Labs Resume Research Operations | News - Harvard Crimson

Posted in Stem Cell Research | Comments Off on Close to 2,000 Faculty, Staff Return to Work as Some Harvard Labs Resume Research Operations | News – Harvard Crimson

Platelet Rich Plasma and Stem Cell Alopecia Treatment Market Analysis, Top Manufacturers, Share, Growth, Statistics, Opportunities and Forecast To…

Posted: June 17, 2020 at 9:45 am

New Jersey, United States,- A detailed research study on Platelet Rich Plasma and Stem Cell Alopecia Treatment Market recently published by Market Research Intellect. This is the latest report, which covers the time COVID-19 impact on the market. Pandemic Coronavirus (COVID-19) has affected every aspect of global life. This has brought some changes in market conditions. Rapidly changing market scenario and the initial assessment and the future of this effect is included in the report. Reports put together a brief analysis of the factors affecting the growth of the current business scenarios in various areas. Important information relating to the size of the industry analysis, sharing, application, and statistics summed up in the report to present the ensemble prediction. In addition, this report includes an accurate competitive analysis of major market players and their strategies during the projection period.

This report includes market size estimates for the value (million USD) and volume (K Units). Both top-down and bottom-up approach has been used to estimate the size of the market and validate the Market of Platelet Rich Plasma and Stem Cell Alopecia Treatment, to estimate the size of the various submarkets more dependent on the overall market. Key players in the market have been identified through secondary research and their market share has been determined through primary and secondary research. All the shares percentage, split, and the damage have been determined using secondary sources and primary sources verified.

Get Sample Copy with TOC of the Report to understand the structure of the complete report @ https://www.marketresearchintellect.com/download-sample/?rid=247661&utm_source=COD&utm_medium=888

Leading Platelet Rich Plasma and Stem Cell Alopecia Treatment manufacturers/companies operating at both regional and global levels:

Platelet Rich Plasma and Stem Cell Alopecia Treatment Market Competitive Landscape & Company Profiles

Competitor analysis is one of the best sections of the report that compares the progress of leading players based on crucial parameters, including market share, new developments, global reach, local competition, price, and production. From the nature of competition to future changes in the vendor landscape, the report provides in-depth analysis of the competition in the Platelet Rich Plasma and Stem Cell Alopecia Treatment market.

Segmental Analysis

Both developed and emerging regions are deeply studied by the authors of the report. The regional analysis section of the report offers a comprehensive analysis of the global Platelet Rich Plasma and Stem Cell Alopecia Treatment market on the basis of region. Each region is exhaustively researched about so that players can use the analysis to tap into unexplored markets and plan powerful strategies to gain a foothold in lucrative markets.

Platelet Rich Plasma and Stem Cell Alopecia Treatment Market, By Product

Platelet Rich Plasma and Stem Cell Alopecia Treatment Market, By Application

Regions Covered in these Report:

Asia Pacific (China, Japan, India, and Rest of Asia Pacific)Europe (Germany, the UK, France, and Rest of Europe)North America (the US, Mexico, and Canada)Latin America (Brazil and Rest of Latin America)Middle East & Africa (GCC Countries and Rest of Middle East & Africa)

To get Incredible Discounts on this Premium Report, Click Here @ https://www.marketresearchintellect.com/ask-for-discount/?rid=247661&utm_source=COD&utm_medium=888

Platelet Rich Plasma and Stem Cell Alopecia Treatment Market Research Methodology

The research methodology adopted for the analysis of the market involves the consolidation of various research considerations such as subject matter expert advice, primary and secondary research. Primary research involves the extraction of information through various aspects such as numerous telephonic interviews, industry experts, questionnaires and in some cases face-to-face interactions. Primary interviews are usually carried out on a continuous basis with industry experts in order to acquire a topical understanding of the market as well as to be able to substantiate the existing analysis of the data.

Subject matter expertise involves the validation of the key research findings that were attained from primary and secondary research. The subject matter experts that are consulted have extensive experience in the market research industry and the specific requirements of the clients are reviewed by the experts to check for completion of the market study. Secondary research used for the Platelet Rich Plasma and Stem Cell Alopecia Treatment market report includes sources such as press releases, company annual reports, and research papers that are related to the industry. Other sources can include government websites, industry magazines and associations for gathering more meticulous data. These multiple channels of research help to find as well as substantiate research findings.

Table of Content

1 Introduction of Platelet Rich Plasma and Stem Cell Alopecia Treatment Market

1.1 Overview of the Market1.2 Scope of Report1.3 Assumptions

2 Executive Summary

3 Research Methodology

3.1 Data Mining3.2 Validation3.3 Primary Interviews3.4 List of Data Sources

4 Platelet Rich Plasma and Stem Cell Alopecia Treatment Market Outlook

4.1 Overview4.2 Market Dynamics4.2.1 Drivers4.2.2 Restraints4.2.3 Opportunities4.3 Porters Five Force Model4.4 Value Chain Analysis

5 Platelet Rich Plasma and Stem Cell Alopecia Treatment Market, By Deployment Model

5.1 Overview

6 Platelet Rich Plasma and Stem Cell Alopecia Treatment Market, By Solution

6.1 Overview

7 Platelet Rich Plasma and Stem Cell Alopecia Treatment Market, By Vertical

7.1 Overview

8 Platelet Rich Plasma and Stem Cell Alopecia Treatment Market, By Geography

8.1 Overview8.2 North America8.2.1 U.S.8.2.2 Canada8.2.3 Mexico8.3 Europe8.3.1 Germany8.3.2 U.K.8.3.3 France8.3.4 Rest of Europe8.4 Asia Pacific8.4.1 China8.4.2 Japan8.4.3 India8.4.4 Rest of Asia Pacific8.5 Rest of the World8.5.1 Latin America8.5.2 Middle East

9 Platelet Rich Plasma and Stem Cell Alopecia Treatment Market Competitive Landscape

9.1 Overview9.2 Company Market Ranking9.3 Key Development Strategies

10 Company Profiles

10.1.1 Overview10.1.2 Financial Performance10.1.3 Product Outlook10.1.4 Key Developments

11 Appendix

11.1 Related Research

Customized Research Report Using Corporate Email Id @ https://www.marketresearchintellect.com/need-customization/?rid=247661&utm_source=COD&utm_medium=888

About Us:

Market Research Intellect provides syndicated and customized research reports to clients from various industries and organizations with the aim of delivering functional expertise. We provide reports for all industries including Energy, Technology, Manufacturing and Construction, Chemicals and Materials, Food and Beverage and more. These reports deliver an in-depth study of the market with industry analysis, market value for regions and countries and trends that are pertinent to the industry.

Contact Us:

Mr. Steven Fernandes

Market Research Intellect

New Jersey ( USA )

Tel: +1-650-781-4080

Our Trending Reports

Solar Photovoltaic Charge Controllers Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Solar Powered Car Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Solar PV Inverters Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Read more from the original source:
Platelet Rich Plasma and Stem Cell Alopecia Treatment Market Analysis, Top Manufacturers, Share, Growth, Statistics, Opportunities and Forecast To...

Posted in Stem Cell Research | Comments Off on Platelet Rich Plasma and Stem Cell Alopecia Treatment Market Analysis, Top Manufacturers, Share, Growth, Statistics, Opportunities and Forecast To…

FDA Approves Second Biomarker-Based Indication for Merck’s KEYTRUDA (pembrolizumab), Regardless of Tumor Type – The Baytown Sun

Posted: June 17, 2020 at 9:45 am

KENILWORTH, N.J.--(BUSINESS WIRE)--Jun 17, 2020--

Merck (NYSE: MRK), known as MSD outside the United States and Canada, today announced that the U.S. Food and Drug Administration (FDA) has approved KEYTRUDA, Mercks anti-PD-1 therapy, as monotherapy for the treatment of adult and pediatric patients with unresectable or metastatic tumor mutational burden-high (TMB-H) [10 mutations/megabase (mut/Mb)] solid tumors, as determined by an FDA-approved test, that have progressed following prior treatment and who have no satisfactory alternative treatment options. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with TMB-H central nervous system cancers have not been established.

Immune-mediated adverse reactions, which may be severe or fatal, can occur with KEYTRUDA, including pneumonitis, colitis, hepatitis, endocrinopathies, nephritis and renal dysfunction, severe skin reactions, solid organ transplant rejection, and complications of allogeneic hematopoietic stem cell transplantation (HSCT). Based on the severity of the adverse reaction, KEYTRUDA should be withheld or discontinued and corticosteroids administered if appropriate. KEYTRUDA can also cause severe or life-threatening infusion-related reactions. Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. For more information, see Selected Important Safety Information below.

For the second time, KEYTRUDA monotherapy is now approved based on a biomarker rather than the location in the body where the tumor originated, said Dr. Scot Ebbinghaus, vice president, clinical research, Merck Research Laboratories. TMB-H, defined as 10 mutations per megabase or more, can help identify patients most likely to benefit from KEYTRUDA. Were pleased that our collaborative efforts to advance biomarker research have resulted in our ability to provide a new treatment option that addresses a high unmet medical need for these patients with cancer.

As physicians, we are always looking to find new options for patients, especially in the second-line or higher treatment setting, said Roy S. Herbst, M.D., Ph.D., ensign professor of medicine (medical oncology) and professor of pharmacology, Yale School of Medicine; chief of medical oncology, Yale Cancer Center and Smilow Cancer Hospital; and associate cancer center director for translational research, Yale Cancer Center. Its great to see the use of innovative biomarkers and immunotherapy come together with this approval and encouraging that we now have an option for patients with TMB-H tumors across cancer types, including rare cancers.

The FDA also approved FoundationOne CDx test as the companion diagnostic to identify patients with solid tumors that are TMB-H (10 mutations/ megabase) who may benefit from immunotherapy treatment with KEYTRUDA monotherapy.

These approvals stem from years of research into how TMB levels may influence a patients response to immunotherapy, said Brian Alexander, M.D., M.P.H., chief medical officer, Foundation Medicine. Its critical that healthcare professionals have access to a validated genomic test to measure TMB in clinical tumor assessments and pinpoint those who are more likely to respond. Were proud to be collaborating with Merck to help match appropriate patients to this important treatment.

Data Supporting the Approval

The accelerated approval was based on data from a prospectively-planned retrospective analysis of 10 cohorts (A through J) of patients with various previously treated unresectable or metastatic solid tumors with TMB-H, who were enrolled in KEYNOTE-158 (NCT02628067), a multicenter, non-randomized, open-label trial evaluating KEYTRUDA (200 mg every three weeks). The trial excluded patients who previously received an anti-PD-1 or other immune-modulating monoclonal antibody, or who had an autoimmune disease, or a medical condition that required immunosuppression. TMB status was assessed using the FoundationOne CDx assay and pre-specified cutpoints of 10 and 13 mut/Mb, and testing was blinded with respect to clinical outcomes. Tumor response was assessed every nine weeks for the first 12 months and every 12 weeks thereafter. The major efficacy outcome measures were objective response rate (ORR) and duration of response (DOR) in the patients who received at least one dose of KEYTRUDA as assessed by blinded independent central review (BICR) according to Response Evaluation Criteria in Solid Tumors (RECIST) v1.1, modified to follow a maximum of 10 target lesions and a maximum of five target lesions per organ.

In KEYNOTE-158, 1,050 patients were included in the efficacy analysis population. TMB was analyzed in the subset of 790 patients with sufficient tissue for testing based on protocol-specified testing requirements. Of the 790 patients, 102 (13%) had tumors identified as TMB-H, defined as TMB 10 mut/Mb. The study population characteristics of these 102 patients were: median age of 61 years (range, 27 to 80); 34% age 65 or older; 34% male; 81% White; and 41% Eastern Cooperative Oncology Group (ECOG) Performance Status (PS) of 0 and 58% ECOG PS of 1. Fifty-six percent of patients had at least two prior lines of therapy.

In the 102 patients whose tumors were TMB-H, KEYTRUDA demonstrated an ORR of 29% (95% CI, 21-39), with a complete response rate of 4% and a partial response rate of 25%. After a median follow-up time of 11.1 months, the median DOR had not been reached (range, 2.2+ to 34.8+ months). Among the 30 responding patients, 57% had ongoing responses of 12 months or longer, and 50% had ongoing responses of 24 months or longer.

In a pre-specified analysis of patients with TMB 13 mut/Mb (n=70), KEYTRUDA demonstrated an ORR of 37% (95% CI, 26-50), with a complete response rate of 3% and a partial response rate of 34%. After a median follow-up time of 11.1 months, the median DOR had not been reached (range, 2.2+ to 34.8+ months). Among the 26 responding patients, 58% had ongoing responses of 12 months or longer, and 50% had ongoing responses of 24 months or longer. In an exploratory analysis in 32 patients whose cancer had TMB 10 mut/Mb and <13 mut/Mb, the ORR was 13% (95% CI, 4-29), including two complete responses and two partial responses.

The median duration of exposure to KEYTRUDA was 4.9 months (range, 0.03 to 35.2 months). The most common adverse reactions for KEYTRUDA (reported in 20% of patients) were fatigue, musculoskeletal pain, decreased appetite, pruritus, diarrhea, nausea, rash, pyrexia, cough, dyspnea, constipation, pain and abdominal pain.

About KEYTRUDA (pembrolizumab) Injection, 100 mg

KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the bodys immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.

Merck has the industrys largest immuno-oncology clinical research program. There are currently more than 1,200 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient's likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.

Selected KEYTRUDA (pembrolizumab) Indications

Melanoma

KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.

KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.

Non-Small Cell Lung Cancer

KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) 1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS 1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.

Small Cell Lung Cancer

KEYTRUDA is indicated for the treatment of patients with metastatic small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy and at least 1 other prior line of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

Head and Neck Squamous Cell Cancer

KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS) 1] as determined by an FDA-approved test.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) with disease progression on or after platinum-containing chemotherapy.

Classical Hodgkin Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory classical Hodgkin lymphoma (cHL), or who have relapsed after 3 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Primary Mediastinal Large B-Cell Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.

Urothelial Carcinoma

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 [combined positive score (CPS) 10], as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.

KEYTRUDA is indicated for the treatment of patients with Bacillus Calmette-Guerin (BCG)-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ (CIS) with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy.

Microsatellite Instability-High (MSI-H) Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)

This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.

Gastric Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Esophageal Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic squamous cell carcinoma of the esophagus whose tumors express PD-L1 (CPS 10) as determined by an FDA-approved test, with disease progression after one or more prior lines of systemic therapy.

Cervical Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Hepatocellular Carcinoma

KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Merkel Cell Carcinoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Renal Cell Carcinoma

KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).

Tumor Mutational Burden-High Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic tumor mutational burden-high (TMB-H) [10 mutations/megabase (mut/Mb)] solid tumors, as determined by an FDA-approved test, that have progressed following prior treatment and who have no satisfactory alternative treatment options.

This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with TMB-H central nervous system cancers have not been established.

Selected Important Safety Information for KEYTRUDA

Immune-Mediated Pneumonitis

KEYTRUDA can cause immune-mediated pneumonitis, including fatal cases. Pneumonitis occurred in 3.4% (94/2799) of patients with various cancers receiving KEYTRUDA, including Grade 1 (0.8%), 2 (1.3%), 3 (0.9%), 4 (0.3%), and 5 (0.1%). Pneumonitis occurred in 8.2% (65/790) of NSCLC patients receiving KEYTRUDA as a single agent, including Grades 3-4 in 3.2% of patients, and occurred more frequently in patients with a history of prior thoracic radiation (17%) compared to those without (7.7%). Pneumonitis occurred in 6% (18/300) of HNSCC patients receiving KEYTRUDA as a single agent, including Grades 3-5 in 1.6% of patients, and occurred in 5.4% (15/276) of patients receiving KEYTRUDA in combination with platinum and FU as first-line therapy for advanced disease, including Grades 3-5 in 1.5% of patients.

Monitor patients for signs and symptoms of pneumonitis. Evaluate suspected pneumonitis with radiographic imaging. Administer corticosteroids for Grade 2 or greater pneumonitis. Withhold KEYTRUDA for Grade 2; permanently discontinue KEYTRUDA for Grade 3 or 4 or recurrent Grade 2 pneumonitis.

Immune-Mediated Colitis

KEYTRUDA can cause immune-mediated colitis. Colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 2 (0.4%), 3 (1.1%), and 4 (<0.1%). Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 or greater colitis. Withhold KEYTRUDA for Grade 2 or 3; permanently discontinue KEYTRUDA for Grade 4 colitis.

Immune-Mediated Hepatitis (KEYTRUDA) and Hepatotoxicity (KEYTRUDA in Combination With Axitinib)

Immune-Mediated Hepatitis

KEYTRUDA can cause immune-mediated hepatitis. Hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.4%), and 4 (<0.1%). Monitor patients for changes in liver function. Administer corticosteroids for Grade 2 or greater hepatitis and, based on severity of liver enzyme elevations, withhold or discontinue KEYTRUDA.

Hepatotoxicity in Combination With Axitinib

KEYTRUDA in combination with axitinib can cause hepatic toxicity with higher than expected frequencies of Grades 3 and 4 ALT and AST elevations compared to KEYTRUDA alone. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased ALT (20%) and increased AST (13%) were seen. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider more frequent monitoring of liver enzymes as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed.

Immune-Mediated Endocrinopathies

KEYTRUDA can cause adrenal insufficiency (primary and secondary), hypophysitis, thyroid disorders, and type 1 diabetes mellitus. Adrenal insufficiency occurred in 0.8% (22/2799) of patients, including Grade 2 (0.3%), 3 (0.3%), and 4 (<0.1%). Hypophysitis occurred in 0.6% (17/2799) of patients, including Grade 2 (0.2%), 3 (0.3%), and 4 (<0.1%). Hypothyroidism occurred in 8.5% (237/2799) of patients, including Grade 2 (6.2%) and 3 (0.1%). The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC (16%) receiving KEYTRUDA, as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. Hyperthyroidism occurred in 3.4% (96/2799) of patients, including Grade 2 (0.8%) and 3 (0.1%), and thyroiditis occurred in 0.6% (16/2799) of patients, including Grade 2 (0.3%). Type 1 diabetes mellitus, including diabetic ketoacidosis, occurred in 0.2% (6/2799) of patients.

Monitor patients for signs and symptoms of adrenal insufficiency, hypophysitis (including hypopituitarism), thyroid function (prior to and periodically during treatment), and hyperglycemia. For adrenal insufficiency or hypophysitis, administer corticosteroids and hormone replacement as clinically indicated. Withhold KEYTRUDA for Grade 2 adrenal insufficiency or hypophysitis and withhold or discontinue KEYTRUDA for Grade 3 or Grade 4 adrenal insufficiency or hypophysitis. Administer hormone replacement for hypothyroidism and manage hyperthyroidism with thionamides and beta-blockers as appropriate. Withhold or discontinue KEYTRUDA for Grade 3 or 4 hyperthyroidism. Administer insulin for type 1 diabetes, and withhold KEYTRUDA and administer antihyperglycemics in patients with severe hyperglycemia.

Immune-Mediated Nephritis and Renal Dysfunction

KEYTRUDA can cause immune-mediated nephritis. Nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.1%), and 4 (<0.1%) nephritis. Nephritis occurred in 1.7% (7/405) of patients receiving KEYTRUDA in combination with pemetrexed and platinum chemotherapy. Monitor patients for changes in renal function. Administer corticosteroids for Grade 2 or greater nephritis. Withhold KEYTRUDA for Grade 2; permanently discontinue for Grade 3 or 4 nephritis.

Immune-Mediated Skin Reactions

Immune-mediated rashes, including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) (some cases with fatal outcome), exfoliative dermatitis, and bullous pemphigoid, can occur. Monitor patients for suspected severe skin reactions and based on the severity of the adverse reaction, withhold or permanently discontinue KEYTRUDA and administer corticosteroids. For signs or symptoms of SJS or TEN, withhold KEYTRUDA and refer the patient for specialized care for assessment and treatment. If SJS or TEN is confirmed, permanently discontinue KEYTRUDA.

Other Immune-Mediated Adverse Reactions

Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue in patients receiving KEYTRUDA and may also occur after discontinuation of treatment. For suspected immune-mediated adverse reactions, ensure adequate evaluation to confirm etiology or exclude other causes. Based on the severity of the adverse reaction, withhold KEYTRUDA and administer corticosteroids. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Based on limited data from clinical studies in patients whose immune-related adverse reactions could not be controlled with corticosteroid use, administration of other systemic immunosuppressants can be considered. Resume KEYTRUDA when the adverse reaction remains at Grade 1 or less following corticosteroid taper. Permanently discontinue KEYTRUDA for any Grade 3 immune-mediated adverse reaction that recurs and for any life-threatening immune-mediated adverse reaction.

The following clinically significant immune-mediated adverse reactions occurred in less than 1% (unless otherwise indicated) of 2799 patients: arthritis (1.5%), uveitis, myositis, Guillain-Barr syndrome, myasthenia gravis, vasculitis, pancreatitis, hemolytic anemia, sarcoidosis, and encephalitis. In addition, myelitis and myocarditis were reported in other clinical trials, including classical Hodgkin lymphoma, and postmarketing use.

Treatment with KEYTRUDA may increase the risk of rejection in solid organ transplant recipients. Consider the benefit of treatment vs the risk of possible organ rejection in these patients.

Infusion-Related Reactions

KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% (6/2799) of patients. Monitor patients for signs and symptoms of infusion-related reactions. For Grade 3 or 4 reactions, stop infusion and permanently discontinue KEYTRUDA.

Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)

Immune-mediated complications, including fatal events, occurred in patients who underwent allogeneic HSCT after treatment with KEYTRUDA. Of 23 patients with cHL who proceeded to allogeneic HSCT after KEYTRUDA, 6 (26%) developed graft-versus-host disease (GVHD) (1 fatal case) and 2 (9%) developed severe hepatic veno-occlusive disease (VOD) after reduced-intensity conditioning (1 fatal case). Cases of fatal hyperacute GVHD after allogeneic HSCT have also been reported in patients with lymphoma who received a PD-1 receptorblocking antibody before transplantation. Follow patients closely for early evidence of transplant-related complications such as hyperacute graft-versus-host disease (GVHD), Grade 3 to 4 acute GVHD, steroid-requiring febrile syndrome, hepatic veno-occlusive disease (VOD), and other immune-mediated adverse reactions.

In patients with a history of allogeneic HSCT, acute GVHD (including fatal GVHD) has been reported after treatment with KEYTRUDA. Patients who experienced GVHD after their transplant procedure may be at increased risk for GVHD after KEYTRUDA. Consider the benefit of KEYTRUDA vs the risk of GVHD in these patients.

Increased Mortality in Patients With Multiple Myeloma

In trials in patients with multiple myeloma, the addition of KEYTRUDA to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of these patients with a PD-1 or PD-L1 blocking antibody in this combination is not recommended outside of controlled trials.

Embryofetal Toxicity

Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. Advise women of this potential risk. In females of reproductive potential, verify pregnancy status prior to initiating KEYTRUDA and advise them to use effective contraception during treatment and for 4 months after the last dose.

Adverse Reactions

In KEYNOTE-006, KEYTRUDA was discontinued due to adverse reactions in 9% of 555 patients with advanced melanoma; adverse reactions leading to permanent discontinuation in more than one patient were colitis (1.4%), autoimmune hepatitis (0.7%), allergic reaction (0.4%), polyneuropathy (0.4%), and cardiac failure (0.4%). The most common adverse reactions (20%) with KEYTRUDA were fatigue (28%), diarrhea (26%), rash (24%), and nausea (21%).

In KEYNOTE-002, KEYTRUDA was permanently discontinued due to adverse reactions in 12% of 357 patients with advanced melanoma; the most common (1%) were general physical health deterioration (1%), asthenia (1%), dyspnea (1%), pneumonitis (1%), and generalized edema (1%). The most common adverse reactions were fatigue (43%), pruritus (28%), rash (24%), constipation (22%), nausea (22%), diarrhea (20%), and decreased appetite (20%).

In KEYNOTE-054, KEYTRUDA was permanently discontinued due to adverse reactions in 14% of 509 patients; the most common (1%) were pneumonitis (1.4%), colitis (1.2%), and diarrhea (1%). Serious adverse reactions occurred in 25% of patients receiving KEYTRUDA. The most common adverse reaction (20%) with KEYTRUDA was diarrhea (28%).

In KEYNOTE-189, when KEYTRUDA was administered with pemetrexed and platinum chemotherapy in metastatic nonsquamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 20% of 405 patients. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonitis (3%) and acute kidney injury (2%). The most common adverse reactions (20%) with KEYTRUDA were nausea (56%), fatigue (56%), constipation (35%), diarrhea (31%), decreased appetite (28%), rash (25%), vomiting (24%), cough (21%), dyspnea (21%), and pyrexia (20%).

In KEYNOTE-407, when KEYTRUDA was administered with carboplatin and either paclitaxel or paclitaxel protein-bound in metastatic squamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 15% of 101 patients. The most frequent serious adverse reactions reported in at least 2% of patients were febrile neutropenia, pneumonia, and urinary tract infection. Adverse reactions observed in KEYNOTE-407 were similar to those observed in KEYNOTE-189 with the exception that increased incidences of alopecia (47% vs 36%) and peripheral neuropathy (31% vs 25%) were observed in the KEYTRUDA and chemotherapy arm compared to the placebo and chemotherapy arm in KEYNOTE-407.

In KEYNOTE-042, KEYTRUDA was discontinued due to adverse reactions in 19% of 636 patients with advanced NSCLC; the most common were pneumonitis (3%), death due to unknown cause (1.6%), and pneumonia (1.4%). The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia (7%), pneumonitis (3.9%), pulmonary embolism (2.4%), and pleural effusion (2.2%). The most common adverse reaction (20%) was fatigue (25%).

In KEYNOTE-010, KEYTRUDA monotherapy was discontinued due to adverse reactions in 8% of 682 patients with metastatic NSCLC; the most common was pneumonitis (1.8%). The most common adverse reactions (20%) were decreased appetite (25%), fatigue (25%), dyspnea (23%), and nausea (20%).

Adverse reactions occurring in patients with SCLC were similar to those occurring in patients with other solid tumors who received KEYTRUDA as a single agent.

In KEYNOTE-048, KEYTRUDA monotherapy was discontinued due to adverse events in 12% of 300 patients with HNSCC; the most common adverse reactions leading to permanent discontinuation were sepsis (1.7%) and pneumonia (1.3%). The most common adverse reactions (20%) were fatigue (33%), constipation (20%), and rash (20%).

In KEYNOTE-048, when KEYTRUDA was administered in combination with platinum (cisplatin or carboplatin) and FU chemotherapy, KEYTRUDA was discontinued due to adverse reactions in 16% of 276 patients with HNSCC. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonia (2.5%), pneumonitis (1.8%), and septic shock (1.4%). The most common adverse reactions (20%) were nausea (51%), fatigue (49%), constipation (37%), vomiting (32%), mucosal inflammation (31%), diarrhea (29%), decreased appetite (29%), stomatitis (26%), and cough (22%).

In KEYNOTE-012, KEYTRUDA was discontinued due to adverse reactions in 17% of 192 patients with HNSCC. Serious adverse reactions occurred in 45% of patients. The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia, dyspnea, confusional state, vomiting, pleural effusion, and respiratory failure. The most common adverse reactions (20%) were fatigue, decreased appetite, and dyspnea. Adverse reactions occurring in patients with HNSCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of facial edema and new or worsening hypothyroidism.

Continue reading here:
FDA Approves Second Biomarker-Based Indication for Merck's KEYTRUDA (pembrolizumab), Regardless of Tumor Type - The Baytown Sun

Posted in Stem Cell Research | Comments Off on FDA Approves Second Biomarker-Based Indication for Merck’s KEYTRUDA (pembrolizumab), Regardless of Tumor Type – The Baytown Sun

Animal Stem Cell Therapy Market Analysis by Size, Share, Growth, Trends up to 2025 – Express Journal

Posted: June 17, 2020 at 9:45 am

The Animal Stem Cell Therapy Market report upholds the future market predictions related to Animal Stem Cell Therapy market size, revenue, production, Consumption, gross margin and other substantial factors. It also examines the role of the prominent Animal Stem Cell Therapy market players involved in the industry including their corporate overview. While emphasizing the key driving factors for Animal Stem Cell Therapy market, the report also offers a full study of the future trends and developments of the market.

The report on Animal Stem Cell Therapy market claims this industry to emerge as one of the most lucrative spaces in the ensuing years, exhibiting a modest growth rate over the forecast period. Enumerating a highly exhaustive outline of Animal Stem Cell Therapy Market size, this report is also inclusive of the total valuation that the Animal Stem Cell Therapy industry presently holds, a brief segmentation of this market and Animal Stem Cell Therapy market growth opportunities of this industry in addition to its geographical expanse.

Request Sample Copy of this Report @ https://www.express-journal.com/request-sample/119926

Report Scope:

Animal Stem Cell Therapy market competition by top Manufacturers:

Animal Stem Cell Therapy Market Outlook by Applications:

Veterinary Hospitals and Research Organizations

Animal Stem Cell Therapy Market Statistics by Types:

Dogs, Horses and Others

The coverage of this report includes:

Analysis of the important competitors and their potential opportunities in the Animal Stem Cell Therapy industry

The regional scope of global Animal Stem Cell Therapy market

Animal Stem Cell Therapy market segmentation

Animal Stem Cell Therapy Market Drivers & Challenges

Animal Stem Cell Therapy Marketing Strategies Carry Out as below:

Request Customization on This Report @ https://www.express-journal.com/request-for-customization/119926

Continued here:
Animal Stem Cell Therapy Market Analysis by Size, Share, Growth, Trends up to 2025 - Express Journal

Posted in Stem Cell Research | Comments Off on Animal Stem Cell Therapy Market Analysis by Size, Share, Growth, Trends up to 2025 – Express Journal

Stem Cell Cartilage Regeneration Market Analysis, Top Manufacturers, Share, Growth, Statistics, Opportunities and Forecast To 2026 – Cole of Duty

Posted: June 17, 2020 at 9:45 am

New Jersey, United States,- A detailed research study on Stem Cell Cartilage Regeneration Market recently published by Market Research Intellect. This is the latest report, which covers the time COVID-19 impact on the market. Pandemic Coronavirus (COVID-19) has affected every aspect of global life. This has brought some changes in market conditions. Rapidly changing market scenario and the initial assessment and the future of this effect is included in the report. Reports put together a brief analysis of the factors affecting the growth of the current business scenarios in various areas. Important information relating to the size of the industry analysis, sharing, application, and statistics summed up in the report to present the ensemble prediction. In addition, this report includes an accurate competitive analysis of major market players and their strategies during the projection period.

This report includes market size estimates for the value (million USD) and volume (K Units). Both top-down and bottom-up approach has been used to estimate the size of the market and validate the Market of Stem Cell Cartilage Regeneration, to estimate the size of the various submarkets more dependent on the overall market. Key players in the market have been identified through secondary research and their market share has been determined through primary and secondary research. All the shares percentage, split, and the damage have been determined using secondary sources and primary sources verified.

Get Sample Copy with TOC of the Report to understand the structure of the complete report @ https://www.marketresearchintellect.com/download-sample/?rid=230238&utm_source=COD&utm_medium=888

Leading Stem Cell Cartilage Regeneration manufacturers/companies operating at both regional and global levels:

Stem Cell Cartilage Regeneration Market Competitive Landscape & Company Profiles

Competitor analysis is one of the best sections of the report that compares the progress of leading players based on crucial parameters, including market share, new developments, global reach, local competition, price, and production. From the nature of competition to future changes in the vendor landscape, the report provides in-depth analysis of the competition in the Stem Cell Cartilage Regeneration market.

Segmental Analysis

Both developed and emerging regions are deeply studied by the authors of the report. The regional analysis section of the report offers a comprehensive analysis of the global Stem Cell Cartilage Regeneration market on the basis of region. Each region is exhaustively researched about so that players can use the analysis to tap into unexplored markets and plan powerful strategies to gain a foothold in lucrative markets.

Stem Cell Cartilage Regeneration Market, By Product

Stem Cell Cartilage Regeneration Market, By Application

Regions Covered in these Report:

Asia Pacific (China, Japan, India, and Rest of Asia Pacific)Europe (Germany, the UK, France, and Rest of Europe)North America (the US, Mexico, and Canada)Latin America (Brazil and Rest of Latin America)Middle East & Africa (GCC Countries and Rest of Middle East & Africa)

To get Incredible Discounts on this Premium Report, Click Here @ https://www.marketresearchintellect.com/ask-for-discount/?rid=230238&utm_source=COD&utm_medium=888

Stem Cell Cartilage Regeneration Market Research Methodology

The research methodology adopted for the analysis of the market involves the consolidation of various research considerations such as subject matter expert advice, primary and secondary research. Primary research involves the extraction of information through various aspects such as numerous telephonic interviews, industry experts, questionnaires and in some cases face-to-face interactions. Primary interviews are usually carried out on a continuous basis with industry experts in order to acquire a topical understanding of the market as well as to be able to substantiate the existing analysis of the data.

Subject matter expertise involves the validation of the key research findings that were attained from primary and secondary research. The subject matter experts that are consulted have extensive experience in the market research industry and the specific requirements of the clients are reviewed by the experts to check for completion of the market study. Secondary research used for the Stem Cell Cartilage Regeneration market report includes sources such as press releases, company annual reports, and research papers that are related to the industry. Other sources can include government websites, industry magazines and associations for gathering more meticulous data. These multiple channels of research help to find as well as substantiate research findings.

Table of Content

1 Introduction of Stem Cell Cartilage Regeneration Market

1.1 Overview of the Market1.2 Scope of Report1.3 Assumptions

2 Executive Summary

3 Research Methodology

3.1 Data Mining3.2 Validation3.3 Primary Interviews3.4 List of Data Sources

4 Stem Cell Cartilage Regeneration Market Outlook

4.1 Overview4.2 Market Dynamics4.2.1 Drivers4.2.2 Restraints4.2.3 Opportunities4.3 Porters Five Force Model4.4 Value Chain Analysis

5 Stem Cell Cartilage Regeneration Market, By Deployment Model

5.1 Overview

6 Stem Cell Cartilage Regeneration Market, By Solution

6.1 Overview

7 Stem Cell Cartilage Regeneration Market, By Vertical

7.1 Overview

8 Stem Cell Cartilage Regeneration Market, By Geography

8.1 Overview8.2 North America8.2.1 U.S.8.2.2 Canada8.2.3 Mexico8.3 Europe8.3.1 Germany8.3.2 U.K.8.3.3 France8.3.4 Rest of Europe8.4 Asia Pacific8.4.1 China8.4.2 Japan8.4.3 India8.4.4 Rest of Asia Pacific8.5 Rest of the World8.5.1 Latin America8.5.2 Middle East

9 Stem Cell Cartilage Regeneration Market Competitive Landscape

9.1 Overview9.2 Company Market Ranking9.3 Key Development Strategies

10 Company Profiles

10.1.1 Overview10.1.2 Financial Performance10.1.3 Product Outlook10.1.4 Key Developments

11 Appendix

11.1 Related Research

Customized Research Report Using Corporate Email Id @ https://www.marketresearchintellect.com/need-customization/?rid=230238&utm_source=COD&utm_medium=888

About Us:

Market Research Intellect provides syndicated and customized research reports to clients from various industries and organizations with the aim of delivering functional expertise. We provide reports for all industries including Energy, Technology, Manufacturing and Construction, Chemicals and Materials, Food and Beverage and more. These reports deliver an in-depth study of the market with industry analysis, market value for regions and countries and trends that are pertinent to the industry.

Contact Us:

Mr. Steven Fernandes

Market Research Intellect

New Jersey ( USA )

Tel: +1-650-781-4080

Our Trending Reports

Digital Lending Platform Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Digital Intelligence Platform Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Digital Experience Management Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Read more:
Stem Cell Cartilage Regeneration Market Analysis, Top Manufacturers, Share, Growth, Statistics, Opportunities and Forecast To 2026 - Cole of Duty

Posted in Stem Cell Research | Comments Off on Stem Cell Cartilage Regeneration Market Analysis, Top Manufacturers, Share, Growth, Statistics, Opportunities and Forecast To 2026 – Cole of Duty

Stem Cell Media Market Analysis, Top Manufacturers, Share, Growth, Statistics, Opportunities and Forecast To 2026 – Cole of Duty

Posted: June 17, 2020 at 9:45 am

New Jersey, United States,- A detailed research study on Stem Cell Media Market recently published by Market Research Intellect. This is the latest report, which covers the time COVID-19 impact on the market. Pandemic Coronavirus (COVID-19) has affected every aspect of global life. This has brought some changes in market conditions. Rapidly changing market scenario and the initial assessment and the future of this effect is included in the report. Reports put together a brief analysis of the factors affecting the growth of the current business scenarios in various areas. Important information relating to the size of the industry analysis, sharing, application, and statistics summed up in the report to present the ensemble prediction. In addition, this report includes an accurate competitive analysis of major market players and their strategies during the projection period.

This report includes market size estimates for the value (million USD) and volume (K Units). Both top-down and bottom-up approach has been used to estimate the size of the market and validate the Market of Stem Cell Media, to estimate the size of the various submarkets more dependent on the overall market. Key players in the market have been identified through secondary research and their market share has been determined through primary and secondary research. All the shares percentage, split, and the damage have been determined using secondary sources and primary sources verified.

Get Sample Copy with TOC of the Report to understand the structure of the complete report @ https://www.marketresearchintellect.com/download-sample/?rid=207805&utm_source=COD&utm_medium=888

Leading Stem Cell Media manufacturers/companies operating at both regional and global levels:

Stem Cell Media Market Competitive Landscape & Company Profiles

Competitor analysis is one of the best sections of the report that compares the progress of leading players based on crucial parameters, including market share, new developments, global reach, local competition, price, and production. From the nature of competition to future changes in the vendor landscape, the report provides in-depth analysis of the competition in the Stem Cell Media market.

Segmental Analysis

Both developed and emerging regions are deeply studied by the authors of the report. The regional analysis section of the report offers a comprehensive analysis of the global Stem Cell Media market on the basis of region. Each region is exhaustively researched about so that players can use the analysis to tap into unexplored markets and plan powerful strategies to gain a foothold in lucrative markets.

Stem Cell Media Market, By Product

Stem Cell Media Market, By Application

Regions Covered in these Report:

Asia Pacific (China, Japan, India, and Rest of Asia Pacific)Europe (Germany, the UK, France, and Rest of Europe)North America (the US, Mexico, and Canada)Latin America (Brazil and Rest of Latin America)Middle East & Africa (GCC Countries and Rest of Middle East & Africa)

To get Incredible Discounts on this Premium Report, Click Here @ https://www.marketresearchintellect.com/ask-for-discount/?rid=207805&utm_source=COD&utm_medium=888

Stem Cell Media Market Research Methodology

The research methodology adopted for the analysis of the market involves the consolidation of various research considerations such as subject matter expert advice, primary and secondary research. Primary research involves the extraction of information through various aspects such as numerous telephonic interviews, industry experts, questionnaires and in some cases face-to-face interactions. Primary interviews are usually carried out on a continuous basis with industry experts in order to acquire a topical understanding of the market as well as to be able to substantiate the existing analysis of the data.

Subject matter expertise involves the validation of the key research findings that were attained from primary and secondary research. The subject matter experts that are consulted have extensive experience in the market research industry and the specific requirements of the clients are reviewed by the experts to check for completion of the market study. Secondary research used for the Stem Cell Media market report includes sources such as press releases, company annual reports, and research papers that are related to the industry. Other sources can include government websites, industry magazines and associations for gathering more meticulous data. These multiple channels of research help to find as well as substantiate research findings.

Table of Content

1 Introduction of Stem Cell Media Market

1.1 Overview of the Market1.2 Scope of Report1.3 Assumptions

2 Executive Summary

3 Research Methodology

3.1 Data Mining3.2 Validation3.3 Primary Interviews3.4 List of Data Sources

4 Stem Cell Media Market Outlook

4.1 Overview4.2 Market Dynamics4.2.1 Drivers4.2.2 Restraints4.2.3 Opportunities4.3 Porters Five Force Model4.4 Value Chain Analysis

5 Stem Cell Media Market, By Deployment Model

5.1 Overview

6 Stem Cell Media Market, By Solution

6.1 Overview

7 Stem Cell Media Market, By Vertical

7.1 Overview

8 Stem Cell Media Market, By Geography

8.1 Overview8.2 North America8.2.1 U.S.8.2.2 Canada8.2.3 Mexico8.3 Europe8.3.1 Germany8.3.2 U.K.8.3.3 France8.3.4 Rest of Europe8.4 Asia Pacific8.4.1 China8.4.2 Japan8.4.3 India8.4.4 Rest of Asia Pacific8.5 Rest of the World8.5.1 Latin America8.5.2 Middle East

9 Stem Cell Media Market Competitive Landscape

9.1 Overview9.2 Company Market Ranking9.3 Key Development Strategies

10 Company Profiles

10.1.1 Overview10.1.2 Financial Performance10.1.3 Product Outlook10.1.4 Key Developments

11 Appendix

11.1 Related Research

Customized Research Report Using Corporate Email Id @ https://www.marketresearchintellect.com/need-customization/?rid=207805&utm_source=COD&utm_medium=888

About Us:

Market Research Intellect provides syndicated and customized research reports to clients from various industries and organizations with the aim of delivering functional expertise. We provide reports for all industries including Energy, Technology, Manufacturing and Construction, Chemicals and Materials, Food and Beverage and more. These reports deliver an in-depth study of the market with industry analysis, market value for regions and countries and trends that are pertinent to the industry.

Contact Us:

Mr. Steven Fernandes

Market Research Intellect

New Jersey ( USA )

Tel: +1-650-781-4080

Our Trending Reports

High-purity Calcium Aluminate Cements Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

High-resolution Audio(audiophile audio) Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

High-Substituted Hydroxypropyl Cellulose (H-HPC) Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Read the original here:
Stem Cell Media Market Analysis, Top Manufacturers, Share, Growth, Statistics, Opportunities and Forecast To 2026 - Cole of Duty

Posted in Stem Cell Research | Comments Off on Stem Cell Media Market Analysis, Top Manufacturers, Share, Growth, Statistics, Opportunities and Forecast To 2026 – Cole of Duty