Page 2,881«..1020..2,8802,8812,8822,883..2,8902,900..»

The Pet Corner: Behold! The future of modern medicine is here

Posted: February 4, 2012 at 10:14 am

Do you remember when we used to think some things were impossible? Modern technology has taught us to never say never or impossible. I think about the 1970s and 1980s growing up without cell phones, computers and many of the electronically advanced gadgets that our kids today take for granted. I can’t even imagine what the great innovators will come up with next.

When I was a young child, I remember watching science fiction movies about cloning people and remember how obscure and unbelievable it seemed at the time. It was common knowledge that cloning was strictly science fiction. Now, cloning is not only possible, but a procedure that has occurred with astonishing success. Fortunately, cloning has only been performed with animals and not yet humans.

Medically speaking, one of the most popular and potentially one of the most substantial advances in modern medicine is stem cell research and therapy. Initially, stem cell research was met with a great deal of resistance and controversy. The reason stem cell research had trouble getting started was because stem cells could only be collected from fetuses. With time, scientists have successfully harvested stem cells from other sources.

Stem cells are primitive or extremely young cells which are capable of dividing and changing into a variety of cell types. They have the ability to develop into cells that form muscle, cartilage, bone or other tissues. One of the remarkable findings about stem cells is that they seem to detect and “know” which tissue is damaged and automatically change into the cells needing repaired.

In actuality, the damaged tissue sends some type of signal to the stem cells allowing them to respond and promote healing of the injured tissues. Essentially, stem cells have the ability to grow into mature tissue cells wherever they are needed and this makes them very useful for repairing certain body tissues damaged by injury, disease and possibly aging.

Stem cell treatment is a type of medical therapy called regenerative medicine. Regenerative medicine is simply a category of medical therapy pertaining to growing new tissue. Although stem cell therapy is an extremely unique and obviously beneficial type of medical treatment, it is also a very vast field of medical research and certainly has not been completely perfected. There are countless possibilities and applications for stem cell therapy and medical researchers have barely scratched the surface with regards to stem cell potential.

Until now the gold standard for treating arthritis in pets has been to give them anti-inflammatory medications, joint supplements and sometimes acupuncture. Over the years, these types of medications have improved greatly and pets have benefitted wonderfully from receiving this kind of treatment. However, even with the improvements, these medications have potential side effects. Sometimes, the side effects may even outweigh the benefits, depending on the individual circumstance.

Therefore, stem cell therapy offers treatment that doesn’t just relieve the symptoms, but actually regenerates or grows new tissue allowing for complete healing and without side effects. Presently, there are some stem cell applications already being used in veterinary medicine!

Recently, veterinary specialists have developed a technique for collecting stem cells from fat tissue and administering the stem cells into dogs, cats and horses specifically for treatment of arthritis. The process involves collecting a small amount of fat from the patient and then the fat is placed into a machine which extracts and concentrates stem cells. Next, the stem cells are injected back into the patient’s joints forthe treatment of arthritis.

There is a certain protocol for proceeding with the stem cell therapy. First, a definitive diagnosis of arthritis, using X-rays, must be made by your veterinarian. Additionally, your pet would need a complete workup including blood tests and additional X-rays to rule out any other disease processes such as infection or cancer. Any patient with cancer would not be a good candidate for stem cell therapy and any infection would need to be cleared prior to stem cell therapy.

Following the initial workup, your pet would be sedated or anesthetized for surgical collection of fat tissue. The fat tissue would then be sent to a lab to have the stem cells extracted and processed from the fat. Then, your pet would need to be sedated again to administer the injections containing the stem cells into their arthritic joints.

In pets, stem cell therapy is primarily available and being used for arthritis. However, I have no doubt that it won’t be long before stem cell therapy will be used in pets to treat many diseases and conditions. It has already shown to be effective for diabetes, allergies, gastrointestinal diseases, pancreatitis and many other diseases.

If you have a pet that you think might be suffering from arthritis, contact your veterinarian as soon as possible to consider stem cell therapy and to ensure your pet lives a long, healthy and happy life.

Read the original:
The Pet Corner: Behold! The future of modern medicine is here

Posted in Cell Medicine | Comments Off on The Pet Corner: Behold! The future of modern medicine is here

The promise of stem cell therapies forum

Posted: February 4, 2012 at 6:13 am

(SACRAMENTO, Calif.) - Experts from UC Davis Health System will share the latest research about regenerative medicine, with a focus on chronic pain and the promise of stem cell therapies, during a community forum on the university's Sacramento campus. The discussion takes place on Tuesday, Feb. 7, from 6- 7:30 p.m. at the UC Davis Education Building, 4610 X Street, in Sacramento.

The event features Jan Nolta, director of the UC Davis Institute for Regenerative Cures; Scott Fishman, chief of the UC Davis Division of Pain Medicine; and Kee Kim, chief of spinal neurosurgery at UC Davis Medical Center. The three specialists will discuss the challenges of treating chronic pain, especially back and neck pain, and the clinical research now under way to use stem cell therapies to overcome it.

The forum is free and open to the public. It is part of "Stem Cell Dialogues," UC Davis Health System's discussion series about regenerative medicine and the goal of turning stem cells into cures. Each speaker will provide a short presentation followed by a panel discussion and question and answer period. The event will be moderated by Fred Meyers, professor of medicine and pathology, and executive associate dean of UC Davis School of Medicine.

Seating is limited. Those interested in attending must reserve a seat by contacting Kate Rodrigues at 916-734-9404 or e-mail kathleen.rodrigues@ucdmc.ucdavis.edu. Doors open at 5:30 p.m.  Free parking will be available in Lots 12 and 14, just south of the Education Building, near 45th Street and 2nd Avenue.

UC Davis is playing a leading role in regenerative medicine, with nearly 150 scientists working on a variety of stem cell-related research projects at campus locations in both Davis and Sacramento. The UC Davis Institute for Regenerative Cures, a facility supported by the California Institute for Regenerative Medicine (CIRM), opened in 2010 on the Sacramento campus. This $62 million facility is the university's hub for stem cell science. It includes Northern California's largest academic Good Manufacturing Practice laboratory, with state-of-the-art equipment and manufacturing rooms for cellular and gene therapies. UC Davis also has a Translational Human Embryonic Stem Cell Shared Research Facility in Davis and a collaborative partnership with the Institute for Pediatric Regenerative Medicine at Shriners Hospital for Children Northern California. All of the programs and facilities complement the university's Clinical and Translational Science Center, and focus on turning stem cells into cures. For more information, visit http://www.ucdmc.ucdavis.edu/stemcellresearch.

Original post:
The promise of stem cell therapies forum

Posted in Stem Cell Research | Comments Off on The promise of stem cell therapies forum

'Personalized medicine' gets $67.5M research boost

Posted: February 3, 2012 at 10:28 pm

The federal government is pledging up to $67.5 million for research into "personalized medicine," which tailors treatment to a patient's genetics and environment.

The funds will flow through Genome Canada, the Cancer Stem Cell Consortium and the Canadian Institutes of Health Research, the federal government's health research agency.

Federal Health Minister Leona Aglukkaq and Minister of State for Science Gary Goodyear made the announcement at the University of Ottawa's health campus Tuesday.

The field of personalized medicine is touted as having the potential to transform the way patients are treated. It looks at the genetic makeup of a person, the patient's environment and the exact course of a particular disease so that an appropriate and effective treatment can be tailored for that individual.

The idea is to move from a one-size-fits-all approach to one that is designed for a specific person and relies on the genetic signatures, or biomarkers, of both the patient and the disease.

Proponents of personalized medicine say it is likely to change the way drugs are developed, how medicines are prescribed and generally how illnesses are managed. They say it will shift the focus in health care from reaction to prevention, improve health outcomes, make drugs safer and mean fewer adverse drug reactions, and reduce costs to health-care systems.

"The potential to understand a person's genetic makeup and the specific character of their illness in order to best determine their treatment will significantly improve the quality of life for patients and their families and may show us the way to an improved health-care system and even save costs in certain circumstances," Aglukkaq said in a news release.

Research projects could last four years

The sequencing of the human genome paved the way for personalized medicine and there have been calls for more research funding so that the discoveries in laboratories can be translated further into the medical field so they will benefit patients more.

Identifying a person's genetic profile, for example, could then indicate a susceptibility to a certain disease, if the biomarkers of that disease have also been discovered. If people know they are genetically at risk of an illness they can take actions to prevent it, and their health-care providers can monitor for it.

Cancer patients could be pre-screened to determine if chemotherapy would work for them, which could not only save a lot of money on expensive treatments but also prevent pain and suffering for patients.

Genome Canada is leading the research initiative, in collaboration with Cancer Stem Cell Consortium and CIHR which on Tuesday launched its Personalized Medicine Signature Initiative. CIHR is committing up to $22.5 million to the large-scale initiative with the other two partners, but it will be providing more funding for other projects under its personalized medicine program.

The research projects are aiming to bring together biomedical, clinical, population health, health economics, ethics and policy researchers to identify areas that are best suited to personalized medicine.

Oncology, cardiovascular diseases, neurodegenerative diseases, psychiatric disorders, diabetes and obesity, arthritis, pain, and Alzheimer’s disease are all considered to be areas that hold promise for personalized medicine.

Funding will also go to projects that are aimed at developing more evidence-based and cost-effective approaches to health care.

Researchers can get up to four years of funding, but 50 per cent of their requested funding must be matched from another source, such as a provincial government or from the academic or private sectors.

Genome Canada, CIHR and the cancer consortium will invest a maximum of $5 million in each individual project.

The successful applicants for the $67.5 million worth of funding won't be announced until December.

Follow this link:
'Personalized medicine' gets $67.5M research boost

Posted in Cell Medicine | Comments Off on 'Personalized medicine' gets $67.5M research boost

Stem Cells Offer Hope For The Blind – Video

Posted: February 3, 2012 at 7:46 pm

30-01-2012 09:58 Doctors in Toronto, Canada perform a successful procedure using embryonic stem cells to treat macular degeneration which causes blindness.

See more here:
Stem Cells Offer Hope For The Blind - Video

Posted in Stem Cells | Comments Off on Stem Cells Offer Hope For The Blind – Video

Neurons from stem cells could replace mice in botulinum test

Posted: February 3, 2012 at 7:46 pm

Feb. 3, 2012

Using lab-grown human neurons, researchers from the University of Wisconsin-Madison have devised an effective assay for detecting botulinum neurotoxin, the agent widely used to cosmetically smooth the wrinkles of age and, increasingly, for an array of medical disorders ranging from muscle spasticity to loss of bladder control.

The new assay uses neurons, the critical impulse conducting cells of the central nervous system, derived from induced human pluripotent stem cells. It is the first test to employ stem cell derivatives to reliably and quantitatively detect botulinum neurotoxin and the antibodies that can neutralize the toxin's effects.

The assay is likely to draw considerable interest from industry as a potential replacement for the mouse, an animal now used by the thousands to control the potency of pharmaceutical preparations of the powerful neurotoxin.

Using cells provided by Madison-based Cellular Dynamics International, a company that industrially manufactures induced pluripotent stem cells and their derivative tissue cells for use in research and industry, the University of Wisconsin-Madison team devised an assay that is more sensitive than the mouse assay required for quality control of pharmaceutical preparations of botulinum toxin.

"This is an optimal testing platform for botulinum neurotoxin products," explains Sabine Pellett who, with UW-Madison professor of bacteriology Eric A. Johnson, led the new study published this week in the journal Toxicological Sciences. "A cell-based assay that is at least as sensitive and reproducible as the mouse bioassay can serve as a viable alternative and largely eliminate the need to use animals."

The toxin is used most famously for cosmetic purposes to erase the facial wrinkles that come with age. However, it is also used in a growing number of medical applications. Since it was first approved in 1990 for use in human patients with strabismus or cross-eye, the toxin, which works by blocking communication between nerves and muscles, has been used to successfully treat excessive sweating, chronic migraine headaches, painful neck spasms known as dystonia, and muscle conditions associated with cerebral palsy, multiple sclerosis and stroke. In 2010, the Food and Drug Administration (FDA) approved the toxin for use in treating loss of bladder control. Pharmaceutical applications of the toxin underpin a market that easily exceeds $1 billion annually.

Botulinum toxin is a protein produced by the bacterium Clostridium botulinum. It is the most potent toxin known to science and before its first experimental medical application to treat cross-eye was best known as a food poison. The methods to produce the toxin in large quantities and to precise specifications were pioneered at UW-Madison by Johnson and his late mentor, Ed Schantz.

Because of its incredible potency, the quality and dosages of the toxin for medical use must be carefully prepared.

The preparations made by pharmaceutical companies, says Johnson, actually contain very little toxin. To ensure that batches of the agent are of the correct therapeutic dose and of uniform quality, they are tested by injecting mice at a specified dosage that kills half of all mice exposed to the toxin.

"The mouse assay has many drawbacks and hundreds of thousands of mice are used for this every year," Pellett explains. "The most important result of this study is the high sensitivity of the assay, greater than the mouse bioassay, which is required for quality control."

The pharmaceutical industry, Johnson adds, is under pressure from the FDA to develop alternatives to the mouse. One cell-based assay has already been developed by Allergan, the company that makes BOTOX, the most famous trade name for botulinum toxin. However, the details of that assay have not been made available.

"The assay we developed is another cell based assay," notes Pellett, "one that uses normal human neurons derived from induced pluripotent stem cells, and which can be optimized for any pharmaceutical botulinum neurotoxin product."

In addition to Pellett and Johnson, authors of the new study include Regina Whitemarsh and William H. Tepp, of UW-Madison; and Monica. J. Strathman, Lucas G. Chase and Casey Stankewicz of Cellular Dynamics International. The study was funded by the U.S. National Institutes of Health.

See original here:
Neurons from stem cells could replace mice in botulinum test

Posted in Stem Cells | Comments Off on Neurons from stem cells could replace mice in botulinum test

Molecules to Medicine: Plan B: The Tradition of Politics at the FDA

Posted: February 3, 2012 at 1:28 pm

Posted in Cell Medicine | Comments Off on Molecules to Medicine: Plan B: The Tradition of Politics at the FDA

Statement – Rx&D Applauds Government of Canada for Investing in Personalized Medicine

Posted: February 3, 2012 at 11:28 am

OTTAWA , Feb. 1, 2012 /CNW/ - The following is a statement by Russell Williams , President of Canada's Research-Based Pharmaceutical Companies (Rx&D) on the announcement by the Government of Canada today to ensure that personalized medicine will allow for more effective treatments, thus supporting our Canadian health care system in a more sustainable way.

"Canada's Research-Based Pharmaceutical Companies welcome this commitment by the Government of Canada to establish personalized medicine as the way to transform the delivery of health care to patients.

"At Rx&D, we believe that providing the right medicine with the right dose to the right patient at the right time is crucial to improving health outcomes for Canadians. With the rise of chronic disease and an aging population, all governments are grappling with unprecedented demand for health care services. It is clear that we face a collective challenge to sustain and improve our health care system where traditional approaches are no longer efficient.

"We commend the Government of Canada's commitment to engage in this work. Pharmaceutical innovation is a proven tool to help Canadians live longer, healthier, more productive lives. It is critical to the future productivity of our country, our workplaces, our communities and our citizens. Innovation is essential for "patient-centered" care.

"The development of new and more effective medicines and vaccines continues to change the face of health care in Canada . Canadians now survive life threatening illnesses and live with chronic conditions in ways not possible for previous generations.

"We applaud the Canadian Institutes of Health Research, Genome Canada and the Cancer Stem Cell Consortium for their vision and leadership to develop and implement a scientific innovation that will result in better health for Canadians."

About Rx&D

Rx&D is the association of leading research-based pharmaceutical companies dedicated to improving the health of Canadians through the discovery and development of new medicines and vaccines. Our community represents 15,000 men and women working for 50 member companies and invests more than $1 billion in research and development each year to fuel Canada's knowledge-based economy. Guided by our Code of Ethical Practices, our membership is committed to working in partnership with governments, healthcare professionals and stakeholders in a highly ethical manner.

The rest is here:
Statement - Rx&D Applauds Government of Canada for Investing in Personalized Medicine

Posted in Cell Medicine | Comments Off on Statement – Rx&D Applauds Government of Canada for Investing in Personalized Medicine

stem cell therapy mexico, Successfully Results – Video

Posted: February 3, 2012 at 11:27 am

23-11-2011 02:11 For instance, neural cells in the brain and spinal cord that have been damaged can be replaced by stem cells. In the treatment of cancer, cells partially damaged by radiation or chemotherapy can be replaced with new healthy stem cells that adapt to the affected area, whether it be part of the brain, heart, liver, lungs, or wherever. Dead cells of almost any kind, no matter the type of injury or disease, can be replaced with new healthy cells thanks to the amazing flexibility of stem cells.

Read this article:
stem cell therapy mexico, Successfully Results - Video

Posted in Stem Cell Therapy | Comments Off on stem cell therapy mexico, Successfully Results – Video

CORRECTING and REPLACING Leading Global Cell Therapy Organizations Support U.S. Department of Justice Appeal of Ruling …

Posted: February 3, 2012 at 4:53 am

MINNEAPOLIS--(BUSINESS WIRE)-- Please replace the release dated January 23, 2012 with the following corrected version due to multiple revisions.

The corrected release reads:

LEADING GLOBAL CELL THERAPY ORGANIZATIONS SUPPORT U.S. DEPARTMENT OF JUSTICE APPEAL OF RULING ON DONOR COMPENSATION

Coalition says PBSC donor compensation poses health risks to patients and donors

A coalition of eight leading international health organizations today issued a statement supporting the U.S. Department of Justice’s appeal of the Ninth Circuit Court ruling that allows certain marrow donors to be compensated. Filed Jan. 17, the Justice Department’s appeal cites the potential for serious health risks to patients and donors if the ruling stands.

Approximately 5,000 patients each year in the United States receive marrow transplants from unrelated donors to treat leukemia, lymphoma and a number of other diseases. The marrow is a source of stem cells that are critical to restoring the immune system for these patients. Two techniques are used to extract these stem cells. The first draws marrow directly from the donor’s hip bone and the second moves the stem cells out of the bone marrow and into the bloodstream using a stimulating hormone, and then collects peripheral blood stem cells (PBSCs) in a procedure similar to the collection of platelets from blood donors.

Since 1984, the National Organ Transplant Act (NOTA) has banned payment for all marrow stem cell donations. However, a Dec. 1, 2011, Ninth Circuit Court of Appeals ruling legalized compensation for PBSC donations, but upheld the ban on compensation for marrow donation through aspiration.

“The world’s leading cell therapy organizations oppose compensating people who sell their stem cells, however collected, and believe the Ninth Circuit made an erroneous distinction between marrow stem cells extracted directly from bone or from blood,” said Jeffrey W. Chell, M.D., chief executive officer of the National Marrow Donor Program® (NMDP), a coalition member that operates the Be The Match Registry®, the world’s largest listing of volunteer marrow donors. “We fully support the Justice Department’s decision to protect patients and their donors by challenging the ruling. Those motivated by self-gain are more likely to withhold health information that would make them unsafe donors. The blood banking experience in the United States shows that this results in donations that are unacceptable from a clinical standpoint.”

The coalition includes the nonprofit NMDP, the World Marrow Donor Association, America’s Blood Centers, AABB, the American Society for Blood and Marrow Transplantation, American Society of Histocompatibility and Immunogenetics, International Society of Cellular Therapy and The Transplantation Society. Those seeking to overturn the ban against selling stem cells argue that payment for donors might increase patients’ access to bone marrow; however, the coalition asserts the opposite is true.

Paying for stem cells also would mean the U.S. no longer follows standards recognized throughout developed countries in Europe and Asia, which use volunteer donors in cell therapies. As a result, patients may not be able to use the worldwide search process. These international partnerships are vital to helping increase patients’ access to potential donors. In 2011, nearly half of the transplants facilitated by the NMDP involved either an international donor or patient.

The coalition cites the following reasons in its position against donor compensation:

Protecting Recipient and Donor Safety
A complete and truthful health history is critical to ensure that individuals are eligible to donate and that donated cells are free from infectious diseases. There is substantial scientific evidence that people wanting to sell their blood or body parts are more likely to withhold medical details and information that could harm patients. Ensuring Physicians’ Ability to Provide Quality Care
The decision of whether the donation occurs through the traditional method of bone marrow extraction or PBSC donation should be based on the best clinical judgment of the patient’s physician and will vary from patient to patient. While the donor always has the last say on whether and how to donate, PBSCs may not be in the best interests of the patient in many cases. Paying for PBSCs may cause donors to choose this method instead of a marrow extraction recommended by the recipient’s physician. Maintaining Altruistic Motivations
Compensating donors could deter those who are willing to donate for purely altruistic reasons. The more than 9.5 million members of the Be The Match Registry, as well as an additional 9 million potential donors available on international registries, are proof positive that people do not need financial incentive to save a life. Avoiding the Creation of Markets in Marrow Donation
Patients may promote donor drives with the promise of compensation, appealing to those with financial need, and not fully disclose the risks associated with the donation. For profit organizations also have an incentive to exploit their donors over a patient’s unique needs. In addition, markets put physicians in the morally dubious position of carrying out medical procedures solely for monetary profit.

For these reasons, the members of the coalition remain opposed to the selling of stem cells.

About the Coalition
The coalition includes the NMDP, America’s Blood Centers, AABB, the American Society for Blood and Marrow Transplantation, American Society for Histocompatibility and Immunogenetics, International Society of Cellular Therapy, The Transplantation Society, and the World Marrow Donor Association.

About the National Marrow Donor Program®(NMDP)
The National Marrow Donor Program (NMDP) is the global leader in providing marrow and umbilical cord blood transplants to patients with leukemia, lymphoma and other diseases. The nonprofit organization matches patients with donors, educates health care professionals and conducts research so more lives can be saved. The NMDP also operates Be The Match®, which provides support for patients, and enlists others in the community to join the Be The Match Registry® – the world’s largest listing of potential marrow donors and donated cord blood units – contribute financially and volunteer. For more information, visit marrow.org or call 1 (800) MARROW-2.

Link:
CORRECTING and REPLACING Leading Global Cell Therapy Organizations Support U.S. Department of Justice Appeal of Ruling ...

Posted in Cell Therapy | Comments Off on CORRECTING and REPLACING Leading Global Cell Therapy Organizations Support U.S. Department of Justice Appeal of Ruling …

“Wide-ranging applications for pluripotent stem cells”

Posted: February 2, 2012 at 11:08 pm

The Hindu Shinya Yamanaka, Centre for iPS Cell Research and Application, Japan delivering a lecture in Chennai on Thursday. Photo: V. Ganesan

Many more diseases can be targeted, says expert

While applications of induced pluripotent stem cells in stem cell therapy may be limited to a few diseases, its applications in drug discovery are wide-ranging, and many more diseases can be targeted, Shinya Yamanaka, Director, Centre for iPS Cell Research and Application, Japan, has said.

The Japanese scientist, whose breakthrough was the creation of embryonic-like stem cells from adult skin cells, believes that the best chance for stem cell therapy lies in offering hope to those suffering from a few conditions, among them, macular disease, Type 1 Diabetes, and spinal cord injuries.

On the other hand, there were multiple possibilities with drug discovery for a range of diseases, and Prof. Yamanaka was hopeful that more scientists would continue to use iPS for studying this potential.

He currently serves as the Director of the Center for iPS Cell Research and Application and as Professor at the Institute for Frontier Medical Sciences at Kyoto University. He is also a Senior Investigator at the University of California, San Francisco (UCSF) - affiliated J. David Gladstone Institutes.

An invited speaker of the CellPress-TNQ India Distinguished Lectureship Series, co-sponsored by Cell Press and TNQ Books and Journals, Prof. Yamanaka spoke to a Chennai audience on Tuesday evening about those “immortal” cells, that he originally thought would take “forever” to create, but actually took only six years.

“My fixed vision for my research team was to re-programme adult cells to function like embryonic-like stem cells. I knew it could be done, but just didn't know how to do it,” Prof. Yamanaka said.

Embryonic stem cells are important because they are pluripotent, or possess the ability to differentiate into any other type of cell, and are capable of rapid proliferation. However, despite the immense possibilities of that, embryonic cells are a mixed blessing: there are issues with post-transplant rejection (since they cannot be used from a patient's own cells), and many countries of the world do not allow the use of human embryos.

Dr. Yamanaka's solution would scale these challenges if only he and his team could find a way to endow non-embryonic cells with those two key characteristics of embryonic stem cells.

In 2006, he and his team of young researchers — Yoshimi Tokuzawa, Kazutoshi Takahashi and Tomoko Ishisaka — were able to show that by introducing four factors into mouse skin cells, it was possible to generate ES-like mouse cells. The next year, they followed up that achievement, replicating the same strategy and converted human skin cells into iPS cells. “All we need is a small sample of skin (2-3millimetres) from the patient. This will be used to generate skin fibroblasts, and adding the factors, they can be converted to iPS cells. These cells can make any type of cell, including beating cardiac myocytes (heart cells), Prof.Yamanaka explained.

iPS cells hold out for humanity a lot of hope in curing diseases that have a single cell cause. Prominent among them are Lou Gehrig's Disease or Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease. Motor neurons degenerate and die, and no effective treatment exists thus far. One reason is that there have not been good disease models for ALS in humans. It is difficult to get motor neuron from human patients and motor neurons cannot divide.

“Now, iPS cells can proliferate and can be differentiated to make motor neurons in large numbers,” he explained. Already a scientist in Japan has clarified motor neuron cells from iPS. “We are hoping that in the near future we would be able to evolve drug candidates that will be useful for ALS patients.” Treatment of spinal cord injuries using iPS cells has showed good results in mice and monkey specimens, and it is likely that in two or three years, scientists will be ready to start treatment for humans.

Toxicology, or drug side effects, is another area where iPS cells can be of use. Testing drug candidates directly on patients can be extremely dangerous. However, iPS cells can be differentiated into the requisite cell type, and the drugs tested on them for reactions. And yet, as wonderful as they may seem, iPS cells do have drawbacks, and there are multiple challenges to be faced before the technology can be applied to medicine. Are they equivalent and indistinguishable from ES cells? For a technology that has been around for only five years, the questions remain about safety. Also to derive patient-specific iPS cells, the process is time, and money-consuming, Prof. Yamanaka pointed out.

There are however, solutions in the offing, for the man who made the world's jaw drop with his discovery. One would be to create an iPS cell bank, where iPS cells could be created in advance from healthy volunteers donating peripheral blood, and skin fibroblasts, apart from frozen cord blood. The process of setting a rigorous quality control mechanism to select the best and safest iPS clones is on and would be complete within a year or two. “Many scientists are studying iPS cells across the world, and I'm optimistic that because of these efforts, we can overcome the challenges of iPS, and contribute to newer treatments for intractable diseases,” Prof. Yamanaka said.

N. Ram, Director, Kasturi & Sons Limited, introduced the speaker. Mariam Ram, managing director, TNQ India; and Emilie Marcus, executive editor, Cell Press, spoke.

Visit link:
“Wide-ranging applications for pluripotent stem cells”

Posted in Stem Cell Videos | Comments Off on “Wide-ranging applications for pluripotent stem cells”

Page 2,881«..1020..2,8802,8812,8822,883..2,8902,900..»