Page 2,725«..1020..2,7242,7252,7262,727..2,7302,740..»

Dr. Ulrich Friedrichson, MD,PHD – Cell Therapy Introduction – Video

Posted: June 25, 2012 at 2:12 pm

25-06-2012 00:49 ProGenaCell physicians provide advanced cellular therapy to patients suffering from all known degenerative diseases. For over 70 years cell therapy has been used safely and effectively in such diverse regions as the European Union, former USSR, Republic of China, Middle East, Pacific Rim, Central and South America, Baja California and more recently the United States under select clinical trials. ProGenaCell provides patients with autologous stem cells (patient's own cells), adult progenitor xenocells, and organ extracts & growth factors. These "cellular products" are delivered to physicians who have been approved to prescribe and administer cellular therapies to patients in need. All cellular products are lawfully manufactured, and regulated under strict European Union guidelines. Visit us:

See the rest here:
Dr. Ulrich Friedrichson, MD,PHD - Cell Therapy Introduction - Video

Posted in Cell Therapy | Comments Off on Dr. Ulrich Friedrichson, MD,PHD – Cell Therapy Introduction – Video

TaiGen Biotechnology Out-Licensed China Rights of Novel Antibiotic, Nemonoxacin, to Zhejiang Medicine

Posted: June 25, 2012 at 2:11 pm

TAIPEI, June 25, 2012 /PRNewswire-Asia/ -- TaiGen Biotechnology Company, Limited ("TaiGen") and Zhejiang Medicine Company, Limited ("ZMC") today announced that they have signed an exclusive agreement to manufacture and commercialize nemonoxacin, a novel broad-spectrum antibiotic, in China (excluding Hong Kong, and Macau). Nemonoxacin is a novel broad-spectrum non-fluorinated quinolone antibiotic under development for respiratory infections. TaiGen will be responsible for completing the Phase 3 clinical trial for community acquired pneumonia ("CAP") in China. ZMC will be responsible for manufacturing, sales and marketing of nemonoxacin in China through its wholly-owned subsidiary, XinChang Pharmaceuticals. TaiGen will retain full development and commercialization rights outside the licensed territory including Taiwan, the United States, European Union, and Japan. Under the terms of the agreement, TaiGen will receive an upfront payment of US$ 8 million from ZMC and will receive additional milestones as well as royalties on product sales. The term of the agreement is 20 years.

Nemonoxacin has demonstrated efficacy and safety in CAP and diabetic foot infection in multinational and multi-center clinical trials conducted by TaiGen. In particular, nemonoxacin has excellent activity against drug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) and quinolone-resistant MRSA. Nemonoxacin is taken once-a-day and available in both oral and intravenous formulations. Currently, TaiGen is completing a Phase 3 CAP trial with more than 500 patients from Taiwan and mainland China and expects to file new drug applications in Taiwan and mainland China simultaneously in early 2013.

China is one of the major antibiotic markets in the world. According to IMS, the sales of antibiotics in 2011 were approximately US$ 11 billion (RMB 68 billion) and account for almost 20% of the total pharmaceuticals sales. Rate of antibiotic resistant infections in China is among the highest in the world.

Mr. Li Chun Bo, Chairman of the ZMC, commented, "We are impressed with nemonoxacin's broad spectrum activity towards drug-resistant bacteria, in particular, MRSA, and excellent safety profile. We are excited to establish this partnership with TaiGen because of its reputation as a premier research-based biotech company in Asia. This partnership will break new ground for cross-strait collaboration in the pharmaceutical industry. Nemonoxacin will be a major addition to ZMC's antibiotic product line and significant profit driver".

Dr. Ming-Chu Hsu, President and Chief Executive Officer of TaiGen, said, "China is the world's fastest growing pharmaceutical market. It is poised to overtake Japan as the second largest pharmaceutical market. We are extremely please to establish our nemonoxacin partnership with ZMC, a first-class pharmaceutical company and major player in the Chinese antibiotics market. With nemonoxacin, TaiGen and ZMC together will bring new medicine to treat unmet medical needs in China. This partnership will not only set a new record for pharmaceutical licensing involving a Taiwanese and a mainland Chinese company but hopefully will also become a model of the future collaborations," Dr. Hsu also added, "With the conclusion of the partnership in China, we will actively pursue nemonoxacin licensing discussions in other territories such as European Union."

About Zhejiang Medicine

Zhejiang Medicine Company, Limited is a leading pharmaceutical company in China specializing in sales and distribution of pharmaceuticals and manufacturing of active pharmaceutical ingredients (vitamins and antibiotics). Its sales revenue in 2011 is US $740 million (RMB 4.8 billion). ZMC is a leader in the Chinese antibiotic market with levofloxacin, vancomycin, and teicoplanin in the product line. ZMC's Lai Li Xin, a branded levofloxacin, is one of the top selling antibiotics in China with 2011 sales exceeding US $110 million (RMB 735 million). In addition to pharmaceuticals sales, ZMC is also known for its manufacturing quality. Its vancomycin active pharmaceutical ingredient has obtained GMP qualification from US Food and Drug Administration (FDA) and exported to western countries. ZMC is publicly listed in the Shanghai Stock Exchange (600216) and has a market capitalization of RMB 11 billion.

About TaiGen Biotechnology

TaiGen Biotechnology is a leading research-based and product-driven biotechnology company in Taiwan with a wholly-owned subsidiary in Beijing, mainland China. TaiGen has full discovery research capacity in Taiwan and clinical development in mainland China/Taiwan/US. In addition to nemonoxacin, TaiGen has two other in-house discovered new chemical entities in clinical development under IND with US FDA: TG-0054, a chemokine receptor antagonist for stem cell transplantation and chemosensitization, in Phase 2 and TG-2349, a HCV protease inhibitor for treatment of chronic hepatitis infection, in Phase 1. Both TG-0054 and TG-2349 are currently in clinical development in the US.

Disclaimer

Go here to read the rest:
TaiGen Biotechnology Out-Licensed China Rights of Novel Antibiotic, Nemonoxacin, to Zhejiang Medicine

Posted in Cell Medicine | Comments Off on TaiGen Biotechnology Out-Licensed China Rights of Novel Antibiotic, Nemonoxacin, to Zhejiang Medicine

Research and Markets: Translational Regenerative Medicine – Oncology, CNS and Cardiovascular-Rich Pipeline Features …

Posted: June 25, 2012 at 2:11 pm

DUBLIN--(BUSINESS WIRE)--

Research and Markets (http://www.researchandmarkets.com/research/skdhnn/translational_rege) has announced the addition of the "Translational Regenerative Medicine - Oncology, CNS and Cardiovascular-Rich Pipeline Features Innovative Stem Cell and Gene Therapy Applications" report to their offering.

More Guidelines Needed to Grow Regenerative Medicine Market, Report Finds

Standardized research guidelines are needed to control and encourage the development of gene therapy and stem cell treatments, according to a new report by healthcare experts GBI Research.

The new report* shows how regenerative medicine is seen as an area with high future potential, as countries need ways to cope with the burden of an aging population.

The stem cell market alone is predicted to grow to around $5.1 billion by 2014, while gene therapy has also shown promise despite poor understanding of some areas of regenerative medicine and a lack of major approvals (the only approvals to date being made in Asia).

Up until now, securing research within clinics has been difficult, with a high number of failures and discontinuations throughout all phases of clinical study. Stem cell therapy uses bone marrow transplants as an established treatment method, but the development of the therapy into further applications and has not yet become common practice.

Similarly, tissue engineering has been successful in the areas of skin and bone grafts, but translation into more complex therapies has been an issue for researchers. Although scientific possibilities are ever-increasing, the true potential of regenerative medicine has yet to be demonstrated fully.

A desire to discover new and innovative technologies has encouraged governments in the UK and Singapore to focus directly on regenerative medicine as a future potential economy booster.

Companies Mentioned:

See the rest here:
Research and Markets: Translational Regenerative Medicine - Oncology, CNS and Cardiovascular-Rich Pipeline Features ...

Posted in Cell Medicine | Comments Off on Research and Markets: Translational Regenerative Medicine – Oncology, CNS and Cardiovascular-Rich Pipeline Features …

Bioheart’s Chief Science Officer Kristin Comella Presents at 10th Annual Meeting of International Society for Stem …

Posted: June 25, 2012 at 2:11 pm

SUNRISE, Fla., June 25, 2012 (GLOBE NEWSWIRE) -- Bioheart, Inc. (BHRT.OB) announced today that Kristin Comella, the company's Chief Science Officer presented at the 10th Annual Meeting of the International Society for Stem Cell Research (ISSCR) in Yokohama, Japan June 13 - 16, 2012. One of the world's premier stem cell research events, the ISSCR format includes international research and poster presentations from invited speakers, exceptional peer-to-peer learning and unparalleled networking opportunities.

Comella presented a poster on clinical applications of adipose or fat derived stem cells (ADSCs).

The ISSCR annual meeting serves as the largest forum for stem cell and regenerative medicine professionals from around the world. Through lectures, symposia, workshops, and events attendees experience innovative stem cell and regenerative medicine research, advances and what's on the horizon. The meeting features more than 1,000 abstracts, nearly 150 speakers and provides numerous networking and professional development opportunities and social events. For additional information, visit http://www.isscr.org.

Kristin Comella has over 14 years experience in corporate entities with expertise in regenerative medicine, training and education, research, product development and senior management including more than 10 years of cell culturing experience. She has made a significant contribution to Bioheart's product development, manufacturing and quality systems since she joined the company in September 2004.

About Bioheart, Inc.

Bioheart is committed to maintaining its leading position within the cardiovascular sector of the cell technology industry delivering cell therapies and biologics that help address congestive heart failure, lower limb ischemia, chronic heart ischemia, acute myocardial infarctions and other issues. Bioheart's goals are to cause damaged tissue to be regenerated, when possible, and to improve a patient's quality of life and reduce health care costs and hospitalizations.

Specific to biotechnology, Bioheart is focused on the discovery, development and, subject to regulatory approval, commercialization of autologous cell therapies for the treatment of chronic and acute heart damage and peripheral vascular disease. Its leading product, MyoCell, is a clinical muscle-derived cell therapy designed to populate regions of scar tissue within a patient's heart with new living cells for the purpose of improving cardiac function in chronic heart failure patients. For more information on Bioheart, visit http://www.bioheartinc.com, or visit us on Facebook: Bioheart and Twitter @BioheartInc.

Forward-Looking Statements: Except for historical matters contained herein, statements made in this press release are forward-looking statements. Without limiting the generality of the foregoing, words such as "may," "will," "to," "plan," "expect," "believe," "anticipate," "intend," "could," "would," "estimate," or "continue" or the negative other variations thereof or comparable terminology are intended to identify forward-looking statements.

Forward-looking statements involve known and unknown risks, uncertainties and other factors which may cause our actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements. Also, forward-looking statements represent our management's beliefs and assumptions only as of the date hereof. Except as required by law, we assume no obligation to update these forward-looking statements publicly, or to update the reasons actual results could differ materially from those anticipated in these forward-looking statements, even if new information becomes available in the future.

The Company is subject to the risks and uncertainties described in its filings with the Securities and Exchange Commission, including the section entitled "Risk Factors" in its Annual Report on Form 10-K for the year ended December 31, 2011, and its Quarterly Report on Form 10-Q for the quarter ended March 30, 2012.

More:
Bioheart's Chief Science Officer Kristin Comella Presents at 10th Annual Meeting of International Society for Stem ...

Posted in Cell Therapy | Comments Off on Bioheart’s Chief Science Officer Kristin Comella Presents at 10th Annual Meeting of International Society for Stem …

NeoStem Awarded NIAID Research Grant for the Development of VSEL Technology for Radiation Exposure

Posted: June 25, 2012 at 2:11 pm

NEW YORK, June 25, 2012 (GLOBE NEWSWIRE) -- NeoStem, Inc. (NYSE MKT:NBS) ("NeoStem" or the "Company"), a cell therapy company, today announced that it has been awarded a two year grant totaling $595,252 for the "Development of Human, Autologous, Pluripotent Very Small Embryonic Like (VSELs) Stem Cells as a Countermeasure to Radiation Threat" from the National Institute of Allergy and Infectious Diseases (NIAID), a division of the National Institutes of Health (NIH). This peer reviewed grant was awarded to support research to be headed by Denis O. Rodgerson, Ph.D., Director of Stem Cell Science for NeoStem and Mariusz Ratajczak, M.D., Ph.D., who is the head of the Stem Cell Biology Program at the James Graham Brown Cancer Center at the University of Louisville and co-inventor of VSELTM Technology.

This award will fund studies to investigate the potential of very small embryonic-like stem cells as a countermeasure to radiological and nuclear threat. The product candidate, which is an autologous stem cell therapy derived from the patient's own stem cells, will be developed to rescue patients who have been exposed to radiation due to nuclear accident or terrorist threat and to treat cancer patients who have undergone radiation therapy and who consequently have compromised immune systems. The award includes $295,252 for the first year and $300,000 for the second year of the project.

Dr. Denis O. Rodgerson, Director of Stem Cell Science for NeoStem, said, "We are very excited to add radiation treatment to the growing list of indications for which our VSELTM Technology is being evaluated. Those exposed to acute high-dose radiation have compromised immune systems such that the virulence and infectivity of biological agents is dramatically increased. Death can occur within 1-6 weeks following radiation exposure. Currently there is only one intervention that saves a fatally irradiated person -- a rescue through stem cell transplantation. VSELs might be an ideal cell therapy to regenerate the body's immune system and repair other tissues damaged by radiation exposure. Most importantly, early studies show VSELs are resistant to lethal radiation which destroys other immune system restoring stem cells in the body, making autologous treatment post-exposure possible."

Dr. Robin L. Smith, Chairman and CEO of NeoStem, added, "NeoStem is pleased that the NIAID is funding this cutting edge technology that we hope will reinvent the treatment landscape for acute radiation syndrome. We plan to continue to pursue NIH SBIR grants to fund our VSEL technology platform development with non-dilutive capital."

About VSELTM Technology

NeoStem has a worldwide exclusive license to VSELTM Technology. Research by Dr. Mariusz Ratajczak, M.D., Ph.D., and others at the University of Louisville provides compelling evidence that bone marrow contains a heterogeneous population of stem cells that have properties similar to those of an embryonic stem cell. These cells are referred to as very small embryonic-like stem cells. This finding opens the possibility of capturing some of the key advantages associated with embryonic stem cells without the ethical or moral dilemmas and without some of the potential negative biological effects associated with stem cells of embryonic derivation. The possibility of autologous VSEL treatments is yet another important potential benefit to this unique population of adult stem cells. VSELTM Technology offers the potential to go beyond the paracrine effect, yielding cells that actually differentiate into the target tissue creating true cellular regeneration.

About NeoStem, Inc.

NeoStem, Inc. ("we," "NeoStem" or the "Company") continues to develop and build on its core capabilities in cell therapy to capitalize on the paradigm shift that we see occurring in medicine. In particular, we anticipate that cell therapy will have a large role in the fight against chronic disease and in lessening the economic burden that these diseases pose to modern society. Our January 2011 acquisition of Progenitor Cell Therapy, LLC ("PCT") provides NeoStem with a foundation in both manufacturing and regulatory affairs expertise. We believe this expertise, coupled with our existing research capabilities and collaborations, will allow us to achieve our mission of becoming a premier cell therapy company. Our PCT subsidiary's manufacturing base is one of the few current Good Manufacturing Practices ("cGMP") facilities available for contracting in the burgeoning cell therapy industry. Amorcyte, LLC ("Amorcyte"), which we acquired in October 2011, is developing a cell therapy for the treatment of cardiovascular disease. Amorcyte's lead compound, AMR-001, represents NeoStem's most clinically advanced therapeutic and Amorcyte is enrolling patients for a Phase 2 trial to investigate AMR-001's efficacy in preserving heart function after a heart attack. We also expect to begin a Phase 1 clinical trial by 2012/2013 to investigate AMR-001's utility in arresting the progression of congestive heart failure and the associated comorbidities of that disease. Athelos Corporation ("Athelos"), which is approximately 80%-owned by our subsidiary, PCT, is engaged in collaboration with Becton-Dickinson that is exploring the earlier stage clinical development of a T-cell therapy for autoimmune conditions. In addition, our pre-clinical assets include our VSELTM Technology platform as well as our MSC (mesenchymal stem cells) product candidate for regenerative medicine.

For more information on NeoStem, please visit http://www.neostem.com.

Forward-Looking Statements

The rest is here:
NeoStem Awarded NIAID Research Grant for the Development of VSEL Technology for Radiation Exposure

Posted in Cell Therapy | Comments Off on NeoStem Awarded NIAID Research Grant for the Development of VSEL Technology for Radiation Exposure

Bel Marra Health supports a recent study that shows the effect of stem cells on the newest eye health discovery

Posted: June 25, 2012 at 2:10 pm

Toronto, ON (PRWEB) June 24, 2012

Bel Marra Health, well known for offering high-quality, specially formulated vitamins and nutritional supplements, supports a recent study that shows the effect of stem cells on the newest eye health discovery.

According to a recent medical report published in the journal Molecular Vision, stem cells derived from a human embryo showed the capacity to differentiate into retinal cells, thus serving as a promising resource for eye protection and eye health in potentially blind patients with retinal disorders. The medical report described the results of an experiment that involved the introduction of human embryonic stem cells in the eyes of mice, with the goal of determining whether these cells were capable of growing and transforming into retinal cells. The experiment was conducted in an animal model as an initial test and once positive results were obtained, then it may be possible to conduct similar tests among human subjects.

The study involved injecting stem cells into the retinal space of the eyes of 46 week old mice and maintaining these animals for various periods of time, ranging from three weeks to three months. The eyes of the mice were then excised and histopathologically examined to determine whether these stem cells successfully integrated with the rest of the retina and may possibly help in preventing these animals from becoming blind or for eye protection. The study also investigated whether the original cells of the eyes of the mice generated an immune reaction against the injected stem cells, preventing their capacity in playing a role for eye protection.

The results of the study showed that the stem cells injected into the retinal space of the eyes incorporated well with the rest of the cells of the retina. The eye health of the mice was thus not affected in terms of the presence of these stem cells. In addition, histological examination of the eyes showed that the stem cells transformed into retinal cells, even producing essential proteins that were crucial for eye health and eye protection against becoming blind. However, the study also showed that the stem cells injected into the subretinal region, or the area below the retina, were less prone to integration with the rest of the eye. The results thus showed that stem cells injected into the eye may not be as efficient as first perceived in terms of integration and replacing defective tissues or organs.

Spokesperson for Bel Marra Health Dr. Victor Marchione commented on the study saying, Eye health and eye protection have been prime focus of research efforts in the field of ophthalmology as the incidence of individuals going blind have increased around the world. Different types of eye protection and preventative measures have also been studied to prevent the occurrence of symptoms that may lead to becoming blind. The concept of stem cells has been most appealing in terms of repairing and repairing defective tissues of the body, including its potential for application to eye health and eye protection.

CEO of Bel Marra Health Jim Chiang says more work needs to be done, There is still a need to further examine the specific mechanisms involved in stem cell transformation. The use of stem cells in treating blind people may seem to be too ambitious, yet through intensive years of research, it may still be possible to employ these cells in improving eye health and for eye protection.

(SOURCE: Molecular Vision. Long-term survival and differentiation of retinal neurons derived from human embryonic stem cell lines in un-immunosuppressed mouse retina, April 8, 2012)

Bel Marra Health, the maker of 20/20 Vision Formula, a formulation built in optimal dosages to help maintain healthy body weight, offers quality vitamins and nutritional supplements in formulations designed to address specific health concerns. All ingredients are backed with scientific evidence. Every product is tested for safety, quality, and purity at every stage of the manufacturing process. Furthermore, Bel Marra Health products are produced only in Health Canada approved facilities, going that extra mile to ensure our health conscious customers are getting top quality products. For more information on Bel Marra Health visit http://www.belmarrahealth.com or call 1-866-531-0466.

Bel Marra Health 100-7000 Pine Valley Woodbridge, ON L4L 4Y8 pr(at)belmarrahealth(dot)com 866-531-0466 http://www.belmarrahealth.com

Read more:
Bel Marra Health supports a recent study that shows the effect of stem cells on the newest eye health discovery

Posted in Stem Cell Videos | Comments Off on Bel Marra Health supports a recent study that shows the effect of stem cells on the newest eye health discovery

Blood-Brain Barrier Building Blocks Forged From Human Stem Cells

Posted: June 25, 2012 at 2:10 pm

Newswise MADISON -- The blood-brain barrier -- the filter that governs what can and cannot come into contact with the mammalian brain -- is a marvel of nature. It effectively separates circulating blood from the fluid that bathes the brain, and it keeps out bacteria, viruses and other agents that could damage it.

But the barrier can be disrupted by disease, stroke and multiple sclerosis, for example, and also is a big challenge for medicine, as it can be difficult or impossible to get therapeutic molecules through the barrier to treat neurological disorders.

Now, however, the blood-brain barrier may be poised to give up some of its secrets as researchers at the University of Wisconsin-Madison have created in the laboratory dish the cells that make up the brains protective barrier. Writing in the June 24, 2012 edition of the journal Nature Biotechnology, the Wisconsin researchers describe transforming stem cells into endothelial cells with blood-brain barrier qualities.

Access to the specialized cells has the potential to streamline drug discovery for neurological disease, says Eric Shusta, a UW-Madison professor of chemical and biological engineering and one of the senior authors of the new study. You can look at tens of thousands of drug candidates and just ask the question if they have a chance to get into the brain. There is broad interest from the pharmaceutical industry.

The blood-brain barrier depends on the unique qualities of endothelial cells, the cells that make up the lining of blood vessels. In many parts of the body, the endothelial cells that line capillaries are spaced so that substances can pass through. But in the capillaries that lead to the brain, the endothelial cells nestle in tight formation, creating a semi-permeable barrier that allows some substances -- essential nutrients and metabolites -- access to the brain while keeping others -- pathogens and harmful chemicals -- locked out.

The cells described in the new Wisconsin study, which was led by Ethan S. Lippmann, now a postdoctoral fellow at the Wisconsin Institute for Discovery, and Samira M. Azarin, now a postdoctoral fellow at Northwestern University, exhibit both the active and passive regulatory qualities of those cells that make up the capillaries of the intact brain.

The research team coaxed both embryonic and induced pluripotent stem cells to form the endothelial cells of the blood-brain barrier. The use of induced cells, which can come from patients with specific neurological conditions, may be especially important for modeling disorders that compromise the blood-brain barrier. Whats more, because the cells can be mass produced, they could be used to devise high-throughput screens for molecules that may have therapeutic value for neurological conditions or to identify existing drugs that may have neurotoxic qualities.

The nice thing about deriving endothelial cells from induced pluripotent stem cells is that you can make disease-specific models of brain tissue that incorporate the blood-brain barrier, explains Sean Palecek, a UW-Madison professor of chemical and biological engineering and a senior author of the new report. The cells you create will carry the genetic information of the condition you want to study.

The generation of the specialized blood-brain barrier endothelial cells, the Wisconsin researchers note, has never been done with stem cells. In addition to the potential applications to screen drugs and model pathologies of the blood-brain barrier, they may also provide a novel window for developmental biologists who are interested in how the barrier comes together and co-develops with the brain.

Neurons develop at the same time as the endothelial cells, Shusta says, noting that, in development, the cells secrete chemical cues that help determine organ specificity.

Follow this link:
Blood-Brain Barrier Building Blocks Forged From Human Stem Cells

Posted in Stem Cell Videos | Comments Off on Blood-Brain Barrier Building Blocks Forged From Human Stem Cells

Cryopreservation of Chorionic Villi and Amniotic Fluid Stem Cells

Posted: June 25, 2012 at 2:10 pm

Boston, MA (PRWEB) June 25, 2012

After the possibility to cryopreserve amniotic fluid stem cell, it will be possible to cryopreserve stem cells contained in Chorionic Villi collected during the prenatal diagnosis test of Chorionic Villus Sampling (CVS). Chorionic Villi stem cells are fetal stem cells, pluripotent, with great characteristics in terms of proliferation, differentiation and genomic stability, being perfectly ethic at the same time.

Many international research groups are currently studying Chorionic Villi stem cells, that in the future might have a role in regenerative medicine and cellular therapy.

The service will be available thanks to a patent developed by Biocell Center Corporation - European biotech group based in Milan, Italy, with international branches in Medford, MA, USA, and Lugano, Switzerland - thanks to the last two years' researches. "We were able to come up with solutions for several technical and scientific issues - said Dr. Giuseppe Simoni, Biocell Center's Scientific Director - coming up with a method that allow us to obtain tremendous results in terms of quantity and viability of stem cells to cryopreserve."

The announcement, given during the exhibition BIO 2012 held this year in Boston - where Biocell Center have its facility and lab - was of great interest for the international scientific community.

"The hope - concluded Dr. Simoni - is that in the future this cells of the newborn might be used to regenerate tissues and cure diseases."

source: Biocell Center Corporation

Excerpt from:
Cryopreservation of Chorionic Villi and Amniotic Fluid Stem Cells

Posted in Stem Cell Videos | Comments Off on Cryopreservation of Chorionic Villi and Amniotic Fluid Stem Cells

Bioheart's Chief Science Officer Kristin Comella Presents at 10th Annual Meeting of International Society for Stem …

Posted: June 25, 2012 at 2:10 pm

SUNRISE, Fla., June 25, 2012 (GLOBE NEWSWIRE) -- Bioheart, Inc. (BHRT.OB) announced today that Kristin Comella, the company's Chief Science Officer presented at the 10th Annual Meeting of the International Society for Stem Cell Research (ISSCR) in Yokohama, Japan June 13 - 16, 2012. One of the world's premier stem cell research events, the ISSCR format includes international research and poster presentations from invited speakers, exceptional peer-to-peer learning and unparalleled networking opportunities.

Comella presented a poster on clinical applications of adipose or fat derived stem cells (ADSCs).

The ISSCR annual meeting serves as the largest forum for stem cell and regenerative medicine professionals from around the world. Through lectures, symposia, workshops, and events attendees experience innovative stem cell and regenerative medicine research, advances and what's on the horizon. The meeting features more than 1,000 abstracts, nearly 150 speakers and provides numerous networking and professional development opportunities and social events. For additional information, visit http://www.isscr.org.

Kristin Comella has over 14 years experience in corporate entities with expertise in regenerative medicine, training and education, research, product development and senior management including more than 10 years of cell culturing experience. She has made a significant contribution to Bioheart's product development, manufacturing and quality systems since she joined the company in September 2004.

About Bioheart, Inc.

Bioheart is committed to maintaining its leading position within the cardiovascular sector of the cell technology industry delivering cell therapies and biologics that help address congestive heart failure, lower limb ischemia, chronic heart ischemia, acute myocardial infarctions and other issues. Bioheart's goals are to cause damaged tissue to be regenerated, when possible, and to improve a patient's quality of life and reduce health care costs and hospitalizations.

Specific to biotechnology, Bioheart is focused on the discovery, development and, subject to regulatory approval, commercialization of autologous cell therapies for the treatment of chronic and acute heart damage and peripheral vascular disease. Its leading product, MyoCell, is a clinical muscle-derived cell therapy designed to populate regions of scar tissue within a patient's heart with new living cells for the purpose of improving cardiac function in chronic heart failure patients. For more information on Bioheart, visit http://www.bioheartinc.com, or visit us on Facebook: Bioheart and Twitter @BioheartInc.

Forward-Looking Statements: Except for historical matters contained herein, statements made in this press release are forward-looking statements. Without limiting the generality of the foregoing, words such as "may," "will," "to," "plan," "expect," "believe," "anticipate," "intend," "could," "would," "estimate," or "continue" or the negative other variations thereof or comparable terminology are intended to identify forward-looking statements.

Forward-looking statements involve known and unknown risks, uncertainties and other factors which may cause our actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements. Also, forward-looking statements represent our management's beliefs and assumptions only as of the date hereof. Except as required by law, we assume no obligation to update these forward-looking statements publicly, or to update the reasons actual results could differ materially from those anticipated in these forward-looking statements, even if new information becomes available in the future.

The Company is subject to the risks and uncertainties described in its filings with the Securities and Exchange Commission, including the section entitled "Risk Factors" in its Annual Report on Form 10-K for the year ended December 31, 2011, and its Quarterly Report on Form 10-Q for the quarter ended March 30, 2012.

Go here to see the original:
Bioheart's Chief Science Officer Kristin Comella Presents at 10th Annual Meeting of International Society for Stem ...

Posted in Stem Cell Research | Comments Off on Bioheart's Chief Science Officer Kristin Comella Presents at 10th Annual Meeting of International Society for Stem …

Bel Marra Health supports a recent study that shows the effect of stem cells on the newest eye health discovery

Posted: June 24, 2012 at 8:15 pm

Toronto, ON (PRWEB) June 24, 2012

Bel Marra Health, well known for offering high-quality, specially formulated vitamins and nutritional supplements, supports a recent study that shows the effect of stem cells on the newest eye health discovery.

According to a recent medical report published in the journal Molecular Vision, stem cells derived from a human embryo showed the capacity to differentiate into retinal cells, thus serving as a promising resource for eye protection and eye health in potentially blind patients with retinal disorders. The medical report described the results of an experiment that involved the introduction of human embryonic stem cells in the eyes of mice, with the goal of determining whether these cells were capable of growing and transforming into retinal cells. The experiment was conducted in an animal model as an initial test and once positive results were obtained, then it may be possible to conduct similar tests among human subjects.

The study involved injecting stem cells into the retinal space of the eyes of 46 week old mice and maintaining these animals for various periods of time, ranging from three weeks to three months. The eyes of the mice were then excised and histopathologically examined to determine whether these stem cells successfully integrated with the rest of the retina and may possibly help in preventing these animals from becoming blind or for eye protection. The study also investigated whether the original cells of the eyes of the mice generated an immune reaction against the injected stem cells, preventing their capacity in playing a role for eye protection.

The results of the study showed that the stem cells injected into the retinal space of the eyes incorporated well with the rest of the cells of the retina. The eye health of the mice was thus not affected in terms of the presence of these stem cells. In addition, histological examination of the eyes showed that the stem cells transformed into retinal cells, even producing essential proteins that were crucial for eye health and eye protection against becoming blind. However, the study also showed that the stem cells injected into the subretinal region, or the area below the retina, were less prone to integration with the rest of the eye. The results thus showed that stem cells injected into the eye may not be as efficient as first perceived in terms of integration and replacing defective tissues or organs.

Spokesperson for Bel Marra Health Dr. Victor Marchione commented on the study saying, Eye health and eye protection have been prime focus of research efforts in the field of ophthalmology as the incidence of individuals going blind have increased around the world. Different types of eye protection and preventative measures have also been studied to prevent the occurrence of symptoms that may lead to becoming blind. The concept of stem cells has been most appealing in terms of repairing and repairing defective tissues of the body, including its potential for application to eye health and eye protection.

CEO of Bel Marra Health Jim Chiang says more work needs to be done, There is still a need to further examine the specific mechanisms involved in stem cell transformation. The use of stem cells in treating blind people may seem to be too ambitious, yet through intensive years of research, it may still be possible to employ these cells in improving eye health and for eye protection.

(SOURCE: Molecular Vision. Long-term survival and differentiation of retinal neurons derived from human embryonic stem cell lines in un-immunosuppressed mouse retina, April 8, 2012)

Bel Marra Health, the maker of 20/20 Vision Formula, a formulation built in optimal dosages to help maintain healthy body weight, offers quality vitamins and nutritional supplements in formulations designed to address specific health concerns. All ingredients are backed with scientific evidence. Every product is tested for safety, quality, and purity at every stage of the manufacturing process. Furthermore, Bel Marra Health products are produced only in Health Canada approved facilities, going that extra mile to ensure our health conscious customers are getting top quality products. For more information on Bel Marra Health visit http://www.belmarrahealth.com or call 1-866-531-0466.

Bel Marra Health 100-7000 Pine Valley Woodbridge, ON L4L 4Y8 pr(at)belmarrahealth(dot)com 866-531-0466 http://www.belmarrahealth.com

See the article here:
Bel Marra Health supports a recent study that shows the effect of stem cells on the newest eye health discovery

Posted in Stem Cells | Comments Off on Bel Marra Health supports a recent study that shows the effect of stem cells on the newest eye health discovery

Page 2,725«..1020..2,7242,7252,7262,727..2,7302,740..»