Page 2,720«..1020..2,7192,7202,7212,722..2,7302,740..»

Diabetes reversed in mice using stem cells

Posted: June 28, 2012 at 5:24 am

ScienceDaily (June 27, 2012) University of British Columbia scientists, in collaboration with an industry partner, have successfully reversed diabetes in mice using stem cells, paving the way for a breakthrough treatment for a disease that affects nearly one in four Canadians.

The research by Timothy Kieffer, a professor in the Department of Cellular and Physiological Sciences, and scientists from the New Jersey-based BetaLogics, a division of Janssen Research & Development, LLC, is the first to show that human stem cell transplants can successfully restore insulin production and reverse diabetes in mice. Crucially, they re-created the "feedback loop" that enables insulin levels to automatically rise or fall based on blood glucose levels. The study is published online June 27 in the journal Diabetes.

After the stem cell transplant, the diabetic mice were weaned off insulin, a procedure designed to mimic human clinical conditions. Three to four months later, the mice were able to maintain healthy blood sugar levels even when being fed large quantities of sugar. Transplanted cells removed from the mice after several months had all the markings of normal insulin-producing pancreatic cells.

"We are very excited by these findings, but additional research is needed before this approach can be tested clinically in humans," says Kieffer, a member of UBC's Life Sciences Institute. "The studies were performed in diabetic mice that lacked a properly functioning immune system that would otherwise have rejected the cells. We now need to identify a suitable way of protecting the cells from immune attack so that the transplant can ultimately be performed in the absence of any immunosuppression."

The research was supported by the Canadian Institutes of Health Research, the Stem Cell Network of Canada, Stem Cell Technologies of Vancouver, the JDRF and the Michael Smith Foundation for Health Research.

Diabetes results from insufficient production of insulin by the pancreas. Insulin enables glucose to be stored by the body's muscle, fat and liver and used as fuel; a shortage of insulin leads to high blood sugar that raises the risk of blindness, heart attack, stroke, nerve damage and kidney failure.

Regular injections of insulin are the most common treatment for the type 1 form of this disease, which often strikes young children. Although experimental transplants of healthy pancreatic cells from human donors have shown to be effective, that treatment is severely limited by the availability of donors.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

Story Source:

Continued here:
Diabetes reversed in mice using stem cells

Posted in Stem Cell Videos | Comments Off on Diabetes reversed in mice using stem cells

Successful transplant of patient-derived stem cells into mice with muscular dystrophy

Posted: June 28, 2012 at 5:23 am

ScienceDaily (June 27, 2012) Stem cells from patients with a rare form of muscular dystrophy have been successfully transplanted into mice affected by the same form of dystrophy, according to a new study published June 27 in Science Translational Medicine.

For the first time, scientists have turned muscular dystrophy patients' fibroblast cells (common cells found in connective tissue) into stem cells and then differentiated them into muscle precursor cells. The muscle cells were then genetically modified and transplanted into mice.

The new technique, which was initially developed at the San Raffaele Scientific Institute of Milan and completed at UCL, could be used in the future for treating patients with limb-girdle muscular dystrophy (a rare form in which the shoulders and hips are primarily affected) and, possibly, other forms of muscular dystrophies.

Muscular dystrophies are genetic disorders primarily affecting skeletal muscle that result in greatly impaired mobility and, in severe cases, respiratory and cardiac dysfunction. There is no effective treatment, although several new approaches are entering clinical testing including cell therapy.

In this study, scientists focused on genetically modifying a type of cell called a mesoangioblast, which is derived from blood vessels and has been shown in previous studies to have potential in treating muscular dystrophy. However, the authors found that they could not get a sufficient number of mesoangioblasts from patients with limb-girdle muscular dystrophy because the muscles of the patients were depleted of these cells.

Instead, scientists in this study "reprogrammed" adult cells from patients with limb-girdle muscular dystrophy into stem cells and were able to induce them to differentiate into mesoangioblast-like cells. After these 'progenitor' cells were genetically corrected using a viral vector, they were injected into mice with muscular dystrophy, where they homed-in on damaged muscle fibres.

The researchers also showed that when the same muscle progenitor cells were derived from mice the transplanted cells strengthened damaged muscle and enabled the dystrophic mice to run for longer on a treadmill than dystrophic mice that did not receive the cells.

Dr Francesco Saverio Tedesco, UCL Cell & Developmental Biology, who led the study, said: "This is a major proof of concept study. We have shown that we can bypass the limited amount of patients' muscle stem cells using induced pluripotent stem cells and then produce unlimited numbers of genetically corrected progenitor cells.

"This technique may be useful in the future for treating limb-girdle muscular dystrophy and perhaps other forms of muscular dystrophy."

Professor Giulio Cossu, another UCL author, said: "This procedure is very promising, but it will need to be strenuously validated before it can be translated into a clinical setting, also considering that clinical safety for these "reprogrammed" stem cells has not yet been demonstrated for any disease."

Read the original here:
Successful transplant of patient-derived stem cells into mice with muscular dystrophy

Posted in Stem Cell Videos | Comments Off on Successful transplant of patient-derived stem cells into mice with muscular dystrophy

Stem cells can beat back diabetes: UBC research

Posted: June 28, 2012 at 5:23 am

Public release date: 27-Jun-2012 [ | E-mail | Share ]

Contact: Brian Kladko brian.kladko@ubc.ca 604-827-3301 University of British Columbia

University of British Columbia scientists, in collaboration with an industry partner, have successfully reversed diabetes in mice using stem cells, paving the way for a breakthrough treatment for a disease that affects nearly one in four Canadians.

The research by Timothy Kieffer, a professor in the Department of Cellular and Physiological Sciences, and scientists from the New Jersey-based BetaLogics, a division of Janssen Research & Development, LLC, is the first to show that human stem cell transplants can successfully restore insulin production and reverse diabetes in mice. Crucially, they re-created the "feedback loop" that enables insulin levels to automatically rise or fall based on blood glucose levels. The study is published online today in the journal Diabetes.

After the stem cell transplant, the diabetic mice were weaned off insulin, a procedure designed to mimic human clinical conditions. Three to four months later, the mice were able to maintain healthy blood sugar levels even when being fed large quantities of sugar. Transplanted cells removed from the mice after several months had all the markings of normal insulin-producing pancreatic cells.

"We are very excited by these findings, but additional research is needed before this approach can be tested clinically in humans," says Kieffer, a member of UBC's Life Sciences Institute. "The studies were performed in diabetic mice that lacked a properly functioning immune system that would otherwise have rejected the cells. We now need to identify a suitable way of protecting the cells from immune attack so that the transplant can ultimately be performed in the absence of any immunosuppression."

The research was supported by the Canadian Institutes of Health Research, the Stem Cell Network of Canada, Stem Cell Technologies of Vancouver, the JDRF and the Michael Smith Foundation for Health Research.

Diabetes results from insufficient production of insulin by the pancreas. Insulin enables glucose to be stored by the body's muscle, fat and liver and used as fuel; a shortage of insulin leads to high blood sugar that raises the risk of blindness, heart attack, stroke, nerve damage and kidney failure.

Regular injections of insulin are the most common treatment for the type 1 form of this disease, which often strikes young children. Although experimental transplants of healthy pancreatic cells from human donors have shown to be effective, that treatment is severely limited by the availability of donors.

###

See the rest here:
Stem cells can beat back diabetes: UBC research

Posted in Stem Cell Videos | Comments Off on Stem cells can beat back diabetes: UBC research

Scientists identify new cancer stem cell mechanism

Posted: June 28, 2012 at 5:23 am

Public release date: 27-Jun-2012 [ | E-mail | Share ]

Contact: Bridget Dempsey b.dempsey@qmul.ac.uk 44-207-882-7927 Queen Mary, University of London

Scientists at Queen Mary, University of London have uncovered a link between two genes which shows how stem cells could develop into cancer.

The research, published in the online journal PLoS ONE, found a novel mechanism which could be the catalyst for stem cells changing into a tumour.

Dr Ahmad Waseem, a reader in oral dentistry at Queen Mary, University of London who led the research, said: "It was quite an unexpected discovery. We set out to investigate the role of the stem cell gene Keratin K15 which was thought to be a biomarker for normal stem cells.

"Through our research, we discovered there was link between K15 and the notorious cancer gene FOXM1. We found FOXM1 could target K15 to induce cancer formation."

Cancer develops when there is a problem with stem cells; the cells that carry out internal repairs throughout the human body. The loss of stem cell function leads to uncontrolled growth which ultimately develops into a tumour.

The team went through a process where they used extremely sensitive cell and molecular approaches to establish this link.

The study, funded by the Facial Surgery Research Foundation, Saving Faces, paves the way towards identifying new anti-cancer drugs which could be tailored towards cancer stem cells.

Consultant oral and maxillofacial surgeon Professor Iain Hutchison, founder of Saving Faces and co-author on the study, said: "We are excited about this finding as it could lead to more effective cancer drugs being developed to target cancer stem cells and prevent cancer recurrence."

Continue reading here:
Scientists identify new cancer stem cell mechanism

Posted in Stem Cell Videos | Comments Off on Scientists identify new cancer stem cell mechanism

Maine game warden finds stem cell match

Posted: June 28, 2012 at 5:23 am

AUGUSTA, Maine (NEWS CENTER) --InMay,we introduced you to Maine Game Warden Major Gregg Sanborn - when the UMaine football team held a stem cell drive in his honor. Major Sanborn was diagnosed with t-cell lymphoma last September and needed to find a match as soon as possible in order to live.

Last week, Major Sanborn found out that he did find a match - a 26 year old man. He isn't allowed to know anything else about his donor due to privacy laws.

Major Sanborn is already undergoing chemotherapy and will head to Boston on July 9th and will stay there for about six weeks - to begin more aggressive treatments, which will include rebuilding his immune system.

He feels he owes it to all the people who have helped him thus far to fight as hard as he can. "An awful lot of people have done an awful lot of work to make this possible. Their efforts haven't gone in vain, they haven't gone unnoticed," he says,"It's very impressive. I've got a lot of people rooting for me, and I'm going to give it my best so that it's a positive outcome."

Wednesday was Major Sanborn's last day of work at the Maine Department of Inland Fisheries and Wildlife. He actually had to take a few tests in order to keep his license when he comes back to work after the treatments. After the six weeks of treatment, he'll be in isolation for one year.

See more here:
Maine game warden finds stem cell match

Posted in Stem Cell Treatments | Comments Off on Maine game warden finds stem cell match

Human Stem Cells Reverse Diabetes In Mice: Research

Posted: June 28, 2012 at 5:23 am

You are here : World News

June 28, 2012 10:53 AM

Human Stem Cells Reverse Diabetes In Mice: Research

VANCOUVER, June 28 (Bernama) -- A new research has shown that human stem cell transplants can successfully restore insulin production and reverse diabetes in mice for the first time, China's Xinhua news agency reported.

The study, conducted by scientists from University of British Columbia (UBC) and the New Jersey-based BetaLogics, a division of Janssen Research & Development, LLC, could pave the way for a breakthrough treatment for the disease.

After the stem cell transplant, the diabetic mice were weaned off insulin, a procedure designed to mimic human clinical conditions, according to the study published online Wednesday in the journal Diabetes.

Three to four months later, the mice were able to maintain healthy blood sugar levels even when being fed large quantities of sugar.

"We are very excited by these findings, but additional research is needed before this approach can be tested clinically in humans," said Timothy Kieffer, one of the 13 authors and a professor from UBC.

Kieffer said that the studies were performed in diabetic mice that lacked a properly functioning immune system that would otherwise have rejected the cells.

He added that they now need to identify a suitable way of protecting the cells from immune attack so that the transplant can ultimately be performed in the absence of any immunosuppression.

Read more from the original source:
Human Stem Cells Reverse Diabetes In Mice: Research

Posted in Stem Cell Research | Comments Off on Human Stem Cells Reverse Diabetes In Mice: Research

Regulation of telomerase in stem cells and cancer cells

Posted: June 28, 2012 at 5:23 am

ScienceDaily (June 27, 2012) Scientists at the Max Planck Institute of Immunobiology and Epigenetics in Freiburg have gained important insights for stem cell research which are also applicable to human tumours and could lead to the development of new treatments. As Rolf Kemler's research group discovered, a molecular link exists between the telomerase that determines the length of the telomeres and a signalling pathway known as the Wnt/-signalling pathway.

Telomeres are the end caps of chromosomes that play a very important role in the stability of the genome. Telomeres in stem cells are long and become shorter during differentiation or with age, but lengthen again in tumour cells.

The Wnt/-catenin signalling pathway controls numerous processes in embryonic development, such as the formation of the body axis and of organ primordia, and is particularly active in embryonic and adult stem cells. The -catenin protein plays a key role in this signalling pathway. The incorrect regulation or mutation of -catenin leads to the development of tumours.

Rolf Kemler's research group has now shown that -catenin regulates the telomerase gene directly, and has explained the molecular mechanism at work here. Embryonic stem cells with mutated -catenin generate more telomerase and have extended telomeres, while cells without -catenin have low levels of telomerase and have shortened telomeres.

This regulation mechanism can also be found in human cancer cells. These discoveries could lead to the development of a new approach to the treatment of human tumours.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

Story Source:

The above story is reprinted from materials provided by Max-Planck-Gesellschaft.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.

More here:
Regulation of telomerase in stem cells and cancer cells

Posted in Stem Cell Research | Comments Off on Regulation of telomerase in stem cells and cancer cells

Stem Cell Breakthrough Significant For Degenerative Diseases

Posted: June 28, 2012 at 5:22 am

Featured Article Academic Journal Main Category: Stem Cell Research Also Included In: Eye Health / Blindness;Diabetes;Multiple Sclerosis Article Date: 27 Jun 2012 - 9:00 PDT

Current ratings for: Stem Cell Breakthrough Significant For Degenerative Diseases

5 (6 votes)

But it is a long journey from showing something works in the research lab to using it safely and ethically in patients, and there are many hurdles.

One such hurdle is providing stem cells lines "developed under stringent ethical guidelines, from traceable and tested donors, preferably in an animal-free, GMP-grade culture system," write the researchers in a comprehensive paper published online on 20 June in the open access journal PLoS ONE.

Another, is to ensure the hESCs meet safety criteria, and do not have traces of animal components, such as from mice and cows, as these can introduce the risk of animal pathogens running amok in the patient's body.

Now after 12 years of painstaking work, researchers at the Hadassah University Medical Center in Jerusalem, have announced they have created three new lines of "xeno-free and GMP-grade human embryonic stem cells".

In their paper, lead investigator professor Benjamin Reubinoff, a world-renowned stem-cell pioneer and the new chairman of obstetrics/gynecology at the Ein Kerem medical center, and colleagues, describe the journey they took to produce clinically-compliant hESCs.

They conclude that the three hESC lines they produced "may be valuable for regenerative therapy".

And they also suggest that the "ethical, scientific and regulatory methodology" they followed may serve as a model for developing further clinical-grade hESCs.

Here is the original post:
Stem Cell Breakthrough Significant For Degenerative Diseases

Posted in Stem Cell Research | Comments Off on Stem Cell Breakthrough Significant For Degenerative Diseases

Stem Cell Breakthrough Significant For Degenerative Diseases

Posted: June 28, 2012 at 4:11 am

Featured Article Academic Journal Main Category: Stem Cell Research Also Included In: Eye Health / Blindness;Diabetes;Multiple Sclerosis Article Date: 27 Jun 2012 - 9:00 PDT

Current ratings for: Stem Cell Breakthrough Significant For Degenerative Diseases

5 (6 votes)

But it is a long journey from showing something works in the research lab to using it safely and ethically in patients, and there are many hurdles.

One such hurdle is providing stem cells lines "developed under stringent ethical guidelines, from traceable and tested donors, preferably in an animal-free, GMP-grade culture system," write the researchers in a comprehensive paper published online on 20 June in the open access journal PLoS ONE.

Another, is to ensure the hESCs meet safety criteria, and do not have traces of animal components, such as from mice and cows, as these can introduce the risk of animal pathogens running amok in the patient's body.

Now after 12 years of painstaking work, researchers at the Hadassah University Medical Center in Jerusalem, have announced they have created three new lines of "xeno-free and GMP-grade human embryonic stem cells".

In their paper, lead investigator professor Benjamin Reubinoff, a world-renowned stem-cell pioneer and the new chairman of obstetrics/gynecology at the Ein Kerem medical center, and colleagues, describe the journey they took to produce clinically-compliant hESCs.

They conclude that the three hESC lines they produced "may be valuable for regenerative therapy".

And they also suggest that the "ethical, scientific and regulatory methodology" they followed may serve as a model for developing further clinical-grade hESCs.

Read the rest here:
Stem Cell Breakthrough Significant For Degenerative Diseases

Posted in Stem Cell Therapy | Comments Off on Stem Cell Breakthrough Significant For Degenerative Diseases

Metformin Shows Promise For Pancreatic Cancer Patients

Posted: June 28, 2012 at 3:23 am

Editor's Choice Main Category: Pancreatic Cancer Also Included In: Cancer / Oncology;Stem Cell Research Article Date: 27 Jun 2012 - 10:00 PDT

Current ratings for: Metformin Shows Promise For Pancreatic Cancer Patients

3.67 (3 votes)

In combination with the standard chemotherapy for pancreatic cancer, metformin was observed to efficiently eradicate both cancer stem cells and more differentiated cancer cells that form the bulk of the tumor. The study was presented at the American Association for Cancer Research's Pancreatic Cancer: Progress and Challenges conference in Lake Tahoe, Nev., from June 18-21, 2012 by Christopher Heeschen, M.D., Ph.D., a professor for experimental medicine at the Spanish National Cancer Research Centre in Madrid.

Heeschen said that the majority of clinical trials of pancreatic cancer during the last 15 years failed to demonstrate a notable improvement in the average survival, which indicates for various reasons the methods used in these trials were insufficient. However, within the last few years, scientists have discovered cancer stem cells, which contrary to the cancer cells that make up the bulk of the tumor, consist of a small subset of cells that are resistant to conventional therapy.

He continued:

The team discovered that metformin-pretreated cancer stem cells proved especially sensitive to changes to their metabolism through the activation of AMPK, as metformin killed the cancer stem cells, but only stopped the cell's growth in more differentiated cancer cells.

Heeschen explained:

Their findings were supported in an experiment with mice, in which they treated immunocompromised mice that were implanted with various sets of patient-derived tumors with a combination of metformin and the standard chemotherapeutic treatment for pancreatic cancer, gemcitabine. The results were reduced tumors and a prevention of relapse in contrast to mice treated only with metformin or with gemcitabine.

Heeschen remarked: "Intriguingly, in all tumors treated with metformin to date, relapse of disease was efficiently prevented and there were no noticeable adverse effects."

Read the original:
Metformin Shows Promise For Pancreatic Cancer Patients

Posted in Stem Cells | Comments Off on Metformin Shows Promise For Pancreatic Cancer Patients

Page 2,720«..1020..2,7192,7202,7212,722..2,7302,740..»