Page 1,389«..1020..1,3881,3891,3901,391..1,4001,410..»

Utah Stem Cells – Cottonwood Heights, UT | Groupon

Posted: September 26, 2017 at 7:45 am

Why is Stem Cell Prolotherapy better than alternative methods of treating chronic joint pain?

The procedure lasts about 3040 minutes, using local anesthetic with very little discomfort, and after it is completed you will be able to walk out of the office and drive yourself home. This is in contrast to prolonged hospital stays with extensive down time and expense associated with various surgical procedures, including total knee replacements. The average cost of a total knee replacement in the U.S. is $40,000, and often associated with mediocre results, especially with regard to functionality. Stem Cell Prolotherapy offers a much better solution with potentially better results, especially mobility, at a fraction of the cost. There are other treatment modalities sometimes used to lubricate the knee joint, such as Hyaluronate, known by the brand names, "Synvisc" or "Euflexxa". The problem with these is that they are only a temporary solution, which at best will only last for about six months before the procedure will need to be repeated. This is in stark contrast to the permanent healing and regeneration, which is achieved with the Stem Cell Prolotherapy. However, Hyaluronate can be used in conjunction with the Stem Cell Prolotherapy so that you can enjoy the benefits of both therapies, if you choose.

Continue reading here:
Utah Stem Cells - Cottonwood Heights, UT | Groupon

Posted in Utah Stem Cells | Comments Off on Utah Stem Cells – Cottonwood Heights, UT | Groupon

Top Stem Cell Therapy Clinic in Vail & Denver, Colorado …

Posted: September 25, 2017 at 3:48 pm

Do you have an idea of the natural healing potential that is available in your body?

Read on to find out where your body stores these powerful stem cells.

Adult stem cells are found in the highest concentration in adipose (fat) tissue. In smaller concentrations, they are additionally found in your bone marrow. Beyond what is used for harvesting, stem cells are also found in blood, skin, muscles, and organs.

Adipose tissue provides the largest volume of adult stem cells (1,000 to 2,000 times the number of cells per volume found in bone marrow). Bone marrow provides some stem cells but more importantly provides a large volume of growth factors to aid in the repair process. In addition to adult stem cells, fat tissue also contains numerous other regenerative cells that are important to the healing process.

Stem cells derived from adipose fat tissue have been shown to be a much better source for the repair of cartilage degeneration and recent studies have demonstrated its superior ability to differentiate into cartilage.

There are some myths and misconceptions about stem cells and where the cells come from. Dr. Brandt has dedicated a blog post to the important topic.

Go here to see the original:
Top Stem Cell Therapy Clinic in Vail & Denver, Colorado ...

Posted in Colorado Stem Cells | Comments Off on Top Stem Cell Therapy Clinic in Vail & Denver, Colorado …

Alternate Methods for Preparing Pluripotent Stem Cells …

Posted: September 25, 2017 at 3:48 pm

James F. Battey, Jr., MD, PhD; Laura K. Cole, PhD; and Charles A. Goldthwaite, Jr., PhD.

Stem cells are distinguished from other cells by two characteristics: (1) they can divide to produce copies of themselves (self-renewal) under appropriate conditions and (2) they are pluripotent, or able to differentiate into any of the three germ layers: the endoderm (which forms the lungs, gastrointestinal tract, and interior lining of the stomach), mesoderm (which forms the bones, muscles, blood, and urogenital tract), and ectoderm (which forms the epidermal tissues and nervous system). Pluripotent cells, which can differentiate into any mature cell type, are distinct from multipotent cells (such as hematopoietic, or blood-forming, cells) that can differ into a limited number of mature cell types. Because of their pluripotency and capacity for self-renewal, stem cells hold great potential to renew tissues that have been damaged by conditions such as type 1 diabetes, Parkinson's disease, heart attacks, and spinal cord injury. Although techniques to transplant multipotent or pluripotent cells are being developed for many specific applications, some procedures are sufficiently mature to be established options for care. For example, human hematopoietic cells from the umbilical cord and bone marrow are currently being used to treat patients with disorders that require replacement of cells made by the bone marrow, including Fanconi's anemia and chemotherapy-induced bone marrow failure after cancer treatment.

However, differentiation is influenced by numerous factors, and investigators are just beginning to understand the fundamental properties of human pluripotent cells. Researchers are gradually learning how to direct these cells to differentiate into specialized cell types and to use them for research, drug discovery, and transplantation therapy (see Figure 8.1). However, before stem cell derivatives are suitable for clinical application, scientists require a more complete understanding of the molecular mechanisms that drive pluripotent cells into differentiated cells. Scientists will need to pilot experimental transplantation therapies in animal model systems to assess the safety and long-term stable functioning of transplanted cells. In particular, they must be certain that any transplanted cells do not continue to self-renew in an unregulated fashion after transplantation, which may result in a teratoma, or stem cell tumor. In addition, scientists must ascertain that cells transplanted into a patient are not recognized as foreign by the patient's immune system and rejected.

Figure 8.1. The Scientific Challenge of Human Stem CellsThe state of the science currently lies in the development of fundamental knowledge of the properties of human pluripotent cells. The scientific capacity needs to be built, an understanding of the molecular mechanisms that drive cell specialization needs to be advanced, the nature and regulation of interaction between host and transplanted cells needs to be explored and understood, cell division needs to be understood and regulated, and the long-term stability of the function in transplanted cells needs to be established.

Stem cells derived from an early-stage human blastocyst (an embryo fertilized in vitro and grown approximately five days in culture) have the capacity to renew indefinitely, and can theoretically provide an unlimited supply of cells. It is also possible to derive stem cells from non-embryonic tissues, including amniotic fluid, placenta, umbilical cord, brain, gut, bone marrow, and liver. These stem cells are sometimes called "adult" stem cells, and they are typically rare in the tissue of origin. For example, blood-forming (hematopoietic) stem cell experts estimate that only 1 in 2000 to fewer than 1 in 10,000 cells found in the bone marrow is actually a stem cell.1 Because so-called "adult" stem cells include cells from the placenta and other early stages of development, they are more correctly termed "non-embryonic stem cells." Non-embryonic stem cells are more limited in their capacity to self renew in the laboratory, making it more difficult to generate a large number of stem cells for a specific experimental or therapeutic application. Under normal conditions, non-embryonic stem cells serve as a repair pool for the body, so they typically differentiate only into the cell types found in the organ of origin. Moreover, there is little compelling evidence for trans-differentiation, whereby a stem cell from one organ differentiates into a mature cell type of a different organ. New discoveries may overcome these limitations of stem cells derived from non-embryonic sources, and research directed toward this goal is currently underway in a number of laboratories.

Cultures of human pluripotent, self-renewing cells enable researchers to understand the molecular mechanisms that regulate differentiation (see Figure 8.2), including epigenetic changes (traits that may be inherited that do not arise from changes in the DNA sequence) in the chromatin structure, developmental changes in gene expression, exposure to growth factors, and interactions between adjacent cells. Understanding these basic mechanisms may enable future scientists to mobilize and differentiate endogenous populations of pluripotent cells to replace a cell type ravaged by injury or disease. Alternatively, scientists may some day be able to coax human pluripotent cells grown in the laboratory to become a specific type of specialized cell, which physicians could subsequently transplant into a patient to replace cells damaged by these same disease processes.

Scientists are gradually learning to direct the differentiation of pluripotent cell cultures into a specific type of cell, which can then be used as cellular models of human disease for drug discovery or toxicity studies. While it is not possible to predict the myriad ways that a basic understanding of stem cell differentiation may lead to new approaches for treating patients with cellular degenerative diseases, some avenues can be theorized. For example, in the case of Huntington's disease, a fatal neurodegenerative disorder, one could imagine that pluripotent cells derived from an embryo that carries Huntington's disease and differentiated into neurons in culture could be used to test drugs to delay or prevent degeneration.

Despite the incredible growth in knowledge that has occurred in stem cell research within the last couple of decades, investigators are just beginning to unravel the process of differentiation. Human pluripotent cell lines are an essential tool to understand this process and to facilitate the ultimate use of these cells in the clinic. To provide background on this fundamental topic, this article reviews the various potential sources and approaches that have been used to generate human pluripotent and multipotent cell lines, both of embryonic and non-embryonic origin.

Currently, at least six embryonic sources have been used to establish human pluripotent stem cell lines. All approaches involve isolation of viable cells during an early phase of development, followed by growth of these cells in appropriate culture medium. The various sources of these initial cell populations are discussed in brief below. It should be noted that the manipulation and use of embryonic tissues has raised a number of ethical issues.2,3 This article focuses on the scientific and technical issues associated with creating pluripotent cells, with the understanding that some of these techniques are currently subject to debates that extend beyond discussions of their scientific merits.

Figure 8.2. The Promise of Stem Cell ResearchStem cell research provides a useful tool for unraveling the molecular mechanisms that determine the differentiation fate of a pluripotent cell and for understanding the gene expression properties and epigenetic modifications essential to maintain the pluripotent state. In the future, this knowledge may be used to generate cells for transplantation therapies, whereby a specific cell population compromised by disease is replaced with new, functional cells. Differentiated derivatives of human pluripotent cells may also prove to be useful as models for understanding the biology of disease and developing new drugs, particularly when there is no animal model for the disease being studied. The greatest promise of stem cell research may lie in an area not yet imagined.

2008 Terese Winslow

Drawing upon twenty years of communal expertise with mouse ES cells,4 and on human inner cell mass culture conditions developed by Ariff Bongso and colleagues,5 James Thomson and colleagues at the University of Wisconsin generated the first hESC lines in 1998 using tissue from embryos fertilized in vitro.6 This method uses embryos generated for in vitro fertilization (IVF) that are no longer needed for reproductive purposes. During IVF, medical professionals usually produce more embryos than a couple attempting to start a family may need. Spare embryos are typically stored in a freezer to support possible future attempts for additional children if desired. It is estimated that there are approximately 400,000 such spare embryos worldwide.6 If these embryos are never used by the couple, they either remain in storage or are discarded as medical waste. Alternatively, these embryos can potentially be used to generate a hESC line.

To generate a hESC line, scientists begin with a donated blastocyst-stage embryo, at approximately five days after IVF (see Figure 8.3a). The blastocyst consists of approximately 150200 cells that form a hollow sphere of cells, the outer layer of which is called the trophectoderm. During normal development, the trophoblast becomes the placenta and umbilical cord. At one pole of this hollow sphere, 3050 cells form a cluster that is called the inner cell mass (ICM), which would give rise to the developing fetus. ICM cells are pluripotent, possessing the capacity to become any of the several hundred specialized cell types found in a developed human, with the exception of the placenta and umbilical cord.

Scientists remove the ICM from the donated blastocyst and place these cells into a specialized culture medium. In approximately one in five attempts, a hESC line begins to grow. Stem cells grown in such a manner can then be directed to differentiate into various lineages, including neural precursor cells,8 cardiomyocytes,9 and hematopoietic (blood forming) precursor cells.10

However, hESC lines are extremely difficult to grow in culture; the cells require highly specialized growth media that contain essential ingredients that are difficult to standardize. Yet the culture conditions are critical to maintain the cells' self-renewing and pluripotent properties. Culture requires the support of mouse or human cells, either directly as a "feeder" cell layer6,11,12 or indirectly as a source of conditioned medium in feeder-free culture systems.13 The feeder cells secrete important nutrients and otherwise support stem cell growth, but are treated so they cannot divide. Although the complete role of these feeder cells is not known, they promote stem cell growth, including detoxifying the culture medium and secreting proteins that participate in cell growth.14 hESC lines used to produce human cells for transplantation therapies may need to be propagated on a human feeder cell layer to reduce the risk of contamination by murine viruses or other proteins that may cause rejection. Thus, hESC lines often grow only under highly specific culture conditions, and the identification of ideal growth conditions presents a challenge regardless of the source of the hESCs.

Furthermore, human ES cell cultures must be expanded using an exacting protocol to avoid cell death and to control spontaneous differentiation. Since a limited number of laboratories in the United States are growing these cells, there is a shortage of people well-versed in the art and science of successful hESC culture. In the short term, challenges of working with these cells include developing robust culture conditions and protocols, understanding the molecular mechanisms that direct differentiation into specific cell types, and developing the infrastructure to advance this scientific opportunity. Once these challenges have been met, scientists will need to conduct transplantation studies in animal models (rodent and non-human primates) to demonstrate safety, effectiveness, and long-term benefit before stem cell therapies may enter clinical trials.

A second method for generating human pluripotent stem cell lines was published in 1998 by John Gearhart and coworkers at The Johns Hopkins Medical School.15

These researchers isolated specialized cells known as primordial germ cells (PGCs) from a 57-week-old embryo and placed these cells into culture (see Figure 8.3b). PGCs are destined to become either oocytes or sperm cells, depending on the sex of the developing embryo. The resulting cell lines are called embryonic germ cell lines, and they share many properties with ES cells. As with ES cells, however, PGCs present challenges with sustained growth in culture.16,17 Spontaneous differentiation, which hinders the isolation of pure clonal lines, is a particular issue. Therefore, the clinical application of these cells requires a more complete understanding of their derivation and maintenance in vitro.

Embryos that stop dividing after being fertilized in vitro are not preferentially selected for implantation in a woman undergoing fertility treatment. These embryos are typically either frozen for future use or discarded as medical waste. In 2006, scientists at the University of Newcastle, United Kingdom, generated hESC lines from IVF embryos that had stopped dividing.18 These scientists used similar methods as described under "Traditional hESC Line Generation" except that their source material was so-called "dead" IVF embryos (see Figure 8.3c). The human stem cells created using this technique behaved like pluripotent stem cells, including producing proteins critical for "stemness" and being able to produce cells from all three germ layers. It has been proposed that an IVF embryo can be considered dead when it ceases to divide.19 If one accepts this definition, such an embryo that "dies" from natural causes presumably cannot develop into a human being, thereby providing a source to derive human ES cells without destroying a living embryo.

Figure 8.3. Alternative Methods for Preparing Pluripotent Stem Cells

2008 Terese Winslow

Couples who have learned that they carry a genetic disorder sometimes use pre-implantation genetic diagnosis (PGD) and IVF to have a child that does not carry the disorder. PGD requires scientists to remove one cell from a very early IVF human embryo and test it for diseases known to be carried by the hopeful couple. Normally, embryos identified with genetic disorders are discarded as medical waste. However, Dr.Yuri Verlinsky and colleagues have capitalized on these embryos as a way to further our understanding of the diseases they carry (see Figure 8.3d) by deriving hESC lines from them.20 These stem cell lines can then be used to help scientists understand genetically-based disorders such as muscular dystrophy, Huntington's disease, thalessemia, Fanconi's anemia, Marfan syndrome, adrenoleukodystrophy, and neurofibromatosis.

In 2006, Dr. Robert Lanza and colleagues demonstrated that it is possible to remove a single cell from a pre-implantation mouse embryo and generate a mouse ES cell line.21 This work was based upon their experience with cleavage-stage mouse embryos. Later that same year, Dr. Lanza's laboratory reported that it had successfully established hESC lines (see Figure 8.3e) from single cells taken from pre-implantation human embryos.22 The human stem cells created using this technique behaved like pluripotent stem cells, including making proteins critical for "stemness" and producing cells from all three germ layers. Proponents of this technique suggest that since it requires only one embryonic cell, the remaining cells may yet be implanted in the womb and develop into a human being. Therefore, scientists could potentially derive human embryonic stem cells without having to destroy an embryo. However, ethical considerations make it uncertain whether scientists will ever test if the cells remaining after removal of a single cell can develop into a human being, at least in embryos that are not at risk for carrying a genetic disorder. Moreover, it is unclear whether the single cell used to generate a pluripotent stem cell line has the capacity to become a human being.

Parthenogenesis is the creation of an embryo without fertilizing the egg with a sperm, thus omitting the sperm's genetic contributions. To achieve this feat, scientists "trick" the egg into believing it is fertilized, so that it will begin to divide and form a blastocyst (see Figure 8.3f). In 2007, Dr. E.S. Revazova and colleagues reported that they successfully used parthenogenesis to derive hESCs.23 These stem cell lines, derived and grown using a human feeder cell layer, retained the genetic information of the egg donor and demonstrated characteristics of pluripotency. This technique may lead to the ability to generate tissue-matched cells for transplantation to treat women who are willing to provide their own egg cells.24 It also offers an alternate method for deriving tissue-matched hESCs that does not require destruction of a fertilized embryo.

Amniotic fluid surrounding the developing fetus contains cells shed by the fetus and is regularly collected from pregnant women during amniocentesis. In 2003, researchers identified a subset of cells in amniotic fluid that express Oct-4, a marker for pluripotent human stem cells that is expressed in ES cells and embryonic germ cells.25 Since then, investigators have shown that amniotic fluid stem cells can differentiate into cells of all three embryonic germ layers and that these cells do not form tumors in vivo.26,27

For example, Anthony Atala and colleagues at the Wake Forest University have recently generated non-embryonic stem cell lines from cells found in human and rat amniotic fluid.27 They named these cells amniotic fluid-derived stem cells (AFS). Experiments demonstrate that AFS can produce cells that originate from each of the three embryonic germ layers, and the self-renewing cells maintained the normal number of chromosomes after a prolonged period in culture. However, undifferentiated AFS did not produce all of the proteins expected of pluripotent cells, and they were not capable of forming a teratoma. The scientists developed in vitro conditions that enabled AFS to produce nerve cells, liver cells, and bone-forming cells. AFS-derived human nerve cells could make proteins typical of specialized nerve cells and were able to integrate into a mouse brain and survive for at least two months. Cultured AFS-derived human liver cells secreted urea and made proteins characteristic of normal human liver cells. Cultured AFS-derived human bone cells made proteins expected of human bone cells and formed bone in mice when seeded onto scaffolds and implanted under the mouse's skin. Although scientists do not yet know how many different cell types AFS can generate, AFS may one day allow researchers to establish a bank of cells for transplantation into humans.

An alternative to searching for an existing population of stem cells is to create a new one from a population of non-pluripotent cells. This strategy, which may or may not involve the creation of an embryo, is known as "reprogramming." This section will summarize reprogramming approaches, including several recent breakthroughs in the field..

In SCNT (see Figure 8.3g), human oocytes (eggs) are collected from a volunteer donor who has taken drugs that stimulate the production of more than one oocyte during the menstrual cycle. Scientists then remove the nucleus from the donated oocyte and replace it with the nucleus from a somatic cell, a differentiated adult cell from elsewhere in the body. The oocyte with the newly-transferred nucleus is then stimulated to develop. The oocyte may develop only if the transplanted nucleus is returned to the pluripotent state by factors present in the oocyte cytoplasm. This alteration in the state of the mature nucleus is called nuclear reprogramming. When development progresses to the blastocyst stage, the ICM is removed and placed into culture in an attempt to establish a pluripotent stem cell line. To date, the technique has been successfully demonstrated in two primates: macaque monkeys28 and humans.29

However, successful SCNT creates an embryo-like entity, thereby raising the ethical issues that confront the use of spare IVF embryos. However, pluripotent cell lines created by embryos generated by SCNT offer several advantages over ES cells. First, the nuclear genes of such a pluripotent cell line will be identical to the genes in the donor nucleus. If the nucleus comes from a cell that carries a mutation underlying a human genetic disease such as Huntington's disease, then all cells derived from the pluripotent cell line will carry this mutation. In this case, the SCNT procedure would enable the development of cellular models of human genetic disease that can inform our understanding of the biology of disease and facilitate development of drugs to slow or halt disease progression. Alternatively, if the cell providing the donor nucleus comes from a specific patient, all cells derived from the resulting pluripotent cell line will be genetically matched to the patient with respect to the nuclear genome. If these cells were used in transplantation therapy, the likelihood that the patient's immune system would recognize the transplanted cells as foreign and initiate tissue rejection would be reduced. However, because mitochondria also contain DNA, the donor oocyte will be the source of the mitochondrial genome, which is likely to carry mitochondrial gene differences from the patient which may still lead to tissue rejection.

A technique reported in 2007 by Dr. Kevin Eggan and colleagues at Harvard University may expand scientists' options when trying to "reprogram" an adult cell's DNA30. Previously, successful SCNT relied upon the use of an unfertilized egg. Now, the Harvard scientists have demonstrated that by using a drug to stop cell division in a fertilized mouse egg (zygote) during mitosis, they can successfully reprogram an adult mouse skin cell by taking advantage of the "reprogramming factors" that are active in the zygote at mitosis. They removed the chromosomes from the single-celled zygote's nucleus and replaced them with the adult donor cell's chromosomes (see Figure 8.3h). The active reprogramming factors present in the zygote turned genes on and off in the adult donor chromosomes, to make them behave like the chromosomes of a normally fertilized zygote. After the zygote was stimulated to divide, the cloned mouse embryo developed to the blastocyst stage, and the scientists were able to harvest embryonic stem cells from the resulting blastocyst. When the scientists applied their new method to abnormal mouse zygotes, they succeeded at reprogramming adult mouse skin cells and harvesting stem cells. If this technique can be repeated with abnormal human zygotes created in excess after IVF procedures, scientists could use them for research instead of discarding them as medical waste.

Altered nuclear transfer is a variation on standard SCNT that proposes to create patient-specific stem cells without destroying an embryo. In ANT, scientists turn off a gene needed for implantation in the uterus (Cdx2) in the patient cell nucleus before it is transferred into the donor egg (see Figure 8.3i). In 2006, Dr. Rudolph Jaenisch and colleagues at MIT demonstrated that ANT can be carried out in mice.31 Mouse ANT entities whose Cdx2 gene is switched off are unable to implant in the uterus and do not survive to birth. Although ANT has been used to create viable stem cell lines capable of producing almost all cell types, the authors point out that this technique must still be tested with monkey and human embryos. Moreover, the manipulation needed to control Cdx2 expression introduces another logistical hurdle that may complicate the use of ANT to derive embryonic stem cells. Proponents of ANT, such as William Hurlbut of the Stanford University Medical Center, suggest that the entity created by ANT is not a true embryo because it cannot implant in the uterus.32, 33 However, the technique is highly controversial, and its ethical implications remain a source of current debate.4,32

In 2005, Kevin Eggan and colleagues at Harvard University reported that they had fused cultured adult human skin cells with hESCs (see Figure 8.3j).36 The resulting "hybrid" cells featured many characteristics of hESCs, including a similar manner of growth and division and the manufacture of proteins typically produced by hESCs. Some factor(s) within the hESCs enabled them to "reprogram" the adult skin cells to behave as hESCs. However, these cells raised a significant technical barrier to clinical use. Because fused cells are tetraploid (they contain four copies of the cellular DNA rather than the normal two copies), scientists would need to develop a method to remove the extra DNA without eliminating their hESC-like properties. The fusion method serves as a useful model system for studying how stem cells "reprogram" adult cells to have properties of pluripotent cells. However, if the reprogramming technique could be carried out without the fusion strategy, a powerful avenue for creating patient-specific stem cells without using human eggs could be developed.

In 2007, two independent research groups published manuscripts that described successful genetic reprogramming of human adult somatic cells into pluripotent human stem cells.34,35 Although some technical limitations remain, this strategy suggests a promising new avenue for generating pluripotent cell lines that can inform drug development, models of disease, and ultimately, transplantation medicine. These experiments, which are discussed below, were breakthroughs because they used adult somatic cells to create pluripotent stem cells that featured hallmarks of ES cells.

In 2006, Shinya Yamanaka and colleagues at Kyoto University reported that they could use a retroviral expression vector to introduce four important stem cell factors into adult mouse cells and reprogram them to behave like ES cells (see Figure 8.3k).37 They called the reprogrammed cells "iPSCs," for induced pluripotent stem cells. However, iPSCs produced using the original technique failed to produce sperm and egg cells when injected into an early mouse blastocyst and did not make certain critical DNA changes. These researchers then modified the technique to select for iPSCs that can produce sperm and eggs,38 results that have since been reproduced by Rudolph Jaenisch and colleagues at the Massachusetts Institute of Technology (MIT).39

In addition, the MIT scientists determined that iPSCs DNA is modified in a manner similar to ES cells, and important stem cell genes are expressed at similar levels. They also demonstrated that iPSCs injected into an early mouse blastocyst can produce all cell types within the developing embryo, and such embryos can complete gestation and are born alive.

Once these research advances were made in mice, they suggested that similar techniques might be used to reprogram adult human cells. In 2007, Yamanaka and coworkers reported that introducing the same four genetic factors that reprogrammed the mouse cells into adult human dermal fibroblasts reprogrammed the cells into human iPSCs.35 These iPSCs were similar to human ES cells in numerous ways, including morphology, proliferative capacity, expression of cell surface antigens, and gene expression. Moreover, the cells could differentiate into cell types from the three embryonic germ layers both in vitro and in teratoma assays. Concurrent with the Yamanaka report, James Thomson and coworkers at the University of Wisconsin published a separate manuscript that detailed the creation of human iPSCs through somatic cell reprogramming using four genetic factors (two of which were in common with the Yamanaka report).34 The cells generated by the Thomson group met all defining criteria for ES cells, with the exception that they were not derived from embryos.

These breakthroughs have spurred interest in the field of iPSCs research. In early 2008, investigators at the Massachusetts General Hospital40 and the University of California, Los Angeles41 reported generating reprogrammed cells. As scientists explore the mechanisms that govern reprogramming, it is anticipated that more reports will be forthcoming in this emerging area. Although these reprogramming methods require the use of a virus, non-viral strategies may also be possible in the future. In any case, these approaches have created powerful new tools to enable the "dedifferentation" of cells that scientists had previously believed to be terminally differentiated.42,43

Although further study is warranted to determine if iPS and ES cells differ in clinically significant ways, these breakthrough reports suggest that reprogramming is a promising strategy for future clinical applications. Induced pluripotent cells offer the obvious advantage that they are not derived from embryonic tissues, thereby circumventing the ethical issues that surround use of these materials. Successful reprogramming of adult somatic cells could also lead to the development of stem cell lines from patients who suffer from genetically-based diseases, such as Huntington's Disease, spinal muscular atrophy, muscular dystrophy, and thalessemia. These lines would be invaluable research tools to understand the mechanisms of these diseases and to test potential drug treatments. Additionally, reprogrammed cells could potentially be used to repair damaged tissues; patient-specific cell lines could greatly reduce the concerns of immune rejection that are prevalent with many transplantation strategies.

However, several technical hurdles must be overcome before iPSCs can be used in humans. For example, in preliminary experiments with mice, the virus used to introduce the stem cell factors sometimes caused cancers.37 The viral vectors used in these experiments will have to be selected carefully and tested fully to verify that they do not integrate into the genome, thereby harboring the potential to introduce genetic mutations at their site of insertion. This represents a significant concern that must be addressed before the technique can lead to useful treatments for humans. However, this strategy identifies a method for creating pluripotent stem cells that, together with studies of other types of pluripotent stem cells, will help researchers learn how to reprogram cells to repair damaged tissues in the human body.

Stem cell research is a rapidly evolving field, and researchers continue to isolate new pluripotent cells and create additional cell lines. This section briefly reviews other sources of pluripotent cells and the implications that their discovery may have on future research.

Epiblast Cells. While rodent and human ES cells are pluripotent, they maintain their respective pluripotencies through different molecular signaling pathways. It is not known why these differences exist. Recently, several research groups have reported the generation of stable, pluripotent cell lines from mouse and rat epiblast, a tissue of the post-implantation embryo that ultimately generates the embryo proper.44,45 These cells are distinct from mouse ES cells in terms of the signals that control their differentiation. However, the cells share patterns of gene expression and signaling responses with human ES cells. The establishment of epiblast cell lines can therefore provide insight into the distinctions between pluripotent cells from different species and illuminate ways that pluripotent cells pursue distinct fates during early development.

Existing Adult Stem Cells. As has been discussed in other chapters, numerous types of precursor cells have been isolated in adult tissues.46 Although these cells tend to be relatively rare and are dispersed throughout the tissues, they hold great potential for clinical application and tissue engineering. For example, tissues created using stem cells harvested from an adult patient could theoretically be used clinically in that patient without engendering an immune response. Moreover, the use of adult stem cells avoids the ethical concerns associated with the use of ES cells. In addition, adult-derived stem cells do not spontaneously differentiate as do ES cells, thus eliminating the formation of teratomas often seen with implantation of ES cells. The potential of adult stem cells for regenerative medicine is great; it is likely that these various cells will find clinical application in the upcoming decades.

Although the recent advances in reprogramming of adult somatic cells has generated a wave of interest in the scientific community, these cell lines will not likely replace hESC lines as tools for research and discovery. Rather, both categories of cells will find unique uses in the study of stem cell biology and the development and evaluation of therapeutic strategies. Pluripotent cells offer a number of potential clinical applications, especially for diseases with a genetic basis. However, researchers are just beginning to unlock the many factors that govern the cells' growth and differentiation. As scientists make strides toward understanding how these cells can be manipulated, additional applications, approaches, and techniques will likely emerge. As such, pluripotent cells will play a pivotal role in future research into the biology of development and the treatment of disease.

Chapter7|Table of Contents|Chapter9

Excerpt from:
Alternate Methods for Preparing Pluripotent Stem Cells ...

Posted in Massachusetts Stem Cells | Comments Off on Alternate Methods for Preparing Pluripotent Stem Cells …

U.S. Stem Cell Training | Regenerative Medicine Training …

Posted: September 25, 2017 at 3:48 pm

In 2011 I attended training and education on adult stem cell harvesting, isolation, and separation techniques led by Kristin Comella. She laid a solid foundation for us by educating us on how stem cells function, practical applications, and current research and results. When we went into the lab portion, Kristin was very thorough and meticulous when walking us through the steps. We were given a detailed, printed protocol to follow that made things very clear and easy to replicate. Kristin was eager to help out, answer questions, and show us the most efficient ways to perform each step of the procedure. Kristin is very knowledgable and passionate about her research and adult stem cell therapies and has continued to be a valuable resource to us at SouthPointe Family Physicians. She always replies promptly to any questions or concerns we may have and keeps us up-to-date on the latest protocols and findings! Overall, working with Kristin has been a fantastic experience, and I'm excited to continue learning more from her in this field!

Continued here:
U.S. Stem Cell Training | Regenerative Medicine Training ...

Posted in Cell Medicine | Comments Off on U.S. Stem Cell Training | Regenerative Medicine Training …

Stem Cell Research at Johns Hopkins Medicine: Parkinsons …

Posted: September 25, 2017 at 3:48 pm

Ted Dawson, M.D., Ph.D., professor of neurology and co-director of NeuroICE explains where we are in using stem cells to treat Parkinsons Disease.

Were creating induced pluripotent stem (iPS) cells from patients with Parkinsons disease with the intent of turning them into dopamine neurons that we can study in a dish and also put into animals. We want to see if human iPS derived neurons grown in culture or in a mouse can lead to disease, and if it can, to study the mechanisms of why cells degenerate and test our hypotheses, drugs and targets in human cells.

If you look at the work thats been done in neurodegenerative diseases in animal models, weve been good at slowing progression of disease, but when we go to humans, the trials fail. So why is that? Perhaps because in mice were able to intervene very early in the disease, but in humans were treating late. Maybe the treatment would work if we treated early in humans, but this would require the ability to diagnosis the disease prior to the onset of symptoms. The other possibility is that Parkinsons disease in a mouse is different than a man.

Using iPS cells we can test new therapies in human neurons for the first time. One of the reasons there have been tremendous new therapies with cancers is that scientists can biopsy human tumors and use those cells to design drugs. Now stem cells are putting us in a position to be able to study neurodegenerative diseases in a similar way.

For developmental diseases such as Down syndrome and schizophrenia, theres no question in my mind that iPS will change the ways those diseases are studied and treated. With an adult-onset neurodegenerative disorder that takes 50 years to develop in humans, the big question is whether an iPS cell will have Parkinsons disease after growing in a mouse for a few months. We just dont know. But we need to do the experiment.

Lots of people thought Parkinsons was going to be low hanging fruit for stem cell transplantation. But we still dont fully understand the transplantation process and how to optimize it. There needs to be a lot of work done to get to that point. And medical therapy for Parkinsons is so advanced that transplantation right now probably isnt going to be any better than what we can already do. But that doesnt mean we shouldnt be forging ahead, using stem cells to discover more about the disease in order to find new drugs as well as refine our ideas about transplantation.

--Interviewed by Maryalice Yakutchik

Read more here:
Stem Cell Research at Johns Hopkins Medicine: Parkinsons ...

Posted in Cell Medicine | Comments Off on Stem Cell Research at Johns Hopkins Medicine: Parkinsons …

Lung Institute | Stem Cell Treatment Tennessee

Posted: September 25, 2017 at 3:46 pm

Stem Cells

A stem cell is an essential building block for survival. Stem cellsare responsible for being the foundation for every living being. They are capable of forming any tissue or organ in the body, which is unique from other cells, while they can still self-renew and replicate constantly. Their plasticity acts as another differentiator from other cells as their ability to create tissue for an organ different than their originating organ is essential to their benefit in regenerative medicine.

Stem cell treatment at the Lung Institute has proven to improve the function of the lungs affected by chronic lung disease, but stem cells are capable of forming any differentiated cell, so they can actually develop into any organ or tissue in the body, which proves their versatility in the medical field. Since stem cells self-renew, they divide indefinitely, which means they are ideal to promote the healing oforgans. As new tissue is created by the stem cells, organs are strengthened and the effects of organ damage are minimized.

The newly opened Lung Institute in Tennessee offers stem cell treatments with adult autologous stem cells. The cells come directly from an adult patients body only to be administered to the same patient. This decreases the potential of rejection and undermines any possible controversy about stem cell therapy.

The Lung Institute provides two unique stem cell treatments: bone marrowand venous (blood-derived). The recommended stem cell treatment will be determined based on the patients health history and their current condition. The recommended treatment type will be determined during a physician consultation. During stem cell treatment, the stem cells target the damaged tissue or organ in order to reinforce function and improve lives.

Depending on the therapy recommended, the cells are then extracted from the patients body either through bone marrowor blood. The stem cells are isolated by a professional, and almost immediately, the stem cells are given back to the individual intravenously allowing patients to breathe in the stem cells. Now, the stem cells can begin to promote the healing oflung tissue, so patients can breathe easier and bring their life within reach.

If you or a loved one want to learn more about how stem cell treatment for COPD in Tennessee can be used to battle lung disease and improve your life, contact us or call us at(800) 729-3065.

See more here:
Lung Institute | Stem Cell Treatment Tennessee

Posted in Tennessee Stem Cells | Comments Off on Lung Institute | Stem Cell Treatment Tennessee

About Us | Rhode Island Blood Center – ribc.org

Posted: September 25, 2017 at 3:46 pm

We provide blood throughout the state and regionally for patients being treated at leading hospitals.

Community sponsors host over 1,000 mobile blood drives per year.

370,000 people in RI are eligible to give blood each year, but only about 5% of the population donates.

RIBC supplies blood and blood products to over 40 hospitals throughout New England.

Units of blood are needed from donors every single day for the patients and hospitals we serve.

The Rhode Island Blood Center (RIBC) was founded in 1979 as a non-profit community blood center. For over 35 years, we have been the primary supplier of blood and blood products to patients being cared for in hospitals throughout Rhode Island and in neighboring states. Our mission is to help save lives by ensuring a safe, plentiful and cost-effective blood supply.

RIBC is much more than just a blood collection organization or blood bank. We register people for the National Marrow Donor Program and collect stem cells of donors who match recipients needing bone marrow transplants right at our Providence Center. We provide therapeutic treatments for patients in local hospitals. Our state-of-the-art laboratory conducts human leukocyte antigen (HLA) histocompatibility and red cell typing, immunogenics, as well as DNA and relationship testing. We are also involved in a variety of local and national research programs in an effort to improve all aspects of the blood supply.

RIBC has long-standing relationships with many organizations in the community who sponsor blood drives. These sponsors help inspire, educate and encourage the many volunteer blood donors needed to supply over 200 units of blood and blood products that must be collected each day to meet the needs of patients and hospitals we serve in Rhode Island and throughout New England.

The Rhode Island Blood Center is dedicated to steady growth and improvement in our community blood program.

Read the original post:
About Us | Rhode Island Blood Center - ribc.org

Posted in Rhode Island Stem Cells | Comments Off on About Us | Rhode Island Blood Center – ribc.org

Nanomedicine Research Journal

Posted: September 25, 2017 at 3:45 pm

Nanomedicine Research Journal (Abbreviation: Nanomed Res J)

is an international, open access, peer-reviewed, electronic and print quarterly publication released by the Iranian Society of Nanomedicine (ISNM). Nanomedicine Research Journal publishes original research articles, review papers, mini review papers, case reports and short communications covering a wide range of field-specific and interdisciplinary theoretical and experimental results related to applications of nanoscience and nanotechnology in medicine including, but not limited to, diagnosis, treatment, monitoring, prediction and prevention of diseases, tissue engineering, nano bio-sensors, functionalized carriers and targeted drug delivery systems.

* Publication process of manuscripts submitted to Nanomed Res J is free of charge.

To see Acceptance timeline Please follow the link below:

Acceptance Timeline Diagram

About the publisher

Founded in 2011 by the leading ofSchool of Advanced Technologies in medicine (SATiM),Tehran University of Medical Sciences (TUMS) and Iran Nanotechnology Initiative Council, the Iranian Society of Nanomedicine (ISNM) attempts to promote and develop medical nanotechnology in Iran. For more information about the publisher, please visit us at http://isnm.ir/en/.

Read more from the original source:
Nanomedicine Research Journal

Posted in Nano medicine | Comments Off on Nanomedicine Research Journal

Regenexx Kansas City | Helping your body heal itself

Posted: September 24, 2017 at 6:59 am

Select a Problem Area

If you have pain, we're here to help. Regenexx Procedures are patented stem cell and blood platelet procedures that are used to treat a wide range of joint and spine conditions.

Click a problem area to discover what Regenexx can do for you.

The Regenexx family of non-surgical stem-cell & blood platelet procedures are next generation regenerative injection treatments for those who are suffering from shoulder pain due to arthritis, rotator cuff and shoulder labrum tears, overuse injuries, and other degenerative conditions. Regenexx is also a viable alternative for those considering shoulder replacement surgery.

View Details About Shoulder Treatments

Commonly Treated Conditions:

Shoulder Procedure Video

Regenexx Procedures are advanced stem cell and blood platelet procedures for foot and ankle conditions. Before you consider ankle surgery, fusion or replacement, consider the worlds leading stem cell and prp injection treatments.

View Details About Foot & Ankle Treatments

Commonly Treated Conditions:

Ankle Procedure Video

The Regenexx family of non-surgical stem-cell & blood platelet procedures are next generation regenerative injection treatments for those who are suffering from pain or reduced range of motion due to basal joint / cmc arthritis, hand arthritis, or other injuries & conditions in the hand.

View Details About Hand & Wrist Treatments

Commonly Treated Conditions:

The Regenexx family of non-surgical stem cell and blood platelet procedures offer next-generation injection treatments for those who are suffering from knee pain or may be facing knee surgery or knee replacement due to common injuries, arthritis, overuse and other conditions.

View Details About Knee Treatments

Commonly Treated Conditions:

ACL Procedure VideoIn-Depth with Dr. John Schultz ACL Procedure Video

The Regenexx family of non-surgical stem-cell & blood platelet procedures are next generation regenerative injection treatments for those who are suffering from pain, inflammation or reduced range of motion due tocommon elbow injuries, arthritis and overuse conditions.

View Details About Elbow Treatments

Commonly Treated Conditions:

The Regenexx family of hip surgery alternatives are breakthrough, non-surgical stem-cell treatments for people suffering from hip pain due to common injuries, hip arthritis & other degenerative problems related to the hip joint.

View Details About Hip Treatments

Commonly Treated Conditions:

Hip Labrum Procedure Video Hip Avascular Necrosis Procedure Video

Regenexx has many non-surgical platelet and stem cell based procedures developed to help patients avoid spine surgery and high dose epidural steroid side effects. These procedures utilize the patients own natural growth factors or stem cells to treat bulging or herniated discs, degenerative conditions in the spine, and other back and neck conditions that cause pain.

View Details About Spine Treatments

Commonly Treated Conditions:

Intradiscal Procedure Video

Regenexx has many non-surgical platelet and stem cell based procedures developed to help patients avoid spine surgery and high dose epidural steroid side effects. These procedures utilize the patients own natural growth factors or stem cells to treat bulging or herniated discs, degenerative conditions in the spine, and other back and neck conditions that cause pain.

View Details About Spine Treatments

Commonly Treated Conditions:

Cervical Spine Video

Read more:
Regenexx Kansas City | Helping your body heal itself

Posted in Kansas Stem Cells | Comments Off on Regenexx Kansas City | Helping your body heal itself

Use of Genetically Modified Stem Cells in Experimental …

Posted: September 24, 2017 at 6:57 am

by Thomas P. Zwaka*

Gene therapy is a novel therapeutic branch of modern medicine. Its emergence is a direct consequence of the revolution heralded by the introduction of recombinant DNA methodology in the 1970s. Gene therapy is still highly experimental, but has the potential to become an important treatment regimen. In principle, it allows the transfer of genetic information into patient tissues and organs. Consequently, diseased genes can be eliminated or their normal functions rescued. Furthermore, the procedure allows the addition of new functions to cells, such as the production of immune system mediator proteins that help to combat cancer and other diseases.

Originally, monogenic inherited diseases (those caused by inherited single gene defects), such as cystic fibrosis, were considered primary targets for gene therapy. For instance, in pioneering studies on the correction of adenosine deaminase deficiency, a lymphocyte-associated severe combined immunodeficiency (SCID), was attempted.1 Although no modulation of immune function was observed, data from this study, together with other early clinical trials, demonstrated the potential feasibility of gene transfer approaches as effective therapeutic strategies. The first successful clinical trials using gene therapy to treat a monogenic disorder involved a different type of SCID, caused by mutation of an X chromosome-linked lymphocyte growth factor receptor.2

Figure 4.1. Indications Addressed by Gene Therapy Clinical Trials.

* Center for Cell and Gene Therapy & Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, Email: tpzwaka@bcm.tmc.edu

While the positive therapeutic outcome was celebrated as a breakthrough for gene therapy, a serious drawback subsequently became evident. By February 2005, three children out of seventeen who had been successfully treated for X-linked SCID developed leukemia because the vector inserted near an oncogene (a cancer-causing gene), inadvertently causing it to be inappropriately expressed in the genetically-engineered lymphocyte target cell.3 On a more positive note, a small number of patients with adenosine deaminase-deficient SCID have been successfully treated by gene therapy without any adverse side effects.4

A small number of more recent gene therapy clinical trials, however, are concerned with monogenic disorders. Out of the approximately 1000 recorded clinical trials (January 2005), fewer than 10% target these diseases (see Figure 4.1). The majority of current clinical trials (66% of all trials) focus on polygenic diseases, particularly cancer.

Gene therapy relies on similar principles as traditional pharmacologic therapy; specifically, regional specificity for the targeted tissue, specificity of the introduced gene function in relation to disease, and stability and controllability of expression of the introduced gene. To integrate all these aspects into a successful therapy is an exceedingly complex process that requires expertise from many disciplines, including molecular and cell biology, genetics and virology, in addition to bioprocess manufacturing capability and clinical laboratory infrastructure.

Gene therapy can be performed either by direct transfer of genes into the patient or by using living cells as vehicles to transport the genes of interest. Both modes have certain advantages and disadvantages.

Direct gene transfer is particularly attractive because of its relative simplicity. In this scenario, genes are delivered directly into a patient's tissues or bloodstream by packaging into liposomes (spherical vessels composed of the molecules that form the membranes of cells) or other biological microparticles. Alternately, the genes are packaged into genetically-engineered viruses, such as retroviruses or adenoviruses. Because of biosafety concerns, the viruses are typically altered so that they are not toxic or infectious (that is, they are replication incompetent). These basic tools of gene therapists have been extensively optimized over the past 10 years.

However, their biggest strengthsimplicityis simultaneously their biggest weakness. In many cases, direct gene transfer does not allow very sophisticated control over the therapeutic gene. This is because the transferred gene either randomly integrates into the patient's chromosomes or persists unintegrated for a relatively short period of time in the targeted tissue. Additionally, the targeted organ or tissue is not always easily accessible for direct application of the therapeutic gene.

On the other hand, therapeutic genes can be delivered using living cells. This procedure is relatively complex in comparison to direct gene transfer, and can be divided into three major steps. In the first step, cells from the patient or other sources are isolated and propagated in the laboratory. Second, the therapeutic gene is introduced into these cells, applying methods similar to those used in direct gene transfer. Finally, the genetically-modified cells are returned to the patient. The use of cells as gene transfer vehicles has certain advantages. In the laboratory dish (in vitro), cells can be manipulated much more precisely than in the body (in vivo). Some of the cell types that continue to divide under laboratory conditions may be expanded significantly before reintroduction into the patient. Moreover, some cell types are able to localize to particular regions of the human body, such as hematopoietic (blood-forming) stem cells, which return to the bone marrow. This quot;homingquot; phenomenon may be useful for applying the therapeutic gene with regional specificity.

A major disadvantage, however, is the additional biological complexity brought into systems by living cells. Isolation of a specific cell type requires not only extensive knowledge of biological markers, but also insight into the requirements for that cell type to stay alive in vitro and continue to divide. Unfortunately, specific biological markers are not known for many cell types, and the majority of normal human cells cannot be maintained for long periods of time in vitro without acquiring deleterious mutations.

Stem cells can be classified as embryonic or adult, depending on their tissue of origin. The role of adult stem cells is to sustain an established repertoire of mature cell types in essentially steady-state numbers over the lifetime of the organism. Although adult tissues with a high turnover rate, such as blood, skin, and intestinal epithelium, are maintained by tissue-specific stem cells, the stem cells themselves rarely divide. However, in certain situations, such as during tissue repair after injury or following transplantation, stem cell divisions may become more frequent. The prototypic example of adult stem cells, the hematopoietic stem cell, has already been demonstrated to be of utility in gene therapy.4,5 Although they are relatively rare in the human body, these cells can be readily isolated from bone marrow or after mobilization into peripheral blood. Specific surface markers allow the identification and enrichment of hematopoietic stem cells from a mixed population of bone marrow or peripheral blood cells.

After in vitro manipulation, these cells may be retransplanted into patients by injection into the bloodstream, where they travel automatically to the place in the bone marrow in which they are functionally active. Hematopoietic stem cells that have been explanted, in vitro manipulated, and retransplanted into the same patient (autologous transplantation) or a different patient (allogeneic transplantation) retain the ability to contribute to all mature blood cell types of the recipient for an extended period of time (when patients' cells are temporarily grown quot;outside the bodyquot; before being returned to them, the in vitro process is typically referred to as an quot;ex vivoquot; approach).

Another adult bone marrow-derived stem cell type with potential use as a vehicle for gene transfer is the mesenchymal stem cell, which has the ability to form cartilage, bone, adipose (fat) tissue, and marrow stroma (the bone marrow microenvironment).6 Recently, a related stem cell type, the multipotent adult progenitor cell, has been isolated from bone marrow that can differentiate into multiple lineages, including neurons, hepatocytes (liver cells), endothelial cells (such as the cells that form the lining of blood vessels), and other cell types.7 Other adult stem cells have been identified, such as those in the central nervous system and heart, but these are less well characterized and not as easily accessible.8

The traditional method to introduce a therapeutic gene into hematopoietic stem cells from bone marrow or peripheral blood involves the use of a vector derived from a certain class of virus, called a retrovirus. One type of retroviral vector was initially employed to show proof-of-principle that a foreign gene (in that instance the gene was not therapeutic, but was used as a molecular tag to genetically mark the cells) introduced into bone marrow cells may be stably maintained for several months.9 However, these particular retroviral vectors were only capable of transferring the therapeutic gene into actively dividing cells. Since most adult stem cells divide at a relatively slow rate, efficiency was rather low. Vectors derived from other types of retroviruses (lentiviruses) and adenoviruses have the potential to overcome this limitation, since they also target non-dividing cells.

The major drawback of these methods is that the therapeutic gene frequently integrates more or less randomly into the chromosomes of the target cell. In principle, this is dangerous, because the gene therapy vector can potentially modify the activity of neighboring genes (positively or negatively) in close proximity to the insertion site or even inactivate host genes by integrating into them. These phenomena are referred to as quot;insertional mutagenesis.quot; In extreme cases, such as in the X-linked SCID gene therapy trials, these mutations contribute to the malignant transformation of the targeted cells, ultimately resulting in cancer.

Another major limitation of using adult stem cells is that it is relatively difficult to maintain the stem cell state during ex vivo manipulations. Under current suboptimal conditions, adult stem cells tend to lose their stem cell properties and become more specialized, giving rise to mature cell types through a process termed quot;differentiation.quot; Recent advances in supportive culture conditions for mouse hematopoietic stem cells may ultimately facilitate more effective use of human hematopoietic stem cells in gene therapy applications.10,11

Embryonic stem cells are capable of unlimited self-renewal while maintaining the potential to differentiate into derivatives of all three germ layers. Even after months and years of growth in the laboratory, they retain the ability to form any cell type in the body. These properties reflect their origin from cells of the early embryo at a stage during which the cellular machinery is geared toward the rapid expansion and diversification of cell types.

Murine (mouse) embryonic stem cells were isolated over 20 years ago,12,13 and paved the way for the isolation of nonhuman primate, and finally human embryonic stem cells.14 Much of the anticipated potential surrounding human embryonic stem cells is an extrapolation from pioneering experiments in the mouse system. Experiments performed with human embryonic stem cells in the last couple of years indicate that these cells have the potential to make an important impact on medical science, at least in certain fields. In particular, this impact includes: a) differentiation of human embryonic stem cells into various cell types, such as neurons, cardiac, vascular, hematopoietic, pancreatic, hepatic, and placental cells, b) the derivation of new cell lines under alternative conditions, c) and the establishment of protocols that allow the genetic modification of these cells.

Following derivation, human embryonic stem cells are easily accessible for controlled and specific genetic manipulation. When this facility is combined with their rapid growth, remarkable stability, and ability to mature in vitro into multiple cell types of the body, human embryonic stem cells are attractive potential tools for gene therapy. Two possible scenarios whereby human embryonic stem cells may benefit the gene therapy field are discussed below.

First, human embryonic stem cells could be genetically manipulated to introduce the therapeutic gene. This gene may either be active or awaiting later activation, once the modified embryonic stem cell has differentiated into the desired cell type. Recently published reports establish the feasibility of such an approach.15 Skin cells from an immunodeficient mouse were used to generate cellular therapy that partially restored immune function in the mouse. In these experiments, embryonic stem cells were generated from an immunodeficient mouse by nuclear transfer technology. The nucleus of an egg cell was replaced with that from a skin cell of an adult mouse with the genetic immunodeficiency. The egg was developed to the blastula stage at which embryonic stem cells were derived. The genetic defect was corrected by a genetic modification strategy designated quot;gene targeting.quot; These quot;curedquot; embryonic stem cells were differentiated into hematopoietic quot;stemquot; cells and transplanted into immunodeficient mice. Interestingly, the immune function in these animals was partially restored. In principle, this approach may be employed for treating human patients with immunodeficiency or other diseases that may be corrected by cell transplantation.

However, significant advances must first be made. The levels of immune system reconstitution observed in the mice were quite modest (

Embryonic stem cells may additionally be indirectly beneficial for cellular gene therapy. Since these cells can be differentiated in vitro into many cell types, including presumably tissue-specific stem cells, they may provide a constant in vitro source of cellular material. Such quot;adultquot; stem cells derived from embryonic stem cells may thus be utilized to optimize protocols for propagation and genetic manipulation techniques.16 To acquire optimal cellular material from clinical samples in larger quantities for experimental and optimization purposes is usually rather difficult since access to these samples is limited.

The therapeutic gene needs to be introduced into the cell type used for therapy. Genes may be introduced into cells by transfection or transduction. Transfection utilizes chemical or physical methods to introduce new genes into cells. Usually, small molecules, such as liposomes, as well as other cationic-lipid based particles are employed to facilitate the entry of DNA encoding the gene of interest into the cells. Brief electric shocks are additionally used to facilitate DNA entry into living cells. All of these techniques have been applied to various stem cells, including human embryonic stem cells. However, the destiny of the introduced DNA is relatively poorly controlled using these procedures. In most cells, the DNA disappears after days or weeks, and in rare cases, integrates randomly into host chromosomal DNA. in vitro drug selection strategies allow the isolation and expansion of cells that are stably transfected, as long as they significantly express the newly introduced gene.

Transduction utilizes viral vectors for DNA transfer. Viruses, by nature, introduce DNA or RNA into cells very efficiently. Engineered viruses can be used to introduce almost any genetic information into cells. However, there are usually limitations in the size of the introduced gene. Additionally, some viruses (particularly retroviruses) only infect dividing cells effectively, whereas others (lentiviruses) do not require actively dividing cells. In most cases, the genetic information carried by the viral vector is stably integrated into the host cell genome (the total complement of chromosomes in the cell).

An important parameter that must be carefully monitored is the random integration into the host genome, since this process can induce mutations that lead to malignant transformation or serious gene dysfunction. However, several copies of the therapeutic gene may also be integrated into the genome, helping to bypass positional effects and gene silencing. Positional effects are caused by certain areas within the genome and directly influence the activity of the introduced gene. Gene silencing refers to the phenomenon whereby over time, most artificially introduced active genes are turned off by the host cell, a mechanism that is not currently well understood. In these cases, integration of several copies may help to achieve stable gene expression, since a subset of the introduced genes may integrate into favorable sites. In the past, gene silencing and positional effects were a particular problem in mouse hematopoietic stem cells.17 These problems led to the optimization of retroviral and lentiviral vector systems by the addition of genetic control elements (referred to as chromatin domain insulators and scaffold/matrix attachment regions) into the vectors, resulting in more robust expression in differentiating cell systems, including human embryonic stem cells.18

In some gene transfer systems, the foreign transgene does not integrate at a high rate and remains separate from the host genomic DNA, a status denoted quot;episomalquot;. Specific proteins stabilizing these episomal DNA molecules have been identified as well as viruses (adenovirus) that persist stably for some time in an episomal condition. Recently, episomal systems have been applied to embryonic stem cells.19

An elegant way to circumvent positional effects and gene silencing is to introduce the gene of interest specifically into a defined region of the genome by the gene targeting technique referred to previously.20 The gene targeting technique takes advantage of a cellular DNA repair process known as homologous recombination.21 Homologous recombination provides a precise mechanism for defined modifications of genomes in living cells, and has been used extensively with mouse embryonic stem cells to investigate gene function and create mouse models of human diseases. Recombinant DNA is altered in vitro, and the therapeutic gene is introduced into a copy of the genomic DNA that is targeted during this process. Next, recombinant DNA is introduced by transfection into the cell, where it recombines with the homologous part of the cell genome. This in turn results in the replacement of normal genomic DNA with recombinant DNA containing genetic modifications.

Homologous recombination is a very rare event in cells, and thus a powerful selection strategy is necessary to identify the cells in which it occurs. Usually, the introduced construct has an additional gene coding for antibiotic resistance (referred to as a selectable marker), allowing cells that have incorporated the recombinant DNA to be positively selected in culture. However, antibiotic resistance only reveals that the cells have taken up recombinant DNA and incorporated it somewhere in the genome. To select for cells in which homologous recombination has occurred, the end of the recombination construct often includes the thymidine kinase gene from the herpes simplex virus. Cells that randomly incorporate recombinant DNA usually retain the entire DNA construct, including the herpes virus thymidine kinase gene. In cells that display homologous recombination between the recombinant construct and cellular DNA, an exchange of homologous DNA sequences is involved, and the non-homologous thymidine kinase gene at the end of the construct is eliminated. Cells expressing the thymidine kinase gene are killed by the antiviral drug ganciclovir in a process known as negative selection. Therefore, those cells undergoing homologous recombination are unique in that they are resistant to both the antibiotic and ganciclovir, allowing effective selection with these drugs (see Figure 4.2).

Figure 4.2. Gene targeting by homologous recombination.

Gene targeting by homologous recombination has recently been applied to human embryonic stem cells.22 This is important for studying gene functions in vitro for lineage selection and marking. For therapeutic applications in transplantation medicine, the controlled modification of specific genes should be useful for purifying specific embryonic stem cell-derived, differentiated cell types from a mixed population, altering the antigenicity of embryonic stem cell derivatives, and adding defined markers that allow the identification of transplanted cells. Additionally, since the therapeutic gene can now be introduced into defined regions of the human genome, better controlled expression of the therapeutic gene should be possible. This also significantly reduces the risk of insertional mutagenesis.

Despite promising scientific results with genetically modified stem cells, some major problems remain to be overcome. The more specific and extensive the genetic modification, the longer the stem cells have to remain in vitro. Although human embryonic stem cells in the culture dish remain remarkably stable, the cells may accumulate genetic and epigenetic changes that might harm the patient (epigenetic changes regulate gene activity without altering the genetic blueprint of the cell). Indeed, sporadic chromosomal abnormalities in human embryonic stem cell culture have been reported, and these may occur more frequently when the cells are passaged as bulk populations. This observation reinforces the necessity to optimize culture conditions further, to explore new human embryonic stem cell lines, and to monitor the existing cell lines.23,24 Additionally undifferentiated embryonic stem cells have the potential to form a type of cancer called a teratocarcinoma. Safety precautions are therefore necessary, and currently, protocols are being developed to allow the complete depletion of any remaining undifferentiated embryonic stem cells.25 This may be achieved by rigorous purification of embryonic stem cell derivatives or introducing suicide genes that can be externally controlled.

Another issue is the patient's immune system response. Transgenic genes, as well as vectors introducing these genes (such as those derived from viruses), potentially trigger immune system responses. If stem cells are not autologous, they eventually cause immuno-rejection of the transplanted cell type. Strategies to circumvent these problems, such as the expression of immune system-modulating genes by stem cells, creation of chimeric, immunotolerable bone marrow or suppression of HLA genes have been suggested.25 In this context, nuclear transfer technology has been recently extended to human embryonic stem cells.26* Notably, immune-matched human embryonic stem cells have now been established from patients, including an individual with an immunodeficiency disease, congenital hypogammaglobulinemia.27* Strategies that combine gene targeting with embryonic stem cell-based therapy are thus potential novel therapeutic options.

Figure 4.3. Strategies for Delivering Therapeutic Transgenes into Patients.

2006 Terese Winslow

The addition of human embryonic stem cells to the experimental gene therapy arsenal offers great promise in overcoming many of the existing problems of cellular based gene therapy that have been encountered in clinic trials (see Figure 4.3). Further research is essential to determine the full potential of both adult and embryonic stem cells in this exciting new field.

* Editor's note: Both papers referenced in 26 and 27 were later retracted. See Science 20 January 2006: Vol. 311. no. 5759, p. 335.

Chapter 3|Table of Contents|Chapter 5

Original post:
Use of Genetically Modified Stem Cells in Experimental ...

Posted in Texas Stem Cells | Comments Off on Use of Genetically Modified Stem Cells in Experimental …

Page 1,389«..1020..1,3881,3891,3901,391..1,4001,410..»