5. Hematopoietic Stem Cells [Stem Cell Information]

Posted: October 30, 2014 at 1:52 pm

With more than 50 years of experience studying blood-forming stem cells called hematopoietic stem cells, scientists have developed sufficient understanding to actually use them as a therapy. Currently, no other type of stem cell, adult, fetal or embryonic, has attained such status. Hematopoietic stem cell transplants are now routinely used to treat patients with cancers and other disorders of the blood and immune systems. Recently, researchers have observed in animal studies that hematopoietic stem cells appear to be able to form other kinds of cells, such as muscle, blood vessels, and bone. If this can be applied to human cells, it may eventually be possible to use hematopoietic stem cells to replace a wider array of cells and tissues than once thought.

Despite the vast experience with hematopoietic stem cells, scientists face major roadblocks in expanding their use beyond the replacement of blood and immune cells. First, hematopoietic stem cells are unable to proliferate (replicate themselves) and differentiate (become specialized to other cell types) in vitro (in the test tube or culture dish). Second, scientists do not yet have an accurate method to distinguish stem cells from other cells recovered from the blood or bone marrow. Until scientists overcome these technical barriers, they believe it is unlikely that hematopoietic stem cells will be applied as cell replacement therapy in diseases such as diabetes, Parkinson's Disease, spinal cord injury, and many others.

Blood cells are responsible for constant maintenance and immune protection of every cell type of the body. This relentless and brutal work requires that blood cells, along with skin cells, have the greatest powers of self-renewal of any adult tissue.

The stem cells that form blood and immune cells are known as hematopoietic stem cells (HSCs). They are ultimately responsible for the constant renewal of bloodthe production of billions of new blood cells each day. Physicians and basic researchers have known and capitalized on this fact for more than 50 years in treating many diseases. The first evidence and definition of blood-forming stem cells came from studies of people exposed to lethal doses of radiation in 1945.

Basic research soon followed. After duplicating radiation sickness in mice, scientists found they could rescue the mice from death with bone marrow transplants from healthy donor animals. In the early 1960s, Till and McCulloch began analyzing the bone marrow to find out which components were responsible for regenerating blood [56]. They defined what remain the two hallmarks of an HSC: it can renew itself and it can produce cells that give rise to all the different types of blood cells (see Chapter 4. The Adult Stem Cell).

A hematopoietic stem cell is a cell isolated from the blood or bone marrow that can renew itself, can differentiate to a variety of specialized cells, can mobilize out of the bone marrow into circulating blood, and can undergo programmed cell death, called apoptosisa process by which cells that are detrimental or unneeded self-destruct.

A major thrust of basic HSC research since the 1960s has been identifying and characterizing these stem cells. Because HSCs look and behave in culture like ordinary white blood cells, this has been a difficult challenge and this makes them difficult to identify by morphology (size and shape). Even today, scientists must rely on cell surface proteins, which serve, only roughly, as markers of white blood cells.

Identifying and characterizing properties of HSCs began with studies in mice, which laid the groundwork for human studies. The challenge is formidable as about 1 in every 10,000 to 15,000 bone marrow cells is thought to be a stem cell. In the blood stream the proportion falls to 1 in 100,000 blood cells. To this end, scientists began to develop tests for proving the self-renewal and the plasticity of HSCs.

The "gold standard" for proving that a cell derived from mouse bone marrow is indeed an HSC is still based on the same proof described above and used in mice many years ago. That is, the cells are injected into a mouse that has received a dose of irradiation sufficient to kill its own blood-producing cells. If the mouse recovers and all types of blood cells reappear (bearing a genetic marker from the donor animal), the transplanted cells are deemed to have included stem cells.

These studies have revealed that there appear to be two kinds of HSCs. If bone marrow cells from the transplanted mouse can, in turn, be transplanted to another lethally irradiated mouse and restore its hematopoietic system over some months, they are considered to be long-term stem cells that are capable of self-renewal. Other cells from bone marrow can immediately regenerate all the different types of blood cells, but under normal circumstances cannot renew themselves over the long term, and these are referred to as short-term progenitor or precursor cells. Progenitor or precursor cells are relatively immature cells that are precursors to a fully differentiated cell of the same tissue type. They are capable of proliferating, but they have a limited capacity to differentiate into more than one cell type as HSCs do. For example, a blood progenitor cell may only be able to make a red blood cell (see Figure 5.1. Hematopoietic and Stromal Stem Cell Differentiation).

Read more:
5. Hematopoietic Stem Cells [Stem Cell Information]

Related Post