Improved pea reference genome and pan-genome highlight genomic features and evolutionary characteristics – Nature.com

Posted: September 25, 2022 at 2:26 am

Meyer, R. S. & Purugganan, M. D. Evolution of crop species: genetics of domestication and diversification. Nat. Rev. Genet. 14, 840852 (2013).

CAS PubMed Article Google Scholar

Olsen, K. & Wendel, J. Crop plants as models for understanding plant adaptation and diversification. Front. Plant. Sci. 4, 290 (2013).

PubMed PubMed Central Article Google Scholar

Bevan, M. W. et al. Genomic innovation for crop improvement. Nature 543, 346354 (2017).

CAS PubMed Article Google Scholar

Yuan, Y., Bayer, P. E., Batley, J. & Edwards, D. Improvements in genomic technologies: application to crop genomics. Trends Biotechnol. 35, 547558 (2017).

CAS PubMed Article Google Scholar

Edwards, D., Batley, J. & Snowdon, R. J. Accessing complex crop genomes with next-generation sequencing. Theor. Appl. Genet. 126, 111 (2013).

CAS PubMed Article Google Scholar

Jiao, Y. et al. Improved maize reference genome with single-molecule technologies. Nature 546, 524527 (2017).

CAS PubMed PubMed Central Article Google Scholar

Zhou, Z. et al. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat. Biotechnol. 33, 408414 (2015).

CAS PubMed Article Google Scholar

Varshney, R. K. et al. Whole-genome resequencing of 292 pigeonpea accessions identifies genomic regions associated with domestication and agronomic traits. Nat. Genet. 49, 10821088 (2017).

CAS PubMed Article Google Scholar

Wang, W. S. et al. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557, 4349 (2018).

CAS PubMed PubMed Central Article Google Scholar

Wei, T. et al. Whole-genome resequencing of 445 Lactuca accessions reveals the domestication history of cultivated lettuce. Nat. Genet. 53, 752760 (2021).

CAS PubMed Article Google Scholar

Wu, J. et al. Resequencing of 683 common bean genotypes identifies yield component trait associations across a northsouth cline. Nat. Genet. 52, 118125 (2020).

CAS PubMed Article Google Scholar

Feuk, L., Marshall, C. R., Wintle, R. F. & Scherer, S. W. Structural variants: changing the landscape of chromosomes and design of disease studies. Hum. Mol. Genet. 15, R57R66 (2006).

CAS PubMed Article Google Scholar

Wang, Y. et al. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat. Genet. 47, 944948 (2015).

CAS PubMed Article Google Scholar

Alonge, M. et al. Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell 182, 145161 (2020).

CAS PubMed PubMed Central Article Google Scholar

Kou, Y. et al. Evolutionary genomics of structural variation in asian rice (Oryza sativa) domestication. Mol. Biol. Evol. 37, 35073524 (2020).

CAS PubMed PubMed Central Article Google Scholar

Liu, Y. et al. Pan-genome of wild and cultivated soybeans. Cell 182, 162176 (2020).

CAS PubMed Article Google Scholar

Zhou, Y. et al. The population genetics of structural variants in grapevine domestication. Nat. Plants 5, 965979 (2019).

PubMed Article Google Scholar

Khan, A. W. et al. Super-pangenome by integrating the wild side of a species for accelerated crop improvement. Trends Plant Sci. 25, 148158 (2020).

CAS PubMed PubMed Central Article Google Scholar

Tettelin, H. et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial pan-genome. Proc. Natl Acad. Sci. USA 102, 1395013955 (2005).

CAS PubMed PubMed Central Article Google Scholar

Golicz, A. A., Batley, J. & Edwards, D. Towards plant pangenomics. Plant Biotechnol. J. 14, 10991105 (2016).

PubMed Article Google Scholar

Golicz, A. A., Bayer, P. E., Bhalla, P. L., Batley, J. & Edwards, D. Pangenomics comes of age: from bacteria to plant and animal applications. Trends Plant Sci. 36, 132145 (2020).

CAS Google Scholar

Gao, L. et al. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat. Genet. 51, 10441051 (2019).

CAS PubMed Article Google Scholar

Dolezel, J. & Greilhuber, J. Nuclear genome size: are we getting closer? Cytometry A 77, 635642 (2010).

PubMed Article CAS Google Scholar

Smkal, P. et al. Pea (Pisum sativum L.) in the genomic era. Agronomy 2, 74115 (2012).

Article Google Scholar

Tayeh, N. et al. Genomic tools in pea breeding programs: status and perspectives. Front. Plant Sci. 6, 1037 (2015).

PubMed PubMed Central Google Scholar

Guillon, F. & Champ, M. M. Carbohydrate fractions of legumes: uses in human nutrition and potential for health. Br. J. Nutr. 88, S293S306 (2002).

CAS PubMed Article Google Scholar

Dahl, W. J., Foster, L. M. & Tyler, R. T. Review of the health benefits of peas (Pisum sativum L.). Br. J. Nutr. 108, S3S10 (2012).

CAS PubMed Article Google Scholar

MacWilliam, S., Wismer, M. & Kulshreshtha, S. Life cycle and economic assessment of Western Canadian pulse systems: the inclusion of pulses in crop rotations. Agr. Syst. 123, 4353 (2014).

Article Google Scholar

Ellis, T. H., Hofer, J. M., Timmerman-Vaughan, G. M., Coyne, C. J. & Hellens, R. P. Mendel, 150 years on. Trends Plant Sci. 16, 590596 (2011).

CAS PubMed Article Google Scholar

Reid, J. B. & Ross, J. J. Mendels genes: toward a full molecular characterization. Genetics 189, 310 (2011).

CAS PubMed PubMed Central Article Google Scholar

Zohary, D. & Hopf, M. Domestication of pulses in the Old World: legumes were companions of wheat and barley when agriculture began in the Near East. Science 182, 887894 (1973).

CAS PubMed Article Google Scholar

Smkal, P. et al. Phylogeny, phylogeography and genetic diversity of the Pisum genus. Plant Genet. Resour. 9, 418 (2010).

Article Google Scholar

Smkal, P. et al. Legume crops phylogeny and genetic diversity for science and breeding. Crit. Rev. Plant Sci. 34, 43104 (2015).

Article Google Scholar

Kreplak, J. et al. A reference genome for pea provides insight into legume genome evolution. Nat. Genet. 51, 14111422 (2019).

CAS PubMed Article Google Scholar

Roberts, R. J., Carneiro, M. O. & Schatz, M. C. The advantages of SMRT sequencing. Genome Biol. 14, 405 (2013).

PubMed PubMed Central Article Google Scholar

Chaisson, M. J. P. et al. Resolving the complexity of the human genome using single-molecule sequencing. Nature 517, 608611 (2015).

CAS PubMed Article Google Scholar

Sun, X. et al. Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nat. Genet. 52, 14231432 (2020).

CAS PubMed PubMed Central Article Google Scholar

Tayeh, N. et al. Development of two major resources for pea genomics: the GenoPea 13.2K SNP array and a high-density, high-resolution consensus genetic map. Plant J. 84, 12571273 (2015).

CAS PubMed Article Google Scholar

Hufford, M. B. et al. Comparative population genomics of maize domestication and improvement. Nat. Genet. 44, 808811 (2012).

CAS PubMed PubMed Central Article Google Scholar

Chen, H., Patterson, N. & Reich, D. Population differentiation as a test for selective sweeps. Genome Res. 20, 393402 (2010).

CAS PubMed PubMed Central Article Google Scholar

Bhattacharyya, M. K., Smith, A. M., Ellis, T. H., Hedley, C. & Martin, C. The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell 60, 115122 (1990).

CAS PubMed Article Google Scholar

Martin, D. N., Proebsting, W. M. & Hedden, P. Mendels dwarfing gene: cDNAs from the Le alleles and function of the expressed proteins. Proc. Natl Acad. Sci. USA 94, 89078911 (1997).

CAS PubMed PubMed Central Article Google Scholar

Powers, S. E. & Thavarajah, D. Checking agricultures pulse: field pea (Pisum sativum L.), sustainability, and phosphorus use efficiency. Front. Plant Sci. 10, 1489 (2019).

PubMed PubMed Central Article Google Scholar

Coyne, C. J. et al. Potential and limits of exploitation of crop wild relatives for pea, lentil, and chickpea improvement. Legume Sci. 2, e36 (2020).

Article Google Scholar

Smkal, P. et al. From Mendels discovery on pea to todays plant genetics and breeding. Theor. Appl. Genet. 129, 22672280 (2016).

PubMed Article CAS Google Scholar

Ye, C. Y. & Fan, L. Orphan crops and their wild relatives in the genomic era. Mol. Plant 14, 2739 (2021).

CAS PubMed Article Google Scholar

Morrell, P. L., Buckler, E. S. & Ross-Ibarra, J. Crop genomics: advances and applications. Nat. Rev. Genet. 13, 8596 (2012).

CAS Article Google Scholar

Pandey, A. K. et al. Omics resources and omics-enabled approaches for achieving high productivity and improved quality in pea (Pisum sativum L.). Theor. Appl. Genet. 134, 755776 (2021).

PubMed Article Google Scholar

Zong, X. X. et al. Analysis of a diverse global Pisum sp collection and comparison to a Chinese local P. sativum collection with microsatellite markers. Theor. Appl. Genet. 118, 193204 (2009).

CAS PubMed Article Google Scholar

Liu, R. et al. Population genetic structure and classification of cultivated and wild pea (Pisum sp.) based on morphological traits and SSR markers. J. Syst. Evol. 60, 85100 (2022).

Article Google Scholar

Read more from the original source:
Improved pea reference genome and pan-genome highlight genomic features and evolutionary characteristics - Nature.com

Related Post