Page 8«..78910..2030..»

Category Archives: Stem Cell Research

The 10 Most Compelling Research Stories of 2021 – BioSpace

Posted: December 24, 2021 at 2:40 am

Researchers globally produce hundreds of thousands of studies annually. It can be difficult to know if at some time in the future they will be the foundation for a disease cure or a technology such as CRISPR that revolutionizes medicine. But many are exciting for what they point to or how they spike the imagination. Heres a look at 10 of the more compelling research stories of the year.

Type 1 Diabetes Therapy Showed Promise in Early-Stage Trial

Vertex Pharmaceuticalsannouncedpositive early data from the first patient in its Phase I/II study of VX-880 in type 1 diabetes (T1D). The therapy is a stem cell-derived, fully differentiated pancreatic islet cell replacement therapy. T1D is an autoimmune disease, where the immune system attacks the islet cells in the pancreas, which is where insulin is produced. This leads to loss of insulin production and problems with blood sugar control.

In the study, the patient received a single infusion of VX-880 at half the target dose along with immunosuppressive therapy. The patient showed successful engraftment and demonstrated fast and robust improvements in several measurements, including increases in fasting and stimulated C-peptide, improvements in glycemic control, including HbA1c. It also resulted in less need for medical insulin. The therapy appeared well tolerated.

Some Alzheimers Plaques May Be Protective

One of the hallmarks of Alzheimers disease is the buildup of beta-amyloid plaques in the brain. Yet many drugs that cleared amyloid dont seem to improve memory or cognition. Many researchers believe amyloid is only part of the issue, perhaps triggering inflammation that causes damage to the brain. New research out of theSalk Instituteadded a new twist, suggesting that some of the plaques may be protective. A type of immune cell in the brain, microglia, was long believed to inhibit the growth of plaques by eating them. Their research, however, demonstrated that microglia promote the formation of what are being dubbed dense-core plaques, which transports the wispy plaque away from neurons. They published their research in the journalNature Immunology.

We show that dense-core plaques dont form spontaneously, said Greg Lemke, a professor in Salks Molecular Neurobiology Laboratory. We believe theyre built by microglia as a defense mechanism, so they may be best left alone. There are various efforts to get the FDAto approve antibodies whose main clinical effect is reducing dense-core plaque formation, but we make the argument that breaking up the plaque may be doing more damage.

5 Genes Associated with Lewy Body Dementia, with Implications for Alzheimers and Parkinsons

Researchconductedby theNIHs National Institute of Neurological Disorders and Stroke (NINDS)identified five genes that appear to play a critical role in whether a person will suffer from Lewy body dementia, a type of dementia where the brain accumulates clumps of abnormal protein deposits known as Lewy bodies. The data also supported Lewy body dementias connections to Parkinsons disease and connections to Alzheimers disease. The research was published in the journalNature Genetics.

Sonja Scholz, investigator at the NIHs NINDS and senior author of the study, said, Our results support the idea that this may be because Lewy body dementia is caused by a spectrum of problems that can be seen in both disorders. We hope that these results will act as a blueprint for understanding the disease and developing new treatments.

Why Obesity is Associated with Inflammation

Although obesity is linked with many inflammatory conditions, including cancer, diabetes, heart disease, and infection, why isnt it well understood? Researchers atUT Southwestern Medical Centeridentifieda type of cell that, at least in mice, is responsible for triggering inflammation in fat tissue. In obese individuals, white adipose tissue (WAT), stores excess calories in the form of triglycerides. In obesity, WAT is overworked, fat cells start to die, and immune cells are activated. The research team identified an adipose progenitor cell (APC), a precursor that later generates mature fat cells. These new cells are called fibro-inflammatory progenitors (FIPs) and they make signals that encourage inflammation.

Whats Behind Brain Fog in COVID-19 Patients

One of several unusual symptoms reported in COVID-19 patients is what is dubbed brain fog or COVID brain, but in medical terminology, is called encephalopathy. It appears to be loss of short-term memory, headaches and confusion. At its most severe, it is associated with psychosis and seizures. Researchers atMemorial Sloan Kettering Cancer Centerpublishedresearch in the journalCancer Cellthat explains the underlying cause of brain fog.

Jan Remsik, a research fellow in the lab, says, We found that these patients had persistent inflammation and high levels of cytokines in their cerebrospinal fluid, which explained the symptoms they were having.

New Compound Appears to Reverse Neuron Damage Caused by ALS

Researchers atNorthwestern Universityidentifieda compound that appears to reverse the ongoing degeneration of upper motor neurons associated with amyotrophic lateral sclerosis (ALS). ALS is a progressive neurodegenerative disease affecting nerve cells in the brain and spinal cord. As the motor neurons degenerate, they eventually die and the ability of the brain to initiate and control muscle movement is lost. With the disease, people may lose the ability to speak, eat, move and breathe. The compound, NU-9, was developed in the laboratory of Richard B. Silverman, the Patrick G. Ryan/Aon Professor of Chemistry at Northwestern. It can reduce protein misfolding in critical cell lines. The compound is also not toxic and can cross the blood-brain barrier. They published their research inClinical and Translational Medicine.

How Astrocytes Fix Damage in the Brain

Investigators withCharit Universittsmedizin Berlindescribedhow a type of glial cell, called astrocytes, plays a role in protecting surrounding brain tissue after damage. They become part of a defense mechanism called reactive astrogliosis, which helps form scars, and contains inflammation and controls tissue damage. Astrocytes are also able to ensure the nerve cells survive that are located immediately next to the tissue injury, which preserves the function of neuronal networks. The mechanism was the protein drebrin, which controls astrogliosis. Astrocytes require drebrin to form scars and protect the surrounding tissue. Drebrin regulates the reorganization of the actin cytoskeleton, an internal scaffold that maintains astrocyte mechanical stability.

A New Spin on Jurassic Park?

In the books and filmsJurassic Park, researchers collected the blood from insects trapped in amber and cloned dinosaurs. A researcher from theUniversity of Minnesotais putting a morepractical spinon amber research. Amber is the fossilized resin from a now-extinct species of pine,Sciadopityaceae. It was formed about 44 million years ago. In the Baltic regions, amber has been used for hundreds of years for traditional medicines for pain relief and its anti-inflammatory and anti-infective properties. Previous research has suggested that amber molecules might have an antibiotic effect. The team extracted even more chemicals from amber samples that appeared to show activity against gram-positive, antibiotic resistant bacteria.

They identified 20 compounds using GC-MS in the amber, most prominent being abietic acid, dehydroabietic acid and palustric acid, compounds with known biological activity. They also acquired a Japanese umbrella pine, the closest living species to theSciadopityaceae, and extracted resins and identified sclarene, a molecule present in the amber extracts that could potentially undergo chemical transformations to produce the bioactive molecules found in the Baltic amber samples.

The most important finding is that these compounds are active against gram-positive bacteria, such as certainStaphylococcus aureusstrains, but not gram-negative bacteria, said Connor McDermott, a graduate student in the laboratory of Elizabeth Ambrose, who led the research. This implies the composition of the bacterial membrane is important for the activity of the compounds.

Genetics of People Who Live 105 or Older

A new study of 81 semi-supercentenarianspeople 105 years of age or olderand supercentenarians110 years or older from across Italy, werestudiedby researchers from theUniversity of Bologna, Italy andNestle Researchin Lausanne, Switzerland. They compared genetic data from these extraordinary agers to 36 healthy people from the same region whose age, on average, was 68 years. Blood samples were drawn, and whole-genome sequencing was performed. They then compared their data with another previously published study that analyzed 333 Italians over 100 years of age and 358 people who were about 60 years of age. They published their research in the journaleLife.

Scientists identified five common genetic changes that were most frequent in the 105+/110+ groups, between two genes known as COA1 and STK17A. Analysis showed the same variants in the people over 100. Computational analysis predicted these variations most likely modulated the expression of three different genes: STK17A, COA1 and BLVRA.

Junk DNA and Aging

For a long time, so-called junk DNA was thought to play no role in inheritance or metabolism. Increasingly, this non-coding DNA is found to play a significant role in gene regulation. Researchers atWashington State Universityrecently identifieda DNA region called VNTR2-1 that seems to drive telomerase gene activity. In addition, it appears to prevent aging in some types of cells. Telomeres are the ends of chromosomes, and their length is associated with aging that is to say, as the older you get, the shorter they get because every time cells divide, the telomeres get a tiny bit shorter. When they get too short, cells no longer reproduce. But in some reproductive cells and cancer cells, telomerase gene activity resets telomeres to the same length when DNA was originally copied, creating a kind of immortality for those cells.

Read this article:
The 10 Most Compelling Research Stories of 2021 - BioSpace

Posted in Stem Cell Research | Comments Off on The 10 Most Compelling Research Stories of 2021 – BioSpace

MRC Lead Apologizes Following Bullying Allegations – The Scientist

Posted: December 24, 2021 at 2:40 am

Fiona Watt, a stem cell biologist and current leader of the UK Medical Research Council, has made an apology in response to allegations about bullying during her time as executive chair. The anonymous whistleblower complaint describing allegations about Watts behavior last year prompted an investigation by UK Research and Innovation (UKRI), the government body that includes the Medical Research Council (MRC) and other funding councils.

I engaged fully with the investigation, accepted the findings and offered written apologies to the individuals involved [while] of course respecting their anonymity, Watt says in a statement issued by the UKRI on Wednesday (December 15). The statement does not provide information about the findings of the investigation.

I would like to apologise to them again publicly, Watt continues. I was devastated to learn that my actions and behaviour had affected colleagues in a negative way. I have now undertaken an extensive personal improvement plan to address the issues that were raised.

The UKRI adds in the statement that the experience will be used to improve workplace culture in the future. Actions mentioned in the plan include introducing new training materials, developing a new anti-bullying policy, and reviewing whistleblower procedures.

Watt, who according to Chemistry World is the first woman to lead the MRC since it was founded in 1913, is expected to leave her role there early next year in order to take a position as director of the European Molecular Biology Organization.

Go here to read the rest:
MRC Lead Apologizes Following Bullying Allegations - The Scientist

Posted in Stem Cell Research | Comments Off on MRC Lead Apologizes Following Bullying Allegations – The Scientist

California Proposition 14, Stem Cell Research Institute …

Posted: November 22, 2021 at 2:20 am

California Proposition 14, the Stem Cell Research Institute Bond Initiative, was on the ballot in California as an initiated state statute on November 3, 2020. Proposition 14 was approved.

A "yes" vote supported issuing $5.5 billion in general obligation bonds for the state's stem cell research institute and making changes to the institute's governance structure and programs.

A "no" vote opposed issuing $5.5 billion in general obligation bonds for the state's stem cell research institute, which ran out funds derived from Proposition 71 (2004) for new projects in 2019.

California Proposition 14

Yes

The ballot initiative authorized $5.5 billion in general obligation bonds for the California Institute for Regenerative Medicine (CIRM), which was created to fund stem cellAs defined by CIRM, stem cells are cells that (1) have the ability to divide and create an identical copy of themselves and (2) can also divide to form cells that mature into cells that make up every type of tissue and organ in the body. research. In 2004, voters approved Proposition 71, which created CIRM, issued $3.00 billion in bonds to finance CIRM, and established a state constitutional right to conduct stem cell research.[1]

As of October 2019, CIRM had $132 million in funds remaining.[2] On July 1, 2019, CIRM suspended applications for new projects due to depleted funds.[3]

The ballot initiative required CIRM to spend no more than 7.5 percent of the bond funds on operation costs. The remaining bond funds were to be spent on grants to entities that conduct research, trials, and programs related to stem cells, as well as start-up costs for facilities. Some of the bond funds were set to be dedicated, including $1.5 billion for research on therapies and treatments for brain and nervous system diseases, such as Alzheimer's, Parkinson's, and dementia. Upwards of 1.5 percent of the total funds were to be spent on Community Care Centers of Excellence (CCCE), which would be sites that conduct human clinical trials, treatments, and cures. Upwards of 0.5 percent of the total funds were to be spent on the Shared Labs Program (SLP), which are state-funded facilities dedicated to research on human embryonic stem cells.[1]

As of 2020, an Independent Citizens Oversight Committee (ICOC) was responsible for governing CIRM. Proposition 71 provided that the ICOC has 29 members with specific background requirements. The ballot initiative increased the number of members from 29 to 35. CIRM had three working groups that advise the ICOC, one each for medical research funding, research standards, and facilities grants. The ballot initiative created a fourth working group, which focused on improving access to treatments and cures. The ballot initiative also capped the number of bond-funded, full-time CIRM employees at 70 (plus an additional 15 dedicated to improving access to stem cell-derived therapies and treatments). The ballot initiative established training programs for undergraduate students and fellowships for graduate students related to advanced degrees and technical careers in stem cell research, treatments, and cures.[1]

Californians for Stem Cell Research, Treatments & Cures, a political action committee, led the campaign in support of the ballot initiative. The campaign received $19.73 million. Robert N. Klein II, a real estate investor and stem-cell research advocate, was the largest donor, contributing $8.08 million. Klein was also the chairman of Californians for Stem Cell Research, Treatments & Cures. He was the first chairperson of the California Institute for Regenerative Medicine, chief author of Proposition 71 (2004), and leader of the campaign behind Proposition 71.

The ballot title was as follows:[4]

Authorizes Bonds Continuing Stem Cell Research. Initiative Statute.[5]

The ballot summary was as follows:[4]

The fiscal impact statement was as follows:[4]

Increased state costs to repay bonds estimated at about $260 million per year over the next roughly 30 years.[5]

The full text of the ballot initiative is below:[1]

The FKGL for the ballot title is grade level 11.5, and the FRE is 24.5. The word count for the ballot title is 13, and the estimated reading time is 3 seconds. The FKGL for the ballot summary is grade level 16, and the FRE is 14. The word count for the ballot summary is 87, and the estimated reading time is 23 seconds.

Californians for Stem Cell Research, Treatments & Cures led the campaign in support of the ballot initiative. Robert N. Klein II, a real estate investor who funded the campaign behind Proposition 71, was chairperson of the campaign.[6]

The campaign provided a list of supports on its website, which is available here.[7]

The following is the argument in support of Proposition 14 found in the Official Voter Information Guide:[8]

The following is the argument in opposition to Proposition 14 found in the Official Voter Information Guide:[9]

The Californians for Stem Cell Research, Treatments & Cures PAC was registered to support the ballot initiative. The committee raised $19.73 million.[10]

No on Proposition 14 was registered to oppose the ballot initiative. The PAC raised $1,350.[10]

The following table includes contribution and expenditure totals for the committee in support of the ballot initiative.[10]

The following was the top five donors to the support committee.[10]

The following table includes contribution and expenditure totals for the committee in support of the ballot initiative.[10]

Ballotpedia identified the following media editorial boards as taking positions on the ballot initiative.

In 2004, voters approved Proposition 71, which was a ballot initiative designed to establish a state constitutional right to conduct stem cell research, create the California Institute for Regenerative Medicine (CIRM), and issue $3.00 billion in general obligation bonds to fund CIRM.[11]

Yes on 71, also known as the Coalition for Stem Cell Research and Cures, led the campaign in support of Proposition 71. Yes on 71 received $24.33 million in contributions. The largest donors included Robert N. Klein II (Klein Financial Corporation), who provided $3.15 million, Ann Doerr, who provided $1.99 million, and John Doerr, who provided $1.99 million.[12]

No on 71, also known as Doctors, Patients & Taxpayers for Fiscal Responsibility, led the campaign against Proposition 71. The campaign received $499,287 in contributions, including $220,000 from Fieldstead & Company, $50,000 from Don Sebastiani, and $25,000 from the Catholic Common Good Foundation of California.[13]

Proposition 71 established the California Institute for Regenerative Medicine (CIRM) in the California Constitution.[11] As of 2020, CIRM was headquartered in San Francisco, California.[14]

Article XXXV provided CIRM with three purposes:[11]

An Independent Citizens Oversight Committee (ICOC) was responsible for governing CIRM, including the institute's funding decisions. Proposition 71 provided that the ICOC has 29 members with specific background requirements.[11]

Proposition 71 also required CIRM to have three working groups to advise the ICOC(1) the Scientific and Medical Research Funding Working Group, (2) the Scientific and Medical Accountability Standards Working Group, and (3) the Scientific and Medical Research Facilities Working Group.[11]

Proposition 71 required grant recipients to share a portion of their income resulting from inventions. Between 2004 and 2019, the state received $352,560 from grant recipients' incomes.[2]

The following is a list of the grants that CIRM issued between 2004 and 2020:[15]

Californians cast ballots on 44 bond issues, totaling $188.656 billion in value, from January 1, 1993, through June 1, 2020. Voters approved 32 (73 percent) of the bond measuresa total of $151.174 billion. Eight of the measures were citizen's initiatives, and five of the eight citizen-initiated bonds were approved. The legislature referred 36 bond measures to the ballot, and 27 of 36 legislative referrals were approved. The most common purpose of a bond measure during the 25 years between 1993 and 2020 was water infrastructure, for which there were nine bond measures.

Click show to expand the bond revenue table.

In California, the number of signatures required for an initiated state statute is equal to 5 percent of the votes cast in the preceding gubernatorial election. Petitions are allowed to circulate for 180 days from the date the attorney general prepares the petition language. Signatures need to be certified at least 131 days before the general election. As the verification process can take multiple months, the secretary of state provides suggested deadlines for ballot initiatives.

The requirements to get initiated state statutes certified for the 2020 ballot:

Signatures are first filed with local election officials, who determine the total number of signatures submitted. If the total number is equal to at least 100 percent of the required signatures, then local election officials perform a random check of signatures submitted in their counties. If the random sample estimates that more than 110 percent of the required number of signatures are valid, the initiative is eligible for the ballot. If the random sample estimates that between 95 and 110 percent of the required number of signatures are valid, a full check of signatures is done to determine the total number of valid signatures. If less than 95 percent are estimated to be valid, the initiative does not make the ballot.

On October 10, 2019, Robert N. Klein filed the ballot initiative.[1] Attorney General Xavier Becerra (D) released ballot language for the initiative on December 17, 2019, which allowed proponents to begin collecting signatures. The deadline to file signatures was June 15, 2020.

On February 13, 2020, proponents announced that the number of collected signatures surpassed the 25-percent threshold (155,803 signatures) to require legislative hearings on the ballot initiative.[16] In 2014, Senate Bill 1253 was enacted into law, which required the legislature to assign ballot initiatives that meet the 25-percent threshold to committees to hold joint public hearings on the initiatives not later than 131 days before the election.

On March 21, 2020, Sarah Melbostad, a spokeswoman for Californians for Stem Cell Research, Treatments, and Cures, reported that the campaign's signature drive was suspended due to the coronavirus pandemic. Melbostad said, "In keeping with the governors statewide order for non-essential businesses to close and residents to remain at home, weve suspended all signature gathering for the time being. ... Were confident that we still have time to qualify and plan to proceed accordingly."[17]

On May 5, 2020, the campaign submitted 924,216 signatures for the ballot initiative.[18] At least 623,212 (67.43 percent) of the signatures needed to be valid. On June 22, 2020, the office of Secretary of State Alex Padilla announced that a random sample of signatures projected that 78.14 percent were valid. Therefore, the ballot initiative qualified to appear on the ballot at the general election.[19]

Cost of signature collection:Sponsors of the measure received in-kind contributions from Robert N. Klein II to collect signatures for the petition to qualify this measure for the ballot. A total of $4,145,719.73 was spent to collect the 623,212 valid signatures required to put this measure before voters, resulting in a total cost per required signature (CPRS) of $6.65.

Click "Show" to learn more about voter registration, identification requirements, and poll times in California.

All polls in California are open from 7:00 a.m. to 8:00 p.m. Pacific Time. An individual who is in line at the time polls close must be allowed to vote.[20]

To vote in California, an individual must be a U.S. citizen and California resident. A voter must be at least 18 years of age on Election Day. Conditional voter registration is available beginning 14 days before an election through Election Day.[21]

On October 10, 2015, California Governor Jerry Brown (D) signed into law Assembly Bill No. 1461, also known as the New Motor Voter Act. The legislation, which took effect in 2016, authorized automatic voter registration in California for any individuals who visit the Department of Motor Vehicles to acquire or renew a driver's license.[22][23]

California automatically registers eligible individuals to vote when they complete a driver's license, identification (ID) card, or change of address transaction through the Department of Motor Vehicles.

California has implemented an online voter registration system. Residents can register to vote by visiting this website.

California allows same-day voter registration.

To register to vote in California, you must be a resident of the state. State law does not specify a length of time for which you must have been a resident to be eligible.

California does not require proof of citizenship for voter registration, although individuals who become U.S. citizens less than 15 days before an election must bring proof of citizenship to their county elections office to register to vote in that election.[24]

The site Voter Status, run by the California Secretary of State's office, allows residents to check their voter registration status online.

California does not require voters to present photo identification. However, some voters may be asked to show a form of identification when voting if they are voting for the first time after registering to vote by mail and did not provide a driver license number, California identification number, or the last four digits of their social security number.[25][26]

The following list of accepted ID was current as of November 2019. Click here for the California Secretary of State page, "What to Bring to Your Polling Place," to ensure you have the most current information.

As of April 2021, 35 states enforced (or were scheduled to begin enforcing) voter identification requirements. A total of 21 states required voters to present photo identification at the polls; the remainder accepted other forms of identification. Valid forms of identification differ by state. Commonly accepted forms of ID include driver's licenses, state-issued identification cards, and military identification cards.[27][28]

Continued here:
California Proposition 14, Stem Cell Research Institute ...

Posted in Stem Cell Research | Comments Off on California Proposition 14, Stem Cell Research Institute …

Ethical Issues in Stem Cell Research – PubMed Central (PMC)

Posted: November 22, 2021 at 2:20 am

Endocr Rev. 2009 May; 30(3): 204213.

Program in Medical Ethics, the Division of General Internal Medicine, and the Department of Medicine, University of California San Francisco, San Francisco, California 94143

Received 2008 Jul 10; Accepted 2009 Mar 10.

[RPHR Note]

GUID:F71CC505-D7C5-47E1-80B3-6CCCEC708051

GUID:3FA9B56E-7CE3-49CF-9AB9-C46497FDE547

Stem cell research offers great promise for understanding basic mechanisms of human development and differentiation, as well as the hope for new treatments for diseases such as diabetes, spinal cord injury, Parkinsons disease, and myocardial infarction. However, human stem cell (hSC) research also raises sharp ethical and political controversies. The derivation of pluripotent stem cell lines from oocytes and embryos is fraught with disputes about the onset of human personhood. The reprogramming of somatic cells to produce induced pluripotent stem cells avoids the ethical problems specific to embryonic stem cell research. In any hSC research, however, difficult dilemmas arise regarding sensitive downstream research, consent to donate materials for hSC research, early clinical trials of hSC therapies, and oversight of hSC research. These ethical and policy issues need to be discussed along with scientific challenges to ensure that stem cell research is carried out in an ethically appropriate manner. This article provides a critical analysis of these issues and how they are addressed in current policies.

I. Introduction

II. Multipotent Stem Cells

III. Embryonic Stem Cell Research

A. Existing embryonic stem cell lines

B. New embryonic stem cell lines from frozen embryos

C. Ethical concerns about oocyte donation for research

IV. Somatic Cell Nuclear Transfer (SCNT)

V. Fetal Stem Cells

VI. Induced Pluripotent Stem Cells (iPS Cells)

VII. Stem Cell Clinical Trials

VIII. Institutional Oversight of Stem Cell Research

STEM CELL RESEARCH offers great promise for understanding basic mechanisms of human development and differentiation, as well as the hope for new treatments for diseases such as diabetes, spinal cord injury, Parkinsons disease, and myocardial infarction (1). Pluripotent stem cells perpetuate themselves in culture and can differentiate into all types of specialized cells. Scientists plan to differentiate pluripotent cells into specialized cells that could be used for transplantation.

However, human stem cell (hSC) research also raises sharp ethical and political controversies. The derivation of pluripotent stem cell lines from oocytes and embryos is fraught with disputes regarding the onset of human personhood and human reproduction. Several other methods of deriving stem cells raise fewer ethical concerns. The reprogramming of somatic cells to produce induced pluripotent stem cells (iPS cells) avoids the ethical problems specific to embryonic stem cells. With any hSC research, however, there are difficult dilemmas, including consent to donate materials for hSC research, early clinical trials of hSC therapies, and oversight of hSC research (2). Table 1 summarizes the ethical issues that arise at different phases of stem cell research.

Ethical issues at different phases of stem cell research

Adult stem cells and cord blood stem cells do not raise special ethical concerns and are widely used in research and clinical care. However, these cells cannot be expanded in vitro and have not been definitively shown to be pluripotent.

Hematopoietic stem cells from cord blood can be banked and are widely used for allogenic and autologous stem cell transplantation in pediatric hematological diseases as an alternative to bone marrow transplantation.

Adult stem cells occur in many tissues and can differentiate into specialized cells in their tissue of origin and also transdifferentiate into specialized cells characteristic of other tissues. For example, hematopoietic stem cells can differentiate into all three blood cell types as well as into neural stem cells, cardiomyocytes, and liver cells.

Adult stem cells can be isolated through plasmapheresis. They are already used to treat hematological malignancies and to modify the side effects of cancer chemotherapy. Furthermore, autologous stem cells are being used in clinical trials in patients who have suffered myocardial infarction. Their use in several other conditions has not been validated or is experimental, despite some claims to the contrary (3).

Pluripotent stem cell lines can be derived from the inner cell mass of the 5- to 7-d-old blastocyst. However, human embryonic stem cell (hESC) research is ethically and politically controversial because it involves the destruction of human embryos. In the United States, the question of when human life begins has been highly controversial and closely linked to debates over abortion. It is not disputed that embryos have the potential to become human beings; if implanted into a womans uterus at the appropriate hormonal phase, an embryo could implant, develop into a fetus, and become a live-born child.

Some people, however, believe that an embryo is a person with the same moral status as an adult or a live-born child. As a matter of religious faith and moral conviction, they believe that human life begins at conception and that an embryo is therefore a person. According to this view, an embryo has interests and rights that must be respected. From this perspective, taking a blastocyst and removing the inner cell mass to derive an embryonic stem cell line is tantamount to murder (4).

Many other people have a different view of the moral status of the embryo, for example that the embryo becomes a person in a moral sense at a later stage of development than fertilization. Few people, however, believe that the embryo or blastocyst is just a clump of cells that can be used for research without restriction. Many hold a middle ground that the early embryo deserves special respect as a potential human being but that it is acceptable to use it for certain types of research provided there is good scientific justification, careful oversight, and informed consent from the woman or couple for donating the embryo for research (5).

Opposition to hESC research is often associated with opposition to abortion and with the pro-life movement. However, such opposition to stem cell research is not monolithic. A number of pro-life leaders support stem cell research using frozen embryos that remain after a woman or couple has completed infertility treatment and that they have decided not to give to another couple. This view is held, for example, by former First Lady Nancy Reagan and by U.S. Senator Orrin Hatch.

On his Senate website, Sen. Hatch states: The support of embryonic stem cell research is consistent with pro-life, pro-family values.

I believe that human life begins in the womb, not a Petri dish or refrigerator . To me, the morality of the situation dictates that these embryos, which are routinely discarded, be used to improve and save lives. The tragedy would be in not using these embryos to save lives when the alternative is that they would be discarded (6).

In 2001, President Bush, who holds strong pro-life views, allowed federal National Institutes of Health (NIH) funding for stem cell research using embryonic stem cell lines already in existence at the time, while prohibiting NIH funding for the derivation or use of additional embryonic stem cell lines. This policy was a response to a growing sense that hESC research held great promise for understanding and treating degenerative diseases, while still opposing further destruction of human embryos. NIH funding was viewed by many researchers as essential for attracting scientists to make a long-term commitment to study the basic biology of stem cells; without a strong basic science platform, therapeutic breakthroughs would be less likely.

President Bushs rationale for this policy was that the embryos from which these lines were produced had already been destroyed. Allowing research to be carried out on the stem cell lines might allow some good to come out of their destruction. However, using only existing embryonic stem cell lines is scientifically problematic. Originally, the NIH announced that over 60 hESC lines would be acceptable for NIH funding. However, the majority of these lines were not suitable for research; for example, they were not truly pluripotent, had become contaminated, or were not available for shipping. As of January 2009, 22 hESC lines are eligible for NIH funding. However, these lines may not be safe for transplantation into humans, and long-standing lines have been shown to accumulate mutations, including several known to predispose to cancer. In addition, concerns have been raised about the consent process for the derivation of some of these NIH-approved lines (7). The vast majority of scientific experts, including the Director of the NIH under President Bush, believe that a lack of access to new embryonic stem cell lines hinders progress toward stem cell-based transplantation (8). For example, lines from a wider range of donors would allow more patients to receive human leukocyte agent matched stem cell transplants (9).

Currently, federal funds may not be used to derive new embryonic stem cell lines or to work with hESC lines not on the approved NIH list. NIH-funded equipment and laboratory space may not be used for research on nonapproved hESC lines. Both the derivation of new hESC lines and research with hESC lines not approved by NIH may be carried out under nonfederal funding. Because of these restrictions on NIH funding, a number of states have established programs to fund stem cell research, including the derivation of new embryonic stem cell lines. California, for example, has allocated $3 billion over 10 yr to stem cell research.

Under President Obama, it is expected that federal funding will be made available to carry out research with hESC lines not on the NIH list and to derive new hESC lines from frozen embryos donated for research after a woman or couple using in vitro fertilization (IVF) has determined they are no longer needed for reproductive purposes. However, federal funding may not be permitted for creation of embryos expressly for research or for derivation of stem cell lines using somatic cell nuclear transfer (SCNT) (10,11).

Women and couples who undergo infertility treatment often have frozen embryos remaining after they complete their infertility treatment. The disposition of these frozen embryos is often a difficult decision for them to make (12). Some choose to donate these remaining embryos to research rather than giving them to another couple for reproductive purposes or destroying them. Several ethical concerns come into play when a frozen embryo is donated, including informed consent from the woman or couple donating the embryo, consent from gamete donors involved in the creation of the embryo, and the confidentiality of donor information.

Since the Nuremburg Code, informed consent has been regarded as a basic requirement for research with human subjects. Consent is particularly important in research with human embryos (13). Members of the public and potential donors of embryos for research hold strong and diverse opinions on the matter. Some consider all embryo research to be unacceptable; others only support some forms of research. For instance, a person might consider infertility research acceptable but object to research to derive stem cell lines or research that might lead to patents or commercial products (14). Obtaining informed consent for potential future uses of the donated embryo respects this diversity of views. Additionally, people commonly place special emotional and moral significance on their reproductive materials, compared with other tissues (15).

In the United States, federal regulations on research permit a waiver of informed consent for the research use of deidentified biological materials that cannot be linked to donors (16). Thus, logistically it would be possible to carry out embryo and stem cell research on deidentified materials without consent. For example, during IVF procedures, oocytes that fail to fertilize or embryos that fail to develop sufficiently to be implanted are ordinarily discarded. These materials could be deidentified and then used by researchers. Furthermore, if infertility patients have frozen embryos remaining after they complete treatment, they are routinely contacted by the IVF program to decide whether they want to continue to store the embryos (and to pay freezer storage fees), to donate them to another infertile woman or couple, or to discard them. If a patient chooses to discard the embryos, it would be possible to instead remove identifiers and use them for research. Still another possibility involves frozen embryos from patients who do not respond to requests to make a decision regarding the disposition of frozen embryos. Some IVF practices have a policy to discard such embryos and inform patients of this policy when they give consent for the IVF procedures. Again, rather than discard such frozen embryos, it is logistically feasible to deidentify them and give them to researchers.

However, the ethical justifications for allowing deidentified biological materials to be used for research without consent do not always hold for embryo research (13). For example, one rationale for allowing the use of deidentified materials is that the ethical risks are very low; there can be no breach of confidentiality, which is the main concern in this type of research. A second rationale is that people would not object to having their materials used in such a manner if they were asked. However, this assumption does not necessarily hold in the context of embryo research. A 2007 study found that 49% of women with frozen embryos would be willing to donate them for research (12). Such donors might be offended or feel wronged if their frozen embryos were used for research that they did not consent to. Deidentifying the materials would not address their concerns.

Frozen embryos may be created with sperm or oocytes from donors who do not participate any further in assisted reproduction or childrearing. Some people argue that consent from gamete donors is not required for embryo research because they have ceded their right to direct further usage of their gametes to the artificial reproductive technology (ART) patients. However, gamete donors who are willing to help women and couples bear children may object to the use of their genetic materials for research. In one study, 25% of women who donated oocytes for infertility treatment did not want the embryos created to be used for research (17). This percentage is not unexpected because reproductive materials have special significance, and many people in the United States oppose embryo research. Little is known about the wishes of sperm donors concerning research.

There are substantial practical differences between obtaining consent for embryo research from oocyte donors and from sperm donors. ART clinics can readily discuss donation for research with oocyte donors during visits for oocyte stimulation and retrieval. However, most ART clinics obtain donor sperm from sperm banks and generally have no direct contact with the donors. Furthermore, sperm is often donated anonymously to sperm banks, with strict confidentiality provisions.

As a matter of respect for gamete donors, their wishes regarding stem cell derivation should be determined and respected (13). Gamete donors who are willing to help women and couples bear children may object to the use of their genetic materials for research. Specific consent for stem cell research from both embryo and gamete donors was recommended by the National Academy of Sciences 2005 Guidelines for Human Embryonic Stem Cell Research and has been adopted by the California Institute for Regenerative Medicine (CIRM), the state agency funding stem cell research (18,19). This consent requirement need not imply that embryos are people or that gametes or embryos are research subjects.

Confidentiality must be carefully protected in embryo and hESC research because breaches of confidentiality might subject donors to unwanted publicity or even harassment by opponents of hESC research (20). Although identifying information about donors must be retained in case of audits by the Food and Drug Administration as part of the approval process for new therapies, concerns about confidentiality may deter some donors from agreeing to be recontacted.

Recently, confidentiality of personal health care information has been violated through deliberate breaches by staff, through break-ins by computer hackers, and through loss or theft of laptop computers. Files containing the identities of persons whose gametes or embryos were used to derive hESC lines should be protected through heightened security measures (20). Any computer storing such files should be locked in a secure room and password-protected, with access limited to a minimum number of individuals on a strict need-to-know basis. Entry to the computer storage room should also be restricted by means of a card-key, or equivalent system, that records each entry. Audit trails of access to the information should be routinely monitored for inappropriate access. The files with identifiers should be copy-protected and double encrypted, with one of the keys held by a high-ranking institutional official who is not involved in stem cell research. The computer storing these data should not be connected to the Internet. To protect information from subpoena, investigators should obtain a federal Certificate of Confidentiality. Human factors in breaches of confidentiality should also be considered. Personnel who have access to these identifiers might receive additional background checks, interviews, and training. The personnel responsible for maintaining this confidential database and contacting any donor should not be part of any research team.

hESC research using fresh oocytes donated for research raises several additional ethical concerns as well, as we next discuss (21).

Concerns about oocyte donation specifically for research are particularly serious in the wake of the Hwang scandal in South Korea, in which widely hailed claims of deriving human SCNT lines were fabricated. In addition to scientific fraud, the scandal involved inappropriate payments to oocyte donors, serious deficiencies in the informed consent process, undue influence on staff and junior scientists to serve as donors, and an unacceptably high incidence of medical complications from oocyte donation (22,23,24). In California, some legislators and members of the public have charged that infertility clinics downplay the risks of oocyte donation (19). CIRM has put in place several protections for women donating oocytes in state-funded stem cell research.

The medical risks of oocyte retrieval include ovarian hyperstimulation syndrome, bleeding, infection, and complications of anesthesia (25). These risks may be minimized by the exclusion of donors at high-risk for these complications, careful monitoring of the number of developing follicles, and adjusting the dose of human chorionic gonadotropin administered to induce ovulation or canceling the cycle (25).

Because severe hyperovulation syndrome may require hospitalization or surgery, women donating oocytes for research should be protected against the costs of complications of hormonal stimulation and oocyte retrieval (19). The United States does not have universal health insurance. As a matter of fairness, women who undergo an invasive procedure for the benefit of science and who are not receiving payment beyond expenses should not bear any costs for the treatment of complications. Even if a woman has health insurance, copayments and deductibles might be substantial, and if she later applied for individual-rated health insurance, her premiums might be prohibitive. Compensation for research injuries has been recommended by several U.S. panels (26) but has not been adopted because of difficulties calculating long-term actuarial risk and assessing intervening factors that could contribute to or cause adverse events.

Requiring free care for short-term complications of oocyte donation is feasible. In California, research institutions must ensure free treatment to oocyte donors for direct and proximate medical complications of oocyte retrieval in state-funded research. The term direct and proximate is a legal concept to determine how closely an injury needs to be connected to an event or condition to assign responsibility for the injury to the person who carried out the event or created the condition. Commercial insurance policies are available to cover short-term complications of oocyte retrieval. CIRM allows state stem cell grants to cover the cost of such insurance. The rationale for making research institutions responsible for treatment is that they are in a better position than individual researchers to identify insurance policies and would have an incentive to consider extending such coverage to other research injuries.

If women in infertility treatment share oocytes with researcherseither their own oocytes or those from an oocyte donortheir prospect of reproductive success may be compromised because fewer oocytes are available for reproductive purposes (21). In this situation, the physician carrying out oocyte retrieval and infertility care should give priority to the reproductive needs of the patient in IVF. The highest quality oocytes should be used for reproductive purposes (21).

As discussed in Section B. 2, in IVF programs some oocytes fail to fertilize, and some embryos fail to develop sufficiently to be implanted. Such materials may be donated to researchers. To protect the reproductive interests of donors, several safeguards should be in place (20). For the donation of fresh embryos for research, the determination by the embryologist that an embryo is not suitable for implantation and therefore should be discarded is a matter of judgment. Similarly, the determination that an oocyte has failed to fertilize and thus cannot be used for reproduction is a judgment call. To avoid any conflict of interest, the embryologist should not know whether a woman has agreed to research donation and also should receive no funding from grants associated with the research. Furthermore, the treating infertility physicians should not know whether or not their patients agree to donate materials for research.

Many jurisdictions have conflicting policies about payment to oocyte donors. Reimbursement to oocyte donors for out-of-pocket expenses presents no ethical problems because donors gain no financial advantage from participating in research. However, payment to oocyte donors in excess of reasonable out-of-pocket expenses is controversial, and jurisdictions have conflicting policies that may also be internally inconsistent (27,28).

Good arguments can be made both for and against paying donors of research oocytes more than their expenses (29). On the one hand, some object that such payments induce women to undertake excessive risks, particularly poorly educated women who have limited options for employment, as occurred in the Hwang scandal. Such concerns about undue influence, however, may be addressed without banning payment. For example, participants could be asked questions to ensure that they understood key features of the study and that they felt they had a choice regarding participation (19). Also, careful monitoring and adjustment of hormone doses can minimize the risks associated with oocyte donation (25). A further objection is that paying women who provide research oocytes undermines human dignity because human biological materials and intimate relationships are devalued if these materials are bought and sold like commodities (14,30).

On the other hand, some contend that it is unfair to ban payments to donors of research oocytes, while allowing women to receive thousands of U.S. dollars to undergo the same procedures to provide oocytes for infertility treatment (29). Moreover, healthy volunteers, both men and women, are paid to undergo other invasive research procedures, such as liver biopsy, for research purposes. Furthermore, bans on payment for oocyte donation for research have been criticized as paternalistic, denying women the authority to make decisions for themselves (31). On a pragmatic level, without such payment, it is very difficult to recruit oocyte donors for research.

In California, CIRM has instituted heightened requirements for informed consent for oocyte donation for research (19). The CIRM regulations go beyond requirements for disclosure of information to oocyte donors (19). The major ethical issue is whether donors appreciate key information about oocyte donation, not simply whether the information has been disclosed to them or not. As discussed previously, in other research settings, research participants often fail to understand the information in detailed consent forms (32). CIRM thus reasons that disclosure, while necessary, is not sufficient to guarantee informed consent. In CIRM-funded research, oocyte donors must be asked questions to ensure that they comprehend the key features of the research (19). Evaluating comprehension is feasible because it has been carried out in other research contexts, such as in HIV prevention trials in the developing world (33). According to testimony presented to CIRM, evaluation of comprehension has also been carried out with respect to oocyte donation for clinical infertility services.

Pluripotent stem cell lines whose nuclear DNA matches a specific person have several scientific advantages. Stem cell lines matched to persons with specific diseases can serve as in vitro models of diseases, elucidate the pathophysiology of diseases, and screen potential new therapies. Lines matched to specific individuals also offer the promise of personalized autologous stem cell transplantation.

One approach to creating such lines is through SCNT, the technique that produced Dolly the sheep. In SCNT, reprogramming is achieved after transferring nuclear DNA from a donor cell into an oocyte from which the nucleus has been removed. However, creating human SCNT stem cell lines has not only been scientifically impossible to date but is also ethically controversial (34,35).

Some people who object to SCNT believe that creating embryos with the intention of using them for research and destroying them in that process violates respect for nascent human life. Even those who support deriving stem cell lines from frozen embryos that would otherwise be discarded sometimes reject the intentional creation of embryos for research. In rebuttal, however, some argue that pluripotent entities created through SCNT are biologically and ethically distinct from embryos (36).

There are several compelling objections to using SCNT for human reproduction. First, because of errors during reprogramming of genetic material, cloned animal embryos fail to activate key embryonic genes, and newborn clones misexpress hundreds of genes (37,38). The risk of severe congenital defects would be prohibitively high in humans. Second, even if SCNT could be carried out safely in humans, some object that it violates human dignity and undermines traditional, fundamental moral, religious, and cultural values (34). A cloned child would have only one genetic parent and would be the genetic twin of that parent. In this view, cloning would lead children to be regarded more as products of a designed manufacturing process than gifts whom their parents are prepared to accept as they are. Furthermore, cloning would violate the natural boundaries between generations (34). For these reasons, cloning for reproductive purposes is widely considered morally wrong and is illegal in a number of states. Moreover, some people argue that because the technique of SCNT can be used for reproduction, its development and use for basic research should be banned.

Because of the shortage of human oocytes for SCNT research, some scientists wish to use nonhuman oocytes to derive lines using human nuclear DNA. These so-called cytoplasmic hybrid embryos raise a number of ethical concerns. Some opponents fear the creation of chimerasmythical beasts that appear part human and part animal and have characteristics of both humans and animals (39). Opponents may feel deep moral unease or repugnance, without articulating their concerns in more specific terms. Some people view such hybrid embryos as contrary to a moral order embodied in the natural world and in natural law. In this view, each species has a particular moral purpose or goal, which mankind should not try to change. Others view such research as an inappropriate crossing of species barriers, which should be an immutable part of natural design. Finally, some are concerned that there may be attempts to implant these embryos for reproductive purposes.

In rebuttal, supporters of such research point out that the biological definitions of species are not natural and immutable but empirical and pragmatic (40,41,42). Animal-animal hybrids of various sorts, such as the mule, exist and are not considered morally objectionable. Moreover, in medical research, human cells are commonly injected into nonhuman animals and incorporated into their functioning tissue. Indeed, this is widely done in research with all types of stem cells to demonstrate that cells are pluripotent or have differentiated into the desired type of cell. In addition, some concerns can be addressed through strict oversight (40), for example prohibiting reproductive uses of these embryos and limiting in vitro development to 14 d or the development of the primitive streak, limits that are widely accepted for other hESC research. Finally, some people regard repugnance per se an unconvincing guide to ethical judgments. People disagree over what is repugnant, and their views might change over time. Blood transfusion and cadaveric organ transplantation were originally viewed as repugnant but are now widely accepted practices. Furthermore, after public discussion and education, many people overcome their initial concerns.

Pluripotent stem cells can be derived from fetal tissue after abortion. However, use of fetal tissue is ethically controversial because it is associated with abortion, which many people object to. Under federal regulations, research with fetal tissue is permitted provided that the donation of tissue for research is considered only after the decision to terminate pregnancy has been made. This requirement minimizes the possibility that a womans decision to terminate pregnancy might be influenced by the prospect of contributing tissue to research. Currently there is a phase 1 clinical trial in Battens disease, a lethal degenerative disease affecting children, using neural stem cells derived from fetal tissue (43,44).

Somatic cells can be reprogrammed to form pluripotent stem cells (45,46), called induced pluripotential stem cells (iPS cells). These iPS cell lines will have DNA matching that of the somatic cell donors and will be useful as disease models and potentially for allogenic transplantation.

Early iPS cell lines were derived by inserting genes encoding for transcription factors, using retroviral vectors. Researchers have been trying to eliminate safety concerns about inserting oncogenes and insertional mutagenesis. Reprogramming has been successfully accomplished without known oncogenes and using adenovirus vectors rather than retrovirus vectors. A further step was the recent demonstration that human embryonic fibroblasts can be reprogrammed to a pluripotent state using a plasmid with a peptide-linked reprogramming cassette (47,48). Not only was reprogramming accomplished without using a virus, but the transgene can be removed after reprogramming is accomplished. The ultimate goal is to induce pluripotentiality without genetic manipulation. Because of unresolved problems with iPS cells, which currently preclude their use for cell-based therapies, most scientists urge continued research with hESC (49).

iPS cells avoid the heated debates over the ethics of embryonic stem cell research because embryos or oocytes are not used. Furthermore, because a skin biopsy to obtain somatic cells is relatively noninvasive, there are fewer concerns about risks to donors compared with oocyte donation. The Presidents Council on Bioethics called iPS cells ethically unproblematic and acceptable for use in humans (39). Neither the donation of materials to derive iPS cells nor their derivation raises special ethical issues.

Some potential downstream uses of iPS cell derivatives may be so sensitive as to call into question whether the original somatic cell donors would have agreed to such uses (50). iPS cells will be shared widely among researchers who will carry out a variety of studies with iPS cells and derivatives, using common and well-accepted scientific practices, such as:

Genetic modifications of cells

Injection of derived cells into nonhuman animals to demonstrate their function, including the injection into the brains of nonhuman animals.

Large-scale genome sequencing

Sharing cell lines with other researchers, with appropriate confidentiality protections, and

Patenting scientific discoveries and developing commercial tests and therapies, with no sharing of royalties with donors (51).

These standard research techniques are widely used in other types of basic research, including research with stem cells from other sources. Generally, donors of biological materials are not explicitly informed of these research procedures, although such disclosure is now proposed for whole genome sequencing (52,53).

Such studies are of fundamental importance in stem cell biology, for example to characterize the lines and to demonstrate that they are pluripotent. Large-scale genome sequencing will yield insights about the pathogenesis of disease and identify new targets for therapy. Injection of human stem cells into the brains of nonhuman animals will be required for preclinical testing of cell-based therapies for many conditions, such as Parkinsons disease, Alzheimers disease, and stroke.

However, some downstream research could also raise ethical concerns. For example, large-scale genome sequencing may evoke concerns about privacy and confidentiality. Donors might consider it a violation of privacy if scientists know their future susceptibility to many genetic diseases. Furthermore, it may be possible to reidentify the donor of a deidentified large-scale genome sequence using information in forensic DNA databases or at an Internet company offering personal genomic testing (54,55). Other donors may object to their cells being injected into animals. For example, they may oppose all animal research, or they may have religious objections to the mixing of human and animal species. The injection of human neural progenitor cells into nonhuman animals has raised ethical concerns about animals developing characteristics considered uniquely human (56,57). Still other donors may not want cell lines derived from their biological materials to be patented as a step toward developing new tests and therapies. People are unlikely to drop such objections even if the cell lines were deidentified or even if many years had passed since the original donation. Thus there may be a tension between respecting the autonomy of donors and obtaining scientific benefit from research, which can be resolved during the process of obtaining consent for the original donation of materials.

It would be unfortunate if iPS cell lines that turned out to be extremely useful scientifically (for example because of robust growth in tissue culture) could not be used in additional research because the somatic cell donor objected. One approach to avoid this is to preferentially use somatic cells from donors who are willing to allow all such basic stem cell research and to be contacted for future sensitive research that cannot be anticipated at the time of consent (50). Donors could also be offered the option of consenting to additional specific types of sensitive but not fundamental downstream research, such as allogenic transplantation into other humans and reproductive research involving the creation of totipotent entities.

Because these concerns about consent for sensitive downstream research also apply to other types of stem cells, it would be prudent to put in place similar standards for consent to donate materials for derivation of other types of stem cells. However, these concerns are particularly salient for iPS cells because of the widespread perception that these cells raise no serious ethical problems and because they are likely to play an increasing role in stem cell research.

Transplantation of cells derived from pluripotent stem cells offers the promise of effective new treatments. However, such transplantation also involves great uncertainty and the possibility of serious risks. Some stem cell therapies have been shown to be effective and safe, for example hematopoietic stem cell transplants for leukemia and epithelial stem cell-based treatments for burns and corneal disorders (58). However, there are some clinics around the world already exploiting patients hopes by purporting to offer effective stem cell therapies for seriously ill patients, typically for large sums of money, but without credible scientific rationale, transparency, oversight, or patient protections (58). Although supporting medical innovation under very limited circumstances, the International Society for Stem Cell Research has decried such use of unproven hSC transplantation.

These clinical trials should follow ethical principles that guide all clinical research, including appropriate balance of risks and benefits and informed, voluntary consent. Additional ethical requirements are also warranted to strengthen trial design, coordinate scientific and ethics review, verify that participants understand key features of the trial, and ensure publication of negative findings (59). These measures are appropriate because of the highly innovative nature of the intervention, limited experience in humans, and the high hopes of patients who have no effective treatments.

The risks of innovative stem cell-based interventions include tumor formation, immunological reactions, unexpected behavior of the cells, and unknown long-term health effects (58). Evidence of safety and proof of principle should be established through appropriate preclinical studies in relevant animal models or through human studies of similar cell-based interventions. Requirements for proof of principle and safety should be higher if cells have been manipulated extensively in vitro or have been derived from pluripotent stem cells (58).

Even with these safeguards, however, because of the highly innovative nature of the intervention and limited experience in humans, unanticipated serious adverse events may occur. In older clinical trials of transplantation of fetal dopaminergic neurons into persons with Parkinsons disease, transplanted cells failed to improve clinical outcomes (60,61). Indeed, about 15% of subjects receiving transplantation late developed disabling dyskinesias, with some needing ablative surgery to relieve these adverse events (60,61). Although the transplanted cells localized to the target areas of the brain, engrafted, and functioned to produce the intended neurotransmitters, appropriately regulated physiological function was not achieved. Participants in phase I trials may not thoroughly understand the possibility that hESC transplantation might make their condition worse.

Problems with informed consent are well documented in phase I clinical trials. Participants in cancer clinical trials commonly expect that they will benefit personally from the trial, although the primary purpose of phase I trials is to test safety rather than efficacy (62). This tendency to view clinical research as providing personal benefit has been termed the therapeutic misconception (32,63). Analyses of cancer clinical trials reveal that the information in consent forms generally is adequate. However, in early phase I gene transfer clinical trials, researchers descriptions of the direct benefit to participants commonly were vague, ambiguous, and indeterminate (64).

Participants in phase I stem cell-based clinical trials might overestimate their benefits and underestimate the risks. The scientific rationale for hSC transplantation and preclinical results may seem compelling. In addition, highly optimistic press coverage might reinforce unrealistic hopes.

Several measures may enhance informed consent in early stem cell-based clinical trials (59). First, researchers should describe the risks and prospective benefits in a realistic manner. Researchers need to communicate the distinction between the long-term hope for effective treatments and the uncertainty inherent in any phase I trial. Participants in phase I studies need to understand that the intervention has never been tried before in humans for the specific condition, that researchers do not know whether it will work as hoped, and that the great majority of participants in phase I studies do not receive a direct benefit.

Second, investigators in hESC clinical trials should discuss a broader range of information with potential participants than in other clinical trials. The doctrine of informed consent requires researchers to discuss with potential participants information that is pertinent to their decision to volunteer for the clinical trial (65). Generally, the relevant information concerns the nature of the intervention being studied and the risks and prospective benefits. However, in hESC transplantation, nonmedical issues may be prominent or even decisive for some participants. Individuals who regard the embryo as having the moral status of a person would likely have strong objections to receiving hESC transplants. Although this intervention might benefit them medically, such individuals might regard it as complicit with an immoral action. Thus researchers in clinical trials of hESC transplantation should inform eligible participants that transplanted materials originated from human embryos.

Third, and most important, researchers should verify that participants have a realistic understanding of the clinical trial (59). The crucial ethical issue about informed consent is not what researchers disclose in consent forms or discussions, but rather what the participants in clinical trials understand. In other contexts, some researchers have ensured that participants understand the key features of the trial by assessing their comprehension. In HIV clinical trials in developing countries, where it has been alleged that participants did not understand the trial, many researchers are now testing each participant to be sure he or she understands the essential features of the research (33). Such direct assessment of participants understanding of the study has been recommended more broadly in contexts in which misunderstandings are likely (26). We urge that such tests of comprehension be carried out in phase I trials of hSC transplantation (58,59).

Careful attention to consent in highly innovative clinical trials might prevent controversies later. In early clinical trials of organ transplantation, the implantable totally artificial heart, and gene transfer, the occurrence of serious adverse events led to allegations that study participants had not truly understood the nature of the research (66,67,68). The resulting ethical controversies brought about negative publicity and delays in subsequent clinical trials.

Human stem cell research raises some ethical issues that are beyond the mission of institutional review boards (IRBs) to protect human subjects, as well as the expertise of IRB members. There should be a sound scientific justification for using human oocytes and embryos to derive new human stem cell lines. However, IRBs usually do not carry out in-depth scientific review. Some ethical issues in hESC research do not involve human subjects protection, for example the concern that transplanting human stem cells into nonhuman animals might result in characteristics that are regarded as uniquely human.

An institutional SCRO with appropriate scientific and ethical expertise, as well as public members, should be convened at each institution to review, approve, and oversee stem cell research (18,69,70). The SCRO will need to work closely with the IRB and, in cases of animal research, with the Institutional Animal Care and Use Committee. Because of the sensitive nature of hSC research, the SCRO should include nonaffiliated and lay members who can ensure that public concerns are taken into account.

Sharing stem cells across institutions facilitates scientific progress and minimizes the number of oocytes, embryos, and somatic cells used. However, ethical concerns arise if researchers work with lines that were derived in other jurisdictions under conditions that would not be permitted at their home institution. Researchers and SCROs need to distinguish core ethical standards that are accepted by international consensusinformed consent and an acceptable balance of benefits and risksfrom standards that vary across jurisdictions and cultures. Using lines whose derivation violated core standards would erode ethical conduct of research by providing incentives to others to violate those standards.

The review process should focus on those types of hSC derivation that raise heightened levels of ethical concern (71). hSC lines derived using fresh oocytes and embryos require in-depth review because of concerns about the medical risks of oocyte donation, undue influence, and setbacks to the reproductive goals of a woman undergoing infertility treatment.

Dilemmas occur when donors of research oocytes receive payments in excess of their expenses and such payments are not permitted in the jurisdiction where the hSC cells will be used. For example, the United Kingdom enacted an explicit policy to allow such payment after public consultation and debate and provided reasons to justify its decision (72,73,74,75). Jurisdictions that ban payments should accept such carefully considered policies as a reasonable difference of opinion on a complex issue. Concerns about payment should be less if lines were derived from frozen embryos remaining after IVF treatment and donors were paid in the reproductive context. Such payments, which were carried out before donation for research was actually considered, are not an inducement for hESC research (71).

Other dilemmas arise with hESC lines derived from embryos using gamete donors. As previously discussed, explicit consent for the use of reproductive materials in stem cell research should be obtained from any gamete donors as well as embryo donors (13,76). An exception may be made to grandparent older lines derived from frozen embryos created before such explicit consent became the standard of care, for example before the 2005 National Academy of Sciences guidelines (76). Use of such older lines is appropriate because it would be unreasonable to expect physicians to comply with standards that had not yet been developed (71). It would also be acceptable to grandparent lines if gamete donors agreed to unspecified future research or gave dispositional control of frozen embryos to the woman or couple in IVF. However, the derivation should be consistent with the ethical and legal standards in place at the time the line was derived.

In summary, hSC research offers exciting opportunities for scientific advances and new therapies, but also raises some complex ethical and policy issues. These issues need to be discussed along with scientific challenges to ensure that stem cell research is carried out in an ethically appropriate manner.

This work was supported by National Institutes of Health (NIH) Grant 1 UL1 RR024131-01 from the National Center for Research Resources (NCRR) and NIH Roadmap for Medical Research and by the Greenwall Foundation. Its contents are solely the responsibility of the authors and do not necessarily represent the official view of NCRR or NIH.

B.L. is co-chair of the California Institute for Regenerative Medicine Scientific and Medical Accountability Standards Working Group.

Disclosure Summary: The authors have no conflicts of interest to declare.

First Published Online April 14, 2009

Abbreviations: ART, Artificial reproductive technology; hESC, human embryonic stem cell; hSC, human stem cell; iPS cells, induced pluripotent stem cells; IRB, institutional review board; IVF, in vitro fertilization; SCNT, somatic cell nuclear transfer.

Excerpt from:
Ethical Issues in Stem Cell Research - PubMed Central (PMC)

Posted in Stem Cell Research | Comments Off on Ethical Issues in Stem Cell Research – PubMed Central (PMC)

Opinion | How Covid Raised the Stakes of the War Between Faith and Science – The New York Times

Posted: November 8, 2021 at 2:34 am

Haarsma told me that the rise of the creationism movement in the 1960s, led by the engineer Henry Morris, increased the skepticism between some evangelical churches and scientists. The rift continued to grow because of bioethical conflicts around issues like stem cell research and euthanasia, but more so because of a latent cultural assumption that faith and fact oppose each other. When President Barack Obama appointed Francis Collins, an evangelical Christian (and the founder of BioLogos), as head of the National Institutes of Health in 2009, some questioned whether Collinss religious faith should disqualify him from the position.

A 2018 study by Barna, a Christian research and polling firm, showed that significantly fewer teens and young adults (28 percent and 25 percent) than Gen X and Boomers (36 percent and 45 percent) view science and faith as complementary. Young people increasingly see an essential conflict between faith and science.

I asked Haarsma who is to blame. Is it the fault of religious communities for denigrating science or the scientific community for denigrating faith? She laughed and said theres plenty of blame to go around.

At times, a vocal minority of prominent scientists have marginalized religious communities. Haarsma cited a tweet by Neil deGrasse Tyson, a prominent astrophysicist, from Christmas morning 2014: On this day long ago, a child was born who, by age 30, would transform the world. Happy Birthday Isaac Newton. Thats clever, but it appeared to mock Christians on one of our most sacred holidays. These sorts of messages spur needless animosity. If the cultural conversation requires people to choose between their faith and science, most will choose faith, but we dont have to ask people to choose. This is a false choice.

At the same time, Haarsma said, there are some Christians who present faith as opposed to evidence, instead of faith as a lived-out commitment in response to evidence. She also said that heated anti-science rhetoric from a minority of Christians online encourages scientists to dismiss people of faith as a whole.

So, I asked Haarsma, what is the path to reconciliation? If this dichotomy between faith and science is truly a false dichotomy, how do we purge it from our broader cultural discourse and imagination?

I heard her voice rise with passion. This is her lifes work and the work of her organization. She offered practical steps: The message to religious communities needs to be, Dont trust science instead of God, trust science as a gift from God. Church leaders can praise God for creation and the unique ability to be able to study and understand it. Churches can also spotlight scientists, especially people of faith who are leaders in their fields. (BioLogos has a bureau of scientists and other scholars who speak to faith groups.)

See the article here:
Opinion | How Covid Raised the Stakes of the War Between Faith and Science - The New York Times

Posted in Stem Cell Research | Comments Off on Opinion | How Covid Raised the Stakes of the War Between Faith and Science – The New York Times

What is Stem Cell Research? | The Benefits of Stem Cell Research

Posted: October 5, 2021 at 7:12 pm

Stem cell research is one of the most innovative research methods being used in modern society. However, it is also not very well known in todays society. Most people are either introduced to it when exposed to the treatment themselves or through a loved one.I was exposed to stem cell research in the ninth grade. Since I went to a STEM(science, technology, engineering, and mathematics) high school, my biology teacher assigned us a report on stem cell research. Since doing that report, I have become passionate about stem cell research and have followed closely the advancements made in the field. Current research can easily be tracked on the National Institute for Health website.

So what is a stem cell? Astem cell is simply a cell that can either reproduce another stem cell or a specialized cell an infinitive amount of times. The specialized cells that can be produced have specific function related to where they are produced in the human body.Stem cell research is also categorized by the stem cell typeused.

Adult stem cells, or somatic cells, are produced from the human body once an individual is born. It can renew itself or become a specialized cell within the body just like the stem cells I explained above. They have no known origin, but they are used in most of the groundbreaking research that is currently happening.

Embryonic stem cells are more controversial since they are produced in the embryo stage of development. All embryonic stem cells originate from an embryo. They are usually grown in a laboratory within a cell culture. There are many misconceptions of embryonic stem cells which will be addressed in the next blog post.

Both types of stem cells have advantages and disadvantages, but the advantage of stem cell research heavily outweigh the disadvantages. It is slowly becoming the future of medicine.

The rest is here:
What is Stem Cell Research? | The Benefits of Stem Cell Research

Posted in Stem Cell Research | Comments Off on What is Stem Cell Research? | The Benefits of Stem Cell Research

An Overview of Stem Cell Research | The Center for Bioethics …

Posted: October 5, 2021 at 7:12 pm

Post Date: 04/2005, Updated 08/2009Author: CBHD Research Staff

In November of 1998, scientists reported that they had successfully isolated and cultured human embryonic stem cellsa feat which had eluded researchers for almost two decades. This announcement kicked off an intense and unrelenting debate between those who approve of embryonic stem cell research and those who are opposed to it. Some of the most prominent advocates of the research are scientists and patients who believe that embryonic stem cell research will lead to the development of treatments and cures for some of humanitys most pernicious afflictions (such as Alzheimers disease, Parkinsons disease, heart disease, and diabetes). Among the most vocal opponents of the research are those who share the desire to heal, but who object to the pursuit of healing via unethical means. CBHDs view is that because human embryonic stem cell research necessitates the destruction of human embryos, such research is unethicalregardless of its alleged benefits. Ethical alternatives for achieving those benefits should be actively pursued, and have demonstrated a number of promising preclinical and clincial results without the ethical concers present with embryonic stem cells.

Human embryonic stem cells are the cells from which all 200+ kinds of tissue in the human body originate. Typically, they are derived from human embryosoften those from fertility clinics who are left over from assisted reproduction attempts (e.g., in vitro fertilization). When stem cells are obtained from living human embryos, the harvesting of such cells necessitates destruction of the embryos.

Adult stem cells (also referred to as non-embryonic stem cells) are present in adults, children, infants, placentas, umbilical cords, and cadavers. Obtaining stem cells from these sources does not result in certain harm to a human being.

Fetal stem cell research may ethically resemble either adult or embryonic stem cell research and must be evaluated accordingly. If fetal stem cells are obtained from miscarried or stillborn fetuses, or if it is possible to remove them from fetuses still alive in the womb without harming the fetuses, then no harm is done to the donor and such fetal stem cell research is ethical. However, if the abortion of fetuses is the means by which fetal stem cells are obtained, then an unethical means (the killing of human beings) is involved. Since umbilical cords are detached from infants at birth, umbilical cord blood is an ethical source of stem cells.

Yes. In contrast to research on embryonic stem cells, non-embryonic stem cell research has already resulted in numerous instances of actual clinical benefit to patients. For example, patients suffering from a whole host of afflictionsincluding (but not limited to) Parkinsons disease, autoimmune diseases, stroke, anemia, cancer, immunodeficiency, corneal damage, blood and liver diseases, heart attack, and diabeteshave experienced improved function following administration of therapies derived from adult or umbilical cord blood stem cells. The long-held belief that non-embryonic stem cells are less able to differentiate into multiple cell types or be sustained in the laboratory over an extended period of timerendering them less medically-promising than embryonic stem cellshas been repeatedly challenged by experimental results that have suggested otherwise. (For updates on experimental results, access http://www.stemcellresearch.org.)

Though embryonic stem cells have been purported as holding great medical promise, reports of actual clinical success have been few. Instead, scientists conducting research on embryonic stem cells have encountered significant obstaclesincluding tumor formation, unstable gene expression, and an inability to stimulate the cells to form the desired type of tissue. It may indeed be telling that some biotechnology companies have chosen not to invest financially in embryonic stem cell research and some scientists have elected to focus their research exclusively on non-embryonic stem cell research.

Another potential obstacle encountered by researchers engaging in embryonic stem cell research is the possibility that embryonic stem cells would not be immunologically compatible with patients and would therefore be rejected, much like a non-compatible kidney would be rejected. A proposed solution to this problem is to create an embryonic clone of a patient and subsequently destroy the clone in order to harvest his or her stem cells. Cloning for this purpose has been termed therapeutic cloningdespite the fact that the subject of the researchthe cloneis not healed but killed.

Underlying the passages of Scripture that refer to the unborn (Job 31:15; Ps. 139:13-16; Lk. 1:35-45) is the assumption that they are human beings who are created, known, and uniquely valued by God. Genesis 9:6 warns us against killing our fellow human beings, who are created in the very image of God (Gen. 1:26-27). Furthermore, human embryonic lifeas well as all of creationexists primarily for Gods own pleasure and purpose, not ours (Col. 1:16).

Many proponents of human embryonic stem cell research argue that it is actually wrong to protect the lives of a few unborn human beings if doing so will delay treatment for a much larger number of people who suffer from fatal or debilitating diseases. However, we are not free to pursue gain (financial, health-related, or otherwise) through immoral or unethical means such as the taking of innocent life (Deut. 27:25). The history of medical experimentation is filled with horrific examples of evil done in the name of science. We must not sacrifice one class of human beings (the embryonic) to benefit another (those suffering from serious illness). Scripture resoundingly rejects the temptation to do evil that good may result (Rom. 3:8).

No forms of stem cell research or cloning are prohibited by federal law, though some states have passed partial bans. Private funds can support any practice that is legal, whereas federal funds cannot be used for research on embryonic stem cell lines unless they meet the guidelines set forth by the National Institutes of Health in July 2009. For the latest developments you can stay informed via CBHD's newsblogwww.bioethics.com and thecoalition site http://www.stemcellresearch.org.

Editor's Note: This piece was originally published by Linda K. Bevington, MA, by CBHD in April 2005 under the title "Stem Cell Research and 'Therapeutic' Cloning: A Christian Analysis." The piece was subsequently revised and updated by CBHD research staff in August 2009.

Posted 4/2005, Updated 8/2009

Read the original post:
An Overview of Stem Cell Research | The Center for Bioethics ...

Posted in Stem Cell Research | Comments Off on An Overview of Stem Cell Research | The Center for Bioethics …

Stem Cell Research: Uses, Types & Examples

Posted: October 5, 2021 at 7:12 pm

About stem cells

Stem cells are undifferentiated, or blank, cells. This means theyre capable of developing into cells that serve numerous functions in different parts of the body. Most cells in the body are differentiated cells. These cells can only serve a specific purpose in a particular organ. For example, red blood cells are specifically designed to carry oxygen through the blood.

All humans start out as only one cell. This cell is called a zygote, or a fertilized egg. The zygote divides into two cells, then four cells, and so on. Eventually, the cells begin to differentiate, taking on a certain function in a part of the body. This process is called differentiation.

Stem cells are cells that havent differentiated yet. They have the ability to divide and make an indefinite number of copies of themselves. Other cells in the body can only replicate a limited number of times before they begin to break down. When a stem cell divides, it can either remain a stem cell or turn into a differentiated cell, such as a muscle cell or a red blood cell.

Since stem cells have the ability to turn into various other types of cells, scientists believe that they can be useful for treating and understanding diseases. According to the Mayo Clinic, stem cells can be used to:

There are several types of stem cells that can be used for different purposes.

Embryonic stem cells come from human embryos that are three to five days old. They are harvested during a process called in-vitro fertilization. This involves fertilizing an embryo in a laboratory instead of inside the female body. Embryonic stem cells are known as pluripotent stem cells. These cells can give rise to virtually any other type of cell in the body.

Adult stem cells have a misleading name, because they are also found in infants and children. These stem cells come from developed organs and tissues in the body. Theyre used by the body to repair and replace damaged tissue in the same area in which they are found.

For example, hematopoietic stem cells are a type of adult stem cell found in bone marrow. They make new red blood cells, white blood cells, and other types of blood cells. Doctors have been performing stem cell transplants, also known as bone marrow transplants, for decades using hematopoietic stem cells in order to treat certain types of cancer.

Adult stem cells cant differentiate into as many other types of cells as embryonic stem cells can.

Scientists have recently discovered how to turn adult stem cells into pluripotent stem cells. These new types of cells are called induced pluripotent stem cells (iPSCs). They can differentiate into all types of specialized cells in the body. This means they can potentially produce new cells for any organ or tissue. To create iPSCs, scientists genetically reprogram the adult stem cells so they behave like embryonic stem cells.

The breakthrough has created a way to de-differentiate the stem cells. This may make them more useful in understanding how diseases develop. Scientists are hoping that the cells can be made from someones own skin to treat a disease. This will help prevent the immune system from rejecting an organ transplant. Research is underway to find ways to produce iPSCs safely.

Cord blood stem cells are harvested from the umbilical cord after childbirth. They can be frozen in cell banks for use in the future. These cells have been successfully used to treat children with blood cancers, such as leukemia, and certain genetic blood disorders.

Stem cells have also been found in amniotic fluid. This is the fluid that surrounds a developing baby inside the mothers womb. However, more research is needed to help understand the potential uses of amniotic fluid stem cells.

Adult stem cells dont present any ethical problems. However, in recent years, there has been controversy surrounding the way human embryonic stem cells are obtained. During the process of harvesting embryotic stem cells, the embryo is destroyed. This raises ethical concerns for people who believe that the destruction of a fertilized embryo is morally wrong.

Opponents believe that an embryo is a living human being. They dont think the fertilized eggs should be used for research. They argue that the embryo should have the same rights as every other human and that these rights should be protected.

Supporters of stem cell research, on the other hand, believe that the embryos are not yet humans. They note that researchers receive consent from the donor couple whose eggs and sperm were used to create the embryo. Supporters also argue that the fertilized eggs created during in-vitro fertilization would be discarded anyway, so they might be put to better use for scientific research.

With the breakthrough discovery of iPSCs, there may be less of a need for human embryos in research. This may help ease the concerns of those who are against using embryos for medical research. However, if iPSCs have the potential to develop into a human embryo, researchers could theoretically create a clone of the donor. This presents another ethical issue to take into consideration. Many countries already have legislation in place that effectively bans human cloning.

In the United States, federal policy regarding stem cell research has evolved over time as different presidents have taken office. Its important to note that no federal regulation has ever explicitly banned stem cell research in the United States. Rather, regulations have placed restrictions on public funding and use. However, certain states have placed bans on the creation or destruction of human embryos for medical research.

In August 2001, former President George W. Bush approved a law that would provide federal funding for limited research on embryonic stem cells. However, such research had to fit the following criteria:

In March 2009, President Barack Obama revoked former President Bushs statement and released Executive Order 13505. The order removed the restrictions on federal funding for stem cell research. This allowed the National Institutes of Health (NIH) to begin funding research that uses embryonic stem cells. The NIH then published guidelines to establish the policy under which it would fund research. The guidelines were written to help make sure that all NIH-funded research on human stem cells is morally responsible and scientifically relevant.

Stem cell research is ongoing at universities, research institutions, and hospitals around the world. Researchers are currently focusing on finding ways to control how stem cells turn into other types of cells.

A primary goal of research on embryonic stem cells is to learn how undifferentiated stem cells turn into differentiated stem cells that form specific tissues and organs. Researchers are also interested in figuring out how to control this process of differentiation.

Over the years, scientists have developed methods to manipulate the stem cell process to create a particular cell type. This process is called directed differentiation. A recent studyalso discovered the first steps in how stem cells transform into brain cells and other types of cells. More research on this topic is ongoing.

If researchers can find a reliable way to direct the differentiation of embryonic stem cells, they may be able to use the cells to treat certain diseases. For example, by directing the embryonic stem cells to turn into insulin-producing cells, they may be able to transplant the cells into people with type 1 diabetes.

Other medical conditions that may potentially be treated with embryonic stem cells include:

Californias Stem Cell Agency provides a detailed list of the disease programs and clinical trials currently underway in stem cell research. Examples of such projects include:

Researchers are also using differentiated stem cells to test the safety and effectiveness of new medications. Testing drugs on human stem cells eliminates the need to test them on animals.

Stem cell research has the potential to have a significant impact on human health. However, there is some controversy around the development, usage, and destruction of human embryos. Scientists may be able to ease these concerns by using a new method that can turn adult stem cells into pluripotent stem cells, which can change into any cell type. This would eliminate the need for embryonic stem cells in research. Such breakthroughs show that much progress has been made in stem cell research. Despite these advancements, theres still a lot more to be done before scientists can create successful treatments through stem cell therapy.

See more here:
Stem Cell Research: Uses, Types & Examples

Posted in Stem Cell Research | Comments Off on Stem Cell Research: Uses, Types & Examples

Stem Cells | National Institutes of Health (NIH)

Posted: October 5, 2021 at 7:12 pm

Stem cell research holds great promise for biomedical sciencefrom helping us better understand how diseases develop and spread, to serving as accurate screens for new drugs, to developing cell-based therapies for diabetes, heart failure, Parkinsons disease, and many other conditions that affect millions of Americans. There are 2 basic types of human stem cells: embryonic stem (ES) cells and non-embryonic, or adult stem cells. Just a few years ago, scientists discovered how to make a third type, by reprogramming ordinary skin cells that have already grown up into those that look and act like cells from an embryo. These cells have been named induced pluripotent stem cells, or iPS cells.

NIH research is progressing on multiple fronts to learn more about the differences between the 3 stem cell types and to create patient-specific cells for in-depth study of many diseases. The ability to create iPS cells is a significant breakthrough, since the reprogramming technique is relatively simple to perform with standard laboratory methods, and because skin cells are easy to gather and grow. The most exciting aspect of this research is its potential to speed progress toward achieving personalized therapies. With refinements, this method could yield an unlimited supply of customized cells.

Regenerative medicine is moving toward a day when we can repair and replace damaged tissues. In time, we will be able to make insulin-secreting pancreatic cells, bone cells to heal breaks and defects, and eye and ear cells to restore vision and hearing. NIH researchers are hard at work using stem cells as a powerful tool to study neurological disorders like Parkinsons, Huntingtons disease, amyotrophic lateral sclerosis (ALS), and spinal cord injury, to name a few.

Previous: Personalized MedicineNext: Imaging

Link:
Stem Cells | National Institutes of Health (NIH)

Posted in Stem Cell Research | Comments Off on Stem Cells | National Institutes of Health (NIH)

Stem cells: Therapy, controversy, and research

Posted: October 5, 2021 at 7:12 pm

Researchers have been looking for something that can help the body heal itself. Although studies are ongoing, stem cell research brings this notion of regenerative medicine a step closer. However, many of its ideas and concepts remain controversial. So, what are stem cells, and why are they so important?

Stem cells are cells that can develop into other types of cells. For example, they can become muscle or brain cells. They can also renew themselves by dividing, even after they have been inactive for a long time.

Stem cell research is helping scientists understand how an organism develops from a single cell and how healthy cells could be useful in replacing cells that are not working correctly in people and animals.

Researchers are now studying stem cells to see if they could help treat a variety of conditions that impact different body systems and parts.

This article looks at types of stem cells, their potential uses, and some ethical concerns about their use.

The human body requires many different types of cells to function, but it does not produce every cell type fully formed and ready to use.

Scientists call a stem cell an undifferentiated cell because it can become any cell. In contrast, a blood cell, for example, is a differentiated cell because it has already formed into a specific kind of cell.

The sections below look at some types of stem cells in more detail.

Scientists extract embryonic stem cells from unused embryos left over from in vitro fertilization procedures. They do this by taking the cells from the embryos at the blastocyst stage, which is the phase in development before the embryo implants in the uterus.

These cells are undifferentiated cells that divide and replicate. However, they are also able to differentiate into specific types of cells.

There are two main types of adult stem cells: those in developed bodily tissues and induced pluripotent stem (iPS) cells.

Developed bodily tissues such as organs, muscles, skin, and bone include some stem cells. These cells can typically become differentiated cells based on where they exist. For example, a brain stem cell can only become a brain cell.

On the other hand, scientists manipulate iPS cells to make them behave more like embryonic stem cells for use in regenerative medicine. After collecting the stem cells, scientists usually store them in liquid nitrogen for future use. However, researchers have not yet been able to turn these cells into any kind of bodily cell.

Scientists are researching how to use stem cells to regenerate or treat the human body.

The list of conditions that stem cell therapy could help treat may be endless. Among other things, it could include conditions such as Alzheimers disease, heart disease, diabetes, and rheumatoid arthritis. Doctors may also be able to use stem cells to treat injuries in the spinal cord or other parts of the body.

They may do this in several ways, including the following.

In some tissues, stem cells play an essential role in regeneration, as they can divide easily to replace dead cells. Scientists believe that knowing how stem cells work can help treat damaged tissue.

For instance, if someones heart contains damaged tissue, doctors might be able to stimulate healthy tissue to grow by transplanting laboratory-grown stem cells into the persons heart. This could cause the heart tissue to renew itself.

One study suggested that people with heart failure showed some improvement 2 years after a single-dose administration of stem cell therapy. However, the effect of stem cell therapy on the heart is still not fully clear, and research is still ongoing.

Another investigation suggested that stem cell therapies could be the basis of personalized diabetes treatment. In mice and laboratory-grown cultures, researchers successfully produced insulin-secreting cells from stem cells derived from the skin of people with type 1 diabetes.

Study author Jeffrey R. Millman an assistant professor of medicine and biomedical engineering at the Washington University School of Medicine in St. Louis, MO said, What were envisioning is an outpatient procedure in which some sort of device filled with the cells would be placed just beneath the skin.

Millman hopes that these stem cell-derived beta cells could be ready for research in humans within 35 years.

Stem cells could also have vast potential in developing other new therapies.

Another way that scientists could use stem cells is in developing and testing new drugs.

The type of stem cell that scientists commonly use for this purpose is the iPS cell. These are cells that have already undergone differentiation but which scientists have genetically reprogrammed using genetic manipulation, sometimes using viruses.

In theory, this allows iPS cells to divide and become any cell. In this way, they could act like undifferentiated stem cells.

For example, scientists want to grow differentiated cells from iPS cells to resemble cancer cells and use them to test anticancer drugs. This could be possible because conditions such as cancer, as well as some congenital disabilities, happen because cells divide abnormally.

However, more research is taking place to determine whether or not scientists really can turn iPS cells into any kind of differentiated cell and how they can use this process to help treat these conditions.

In recent years, clinics have opened that offer different types of stem cell treatments. One 2016 study counted 570 of these clinics in the United States alone. They appear to offer stem cell-based therapies for conditions ranging from sports injuries to cancer.

However, most stem cell therapies are still theoretical rather than evidence-based. For example, researchers are studying how to use stem cells from amniotic fluid which experts can save after an amniocentesis test to treat various conditions.

The Food and Drug Administration (FDA) does allow clinics to inject people with their own stem cells as long as the cells are intended to perform only their normal function.

Aside from that, however, the FDA has only approved the use of blood-forming stem cells known as hematopoietic progenitor cells. Doctors derive these from umbilical cord blood and use them to treat conditions that affect the production of blood. Currently, for example, a doctor can preserve blood from an umbilical cord after a babys birth to save for this purpose in the future.

The FDA lists specific approved stem cell products, such as cord blood, and the medical facilities that use them on its website. It also warns people to be wary of undergoing any unproven treatments because very few stem cell treatments have actually reached the earliest phase of a clinical trial.

Historically, the use of stem cells in medical research has been controversial. This is because when the therapeutic use of stem cells first came to the publics attention in the late 1990s, scientists were only deriving human stem cells from embryos.

Many people disagree with using human embryonic cells for medical research because extracting them means destroying the embryo. This creates complex issues, as people have different beliefs about what constitutes the start of human life.

For some people, life starts when a baby is born, while for others, it starts when an embryo develops into a fetus. Meanwhile, other people believe that human life begins at conception, so an embryo has the same moral status and rights as a human child.

Former U.S. president George W. Bush had strong antiabortion views. He believed that an embryo should be considered a life and not be used for scientific experiments. Bush banned government funding for human stem cell research in 2001, but former U.S. president Barack Obama then revoked this order. Former U.S. president Donald Trump and current U.S. president Joe Biden have also gone back and forth with legislation on this.

However, by 2006, researchers had already started using iPS cells. Scientists do not derive these stem cells from embryonic stem cells. As a result, this technique does not have the same ethical concerns. With this and other recent advances in stem cell technology, attitudes toward stem cell research are slowly beginning to change.

However, other concerns related to using iPS cells still exist. This includes ensuring that donors of biological material give proper consent to have iPS cells extracted and carefully designing any clinical studies.

Researchers also have some concerns that manipulating these cells as part of stem cell therapy could lead to the growth of cancerous tumors.

Although scientists need to do much more research before stem cell therapies can become part of regular medical practice, the science around stem cells is developing all the time.

Scientists still conduct embryonic stem cell research, but research into iPS cells could help reduce some of the ethical concerns around regenerative medicine. This could lead to much more personalized treatment for many conditions and the ability to regenerate parts of the human body.

Learn more about stem cells, where they come from, and their possible uses here.

Read more from the original source:
Stem cells: Therapy, controversy, and research

Posted in Stem Cell Research | Comments Off on Stem cells: Therapy, controversy, and research

Page 8«..78910..2030..»