Page 31«..1020..30313233..4050..»

Category Archives: Stem Cell Research

Predictive Technology Group Addresses Use of Mesenchymal Stem Cells in Treatment of Secondary Issues Related to Coronavirus – GlobeNewswire

Posted: March 17, 2020 at 6:43 pm

SALT LAKE CITY, March 17, 2020 (GLOBE NEWSWIRE) -- Predictive Technology Group (OTC PINK: PRED) (Predictive or The Company), today announced that last week it began communication with domestic and international agencies and groups to be a supplier ofmesenchymal stem cells (MSCs) for the potential clinical treatmentof patients suffering from secondary issues related to the coronavirus (COVID-19). In other related news today the American Society of Interventional Pain Physicians (ASIPP) issued a statement on COVID-19, discussing practices and urging authorities to approve expanded umbilical cord stem cell infusions as a treatment.WWW.asipp.org/asipp-updates/STATEMENT-FROM-ASIPP-ON-COVID-19

ChinaXiv recently reported (March 2, 2020) the outcomes of seven patients with COVID-19 pneumonia enrolled in a clinical trial at Beijing YouAn Hospital, China. The clinical outcomes, as well as changes in inflammatory and immune function levels, and adverse effects of the enrolled patients were assessed over the 14 days following MSC injection. The patients were treated with MSCs derived from the Whartons jelly layer of the umbilical cord. The pulmonary function and symptoms of all seven patients with COVID-19 pneumonia were significantly improved within 2 days of the MSC transplantation.

Utilizing regenerative medicine technology with the administration of MSCs may help mitigate underlying COVID-19 associated lung damage. While this treatment is not a method to vaccinate nor cure the virus, the results reported in this publication indicate that infected patients may be more likely to combat and survive the related secondary issues of a COVID-19 infection if regenerative technologies are applied.

Given our expertise and proprietary processes for isolating the MSCs from source tissue, combined with our strong safety record in delivering tens of thousands of allografts to the market, it is not surprising that we have received a high number of inquiries regarding our potential involvement with this global health crisis, said Bradley Robinson, CEO of Predictive Technology Group. We are watching the development of clinical trials from around the world and remain poised to help in any we can, pending regulatory guidance. Our experience and capital investments over the past few years has equipped us with the expertise and ability to scale to meet demand, added Robinson.

MSCs have the ability to differentiate into a variety of cell types and are able to resist viral attacks with the expression of interferon gamma stimulated genes (ISGs). With the ability to express ISGs, stem cells would be expected to survive even when transplanted into a patient with an active COVID-19 infection. Stem cells rejuvenate and regenerate cells in the body through various processes involving reduction of inflammation, secretion of substances that protect cells, transfer of mitochondria, reduction of cell death, anti-oxidative effects and improvement of immune system function. These effects are likely to increase survival in patients infected with COVID-19.

Additionally, there is evidence of stem cells aiding in the protection against viral infection. The influenza virus A/H5N1 is known to cause acute lung injury. With the injection of human MSCs, A/H5N1 was reduced in mice and the treatment increased rates of survival (Chan, et al, PNAS 113:3621, 2016).

Umbilical cord tissue is particularly rich in MSCs, which is why many parents choose to store them. As new clinical therapies are discovered, the importance of storing stem cells from perinatal tissue (umbilical cord and placenta) will become a critical source for individuals needing stem cell therapies in the future.

Predictive Technology Group was the first to market and is the current market leader in the United States for the procurement and processing of umbilical cord tissue for clinical use. Predictive has operated its FDA-compliant commercial biologics manufacturing facility for several years. This facility is cGMP and cGTP compliant, ISO13485 certified, and FDA registered. All clinical manufacturing occurs in an ISO 7 certified sterile cleanroom with extensive and advanced testing to assure the absence of contamination.

"We are well positioned to have the procurement, processing and cell culturing expertise and scale to offer stem cell therapy for secondary issues related to COVID-19 infections in both domestic and international markets. While effective vaccines are being developed, US-based stem cell transplants represent a real opportunity to fight the virus and increase survival rates with patients infected worldwide, Bradley Robinson added.

As the major commercial supplier of umbilical cord MSCs in the United States, Predictive is well positioned to continue its leadership role in ensuring a stable supply of this potentially life-saving intervention that has been associated with promoting the regeneration and repair of lung tissue damaged by acute respiratory viral infections, such as those caused by COVID-19. The company plans to evaluate potential research and commercial collaboration opportunities to supply stem cells either directly through Predictive, or in collaboration with other private and/or public entities.

About Predictive Technology Group, Inc.

Predictive Technology Group aims to revolutionize and personalize precision patient care. The Companys entities harness predictive gene-based analytics to develop genetic and molecular diagnostic tests, as well as companion therapeutics, in order to support a patient from diagnosis through treatment. The Companies tests and products empower clinicians to provide their patients with the highest level of care. Predictives subsidiaries include Predictive Laboratories, Predictive Biotech and Predictive Therapeutics.

For more information, visitwww.predtechgroup.com

Forward-Looking Statements:

To the extent any statements made in this release contain information that is not historical, these statements are essentially forward-looking and are subject to risks and uncertainties, including the difficulty of predicting FDA approvals, acceptance and demand for human cell and tissue products and other pharmaceutical products, the impact of competitive products and pricing, new product development and launch, reliance on key strategic alliances, availability of raw materials, availability of additional intellectual property rights, availability of future financing sources, the regulatory environment, and other risks the Company may identify from time to time in the future.

Contacts:

For more information, visit http://www.predtechgroup.comor contact:

Media ContactPatrick BurseyLifeSci Communicationspbursey@lifescicomms.com646-876-4932

Investor ContactJeremy FefferLifeSci Advisorsjeremy@lifesciadvisors.com212-915-2568

View post:
Predictive Technology Group Addresses Use of Mesenchymal Stem Cells in Treatment of Secondary Issues Related to Coronavirus - GlobeNewswire

Posted in Stem Cell Research | Comments Off on Predictive Technology Group Addresses Use of Mesenchymal Stem Cells in Treatment of Secondary Issues Related to Coronavirus – GlobeNewswire

China reports new progress in drug, therapies against Covid-19 – The Star Online

Posted: March 17, 2020 at 6:43 pm

BEIJING: China has completed the clinical research of Favipiravir, an antiviral drug that has shown good clinical efficacy against the Covid-19 (coronavirus) outbreak, according to an official on Tuesday (March 17).

Favipiravir, the influenza drug which was approved for clinical use in Japan in 2014, has shown no obvious adverse reactions in the clinical trial, said Zhang Xinmin, director of the China National Center for Biotechnology Development under the Ministry of Science and Technology, at a press conference.

More than 80 patients have participated in the clinical trial in The Third People's Hospital of Shenzhen, south China's Guangdong Province, including 35 patients taking Favipiravir and 45 patients on a control group.

Results showed that patients receiving Favipiravir treatment turned negative for the virus in a shorter time compared with patients in the control group.

A multi-centred randomised clinical study led by the Zhongnan Hospital of Wuhan University also suggested that the therapeutic effect of Favipiravir is much better than that of the control group.

Favipiravir has been recommended to medical treatment teams and should be included in the diagnosis and treatment plan for Covid-19 as soon as possible, Zhang said.

A Chinese pharmaceutical company has been approved by the National Medical Products Administration to mass-produce the drug and ensure stable supply, Zhang added.

China is also pushing forward the utilization of some advanced technologies such as stem cell and artificial liver and blood purification in the treatment of severe cases.

Zhang said stem cell therapy proves effective in reducing severe inflammatory reactions caused by Covid-19, as well as reducing lung injury and pulmonary fibrosis in patients.

China has initiated several clinical research programs on stem cell therapy against Covid-19, including a stem cell drug that has been approved for clinical trial and a mesenchymal stem cell therapy.

Stem cell therapy has been used to treat 64 patients in severe and critical condition. Those patients' breathing difficulties were gradually relieved and they were generally cured in eight to 10 days.

The therapy also showed advantages in preventing pulmonary fibrosis and improving the long-term prognosis for patients.

The Chinese Society for Cell Biology and the Chinese Medical Association have jointly issued a guideline to standardize the clinical research and application of stem cell therapy against Covid-19.

Zhang said China is trying to use artificial liver and blood purification technology to treat critically ill patients. Patients receiving this treatment have seen reduced levels of inflammatory factors and improvement in chest imaging.

Their time on ventilator support has been decreased by an average of 7.7 days and the required ICU monitoring time has been shortened. - Xinhua/Asian News Network

Visit link:
China reports new progress in drug, therapies against Covid-19 - The Star Online

Posted in Stem Cell Research | Comments Off on China reports new progress in drug, therapies against Covid-19 – The Star Online

What Jason Hope Says About New Longevity Research – HealthTechZone

Posted: March 17, 2020 at 6:43 pm

Throughout the past decade, various topics related to stem cells have made headlines across all platforms. From being hailed as the most innovative method for eradicating specific diseases, to being protested by various groups and organizations, the use of stem cells has gained national attention repeatedly. With promising initial scientific findings, and avid researchers aiming to solidify the presence of stem cell usage in the realm of science on a normalized basis, increasing numbers of startups, biotech giants, and independent companies are forging ahead with stem cell-related projects. As global connectivity, technological advancements, and the marriage between medicine and technology continues to evolve swiftly, Jason Hope sees stem cells will undoubtedly remaining in the spotlight.

Over 20 years ago, scientists successfully extracted the first human embryonic stem cells, and effectively grew these cells in a lab setting. The remarkable feat of being able to successfully grow the parent cells, which essentially allow for the growth of new cells in the body, was a hopeful moment for the medical sector involved in creating effective regenerative treatments for conditions like heart disease, Alzheimers, stroke, and Parkinsons Disease. Using basic reasoning, the successful regeneration of parent cells could provide the regeneration of undesired cells, leading to anti-aging results, or effective care for many age-related conditions that deteriorate the body over time.

Though this initial breakthrough was promising, the scientific community has not yet made significant strides in bringing stem cell therapy to market in a way that is well-researched, backed by medical associations, and commonly accepted by the scientific community. In fact, the only readily utilized stem cell treatments are related to successfully growing blood cells from matching donors for patients with various blood disorders. According to entrepreneur, philanthropist, and expert in the realm of anti-aging and longevity, Jason Hope, these initial utilization of stem cells are commendable, but require a lot more research in order to maximize the potential widespread benefits of stem cells in medicine.

Hope, who has devoted much of his philanthropic endeavors within the medical industry via groups like the SENS Organization, recognizes that most stem cell implementations are rightfully considered experimental until appropriate research, testing, and development can occur. As an expert in the realm of anti-aging, and the championing of increasing health throughout a lifetime, Jason Hope recognizes the potential distrust that can be formulated by the general public as a result of eager companies making lofty claims or promoting potentially faulty treatments not yet fully vetted by the medical community. Thus, while he remains avidly enthralled by the potential maximization of stem cell therapies, hope supports the long-term research needed to safely, successfully, and effectively generate breakthrough stem cell treatments.

Providing continued backing for the extensive research completed at the SENS (Strategies for Engineered Negligible Senescence) Organization, Hopes contributions aid in the research aiming to create preventative treatments for degenerative diseases and utilizing breakthrough science to increase the overall long-term quality of life for individuals. Instead of focusing on the treatment of symptoms and the disease throughout the progression of the condition, the scientists at SENS work to examine ways to successfully prevent the disease from happening. Through this boundary-pushing work, a lot of their research focuses on stem cell intervention. According to Hope, stem cell treatments for Parkinsons Disease are now in the second stage of clinical trials at SENS. While the process of undergoing such extensive trials may appear slow, it is crucial to maintaining overall public support via successful treatment launches and promising in terms of the long-term possibilities linked to stem cell treatments.

In addition to the research being conducted by SENS, preliminary medical studies are being conducted with a myriad of uses for stem cells. Experimental stem cell transplants of retinal cells were recently utilized in a small research study of macular generation, providing initially promising results for the handful of patients who have received artificially generated retinal cells. Elsewhere, scientists have begun to explore ways to minimize potential rejection of stem cells in organs like the liver, through maximizing the most conducive environment for stem cells to thrive. While these slow-moving vehicles of change are less prominent than startups promising the proverbial Fountain of Youth via experimental stem cell treatments, these medically sound research studies are forming the backbone of stem cell treatment for the future.

As with all scientific and medical innovations, Hope also recognizes the potential risks, hurdles, and roadblocks within the growing field of stem cell research, and integration into medicine. From supply chain concerns to potential long-term side effects, and the risk of overly eager startups making too-lofty claims, Hope understands that the road to the everyday utilization of stem cells remains lengthy and potentially bumpy. However, the proverbial juice may very well be worth the squeeze in this example. As stem cells harvest the potential power to overturn the degenerative effects of some of the most prominent diseases, allow individuals to maintain active health for elongated periods of time, and increase the quality of life for countless individuals, expanding upon the initial promising research is potentially a pivotal point for the medical community and humankind. Though the road to successful scientific integration of stem cells is long, the potential healthcare benefits are limitless, and according to industry experts like Jason Hope, worth investing in, exploring, and championing.

About Jason Hope

An avid entrepreneur, investor, and philanthropist, Jason Hope is a futurist involved in the championing of technological advancement, community involvement, and innovative medical interventions. Deeply passionate about the anti-aging, longevity, and human advancement niche of biomedicine, Hope remains actively involved in various scientific organizations.

After receiving a degree in Finance from ASU, and a subsequent MBA from ASUs W.P. Carey School of Business, Hope developed a successful mobile communications company. Professionally, he currently focuses on investing in startups and developing grant programs for small businesses.

Follow Jason Hope:

LinkedIn | Facebook | Twitter | Medium

Read the rest here:
What Jason Hope Says About New Longevity Research - HealthTechZone

Posted in Stem Cell Research | Comments Off on What Jason Hope Says About New Longevity Research – HealthTechZone

Here’s how to treat coronavirus, according to research – Daily Nation

Posted: March 17, 2020 at 6:43 pm

By XINHUAMore by this Author

China has released the seventh version of the diagnosis and treatment guideline on the novel coronavirus disease (Covid-19).

Here are some drugs and therapies that have been recommended by the guideline, and some medicines that have been found to have the potential to defeat the virus and have entered clinical trials.

Chloroquine Phosphate, a widely used anti-malaria and autoimmune disease drug, has been used for more than 70 years.

The drug has been used in treating 285 critically ill Covid-19 patients in a hospital in Wuhan, and no obvious adverse reactions have been found so far.

In the latest version of the treatment guideline, Chloroquine Phosphate is recommended for Covid-19 patients from 18 to 65.

The amount for patients over 50 kg is 500 mg per dose twice a day for seven days.

The guideline also noted that patients should take less than three antiviral drugs.

Tocilizumab, with the common brand name Actemra, is an injectable synthetic protein that blocks the effects of IL-6 in patients with rheumatoid arthritis.

IL-6 is a protein that the body produces when there is inflammation.The latest version of the guideline suggests the use of Tocilizumab in patients with an increasing level of IL-6 and with extensive lesions in both lungs or severe symptoms.

Chinese researchers have found that a cause of death for severe and critically ill patients infected with the novel coronavirus is cytokine storm, an overreaction of the immune system.

These patients are found with a higher level of IL-6 in their blood.

Last month, the increasing level of IL-6 was recommended as a warning sign that the patient's situation could possibly deteriorate.

Currently, the drug is under clinical trials in 14 hospitals in Wuhan and a total of 272 severe patients had been treated with Tocilizumab as of March 5.

Convalescent plasma, processed from the plasma collected from recovered Covid-19 patients, contains a large number of protective antibodies.

As of February 28, 245 Covid-19 patients have received the therapy and 91 cases have shown improvement in clinical indicators and symptoms.

According to health authorities, plasma therapy has proved safe and effective.

4. TRADITIONAL CHINESE MEDICINE

Traditional Chinese Medicine (TCM) has been proven effective in treating Covid-19 patients.

With TCM treatment, patients with mild symptoms have seen their fever or cough alleviated, according to medical experts.

For severely ill patients, TCM helped relieve symptoms and restore blood oxygen saturation, preventing the patients' conditions from developing into critically ill cases.

TCM decoction Qingfei Paidu Soup has been recommended to medical institutions nationwide on February 6 after data analysis on 214 cases.

As of February 29, the decoction is used in 66 designated hospitals in 10 provincial-level regions in China.

Favipiravir, an influenza drug available on overseas markets, has been put in a parallel controlled study in Shenzhen, Guangdong Province, with 80 patients enlisted.

The initial outcome of the trial shows the drug has relatively obvious efficacy and low adverse reactions.

Experts have suggested expanding the trial to further observe and study its effect.

Remdesivir, developed against Ebola infections by American pharmaceutical company Gilead Sciences, has shown fairly good antiviral activity against the novel coronavirus at the cellular level.

Cao Bin, a respiratory expert who is leading the Remdesivir programme, said on Wednesday that two trials for Remdesivir are going on smoothly and China will share the data with the international community after the programme is completed.

Clinical studies on stem cell therapy, which can inhibit the overreaction of the body's immune system, have also been carried out to treat severe patients.

As of February 21, four patients who have received the therapy have been discharged from hospital, and the trial is expected to be further expanded. Currently, three kinds of stem cells mesenchymal, lung and embryonic stem cells are used in treatments.

Researchers usually inject stem cell products into the lungs.

Meanwhile, the Chinese Academy of Sciences has developed a new stem cell drug, CAStem, which has shown promising results in animal experiments.

The research team has applied for urgent assessment by the National Medical Products Administration.

Approvals by the ethics committee, and clinical observation and evaluation, are in progress.

Several research and trials on applying stem cells to treat Covid-19 patients have been carried out in the country.

See the original post here:
Here's how to treat coronavirus, according to research - Daily Nation

Posted in Stem Cell Research | Comments Off on Here’s how to treat coronavirus, according to research – Daily Nation

To Turbocharge Anti-Aging Treatment, Just Add… a Protein Found in Fruit Flies? – Singularity Hub

Posted: March 16, 2020 at 8:48 pm

The hunt for the elixir of life is such a universal mythological trope that to talk about it in the context of science seems almost ridiculous. But breakthroughs in the last decade have made the impossible seem possible, and researchers are quickly converging on the consensus that aging may well be a disease that we can treat just as easily as any other.

Impressive results in animals that have had their lifespans boosted by up to 40 percenthave started making their way into humans. Some trials are more questionable than others, but most promisingly there seem to be multiple potential avenues, from cocktails of common drugs to gene therapies and stem cell treatments.

Stem cells are particularly promising, because they can be coaxed into becoming any kind of cell before being transplanted to treat damaged tissue. These therapies often fail to work well in older tissue, though, limiting their future use in older patients who could need them most. This appears to be because these tissues have significantly higher levels of inflammation that prevent stem cells from properly integrating.

Now Portuguese researcher Joana Neves has won the 2019 Sartorius & Science Prize for Regenerating Medicine & Cell Therapy for her discovery of a way to sidestep this roadblock and significantly increase the success of stem cell treatments.

Because of the central importance of tissue repair to all organisms, Neves assumed that many of the mechanisms behind it would be shared among all animals. So she started looking at proteins produced by immune cells in the well-known animal model of the fruit fly.

She discovered that a poorly-understood protein known as MANF (mesencephalic astrocyte-derived neurotrophic factor) plays a crucial role in reducing inflammation in fruit flies. More importantly, she found that mice and humans also produce it, and its prevalence reduces in all the species as they age, suggesting it plays a key role in limiting age-related inflammation.

That prompted her to see if introducing MANF would boost the effectiveness of stem cell treatments in older animals. She used the protein in combination with a procedure that uses stem cells to replace degenerating photoreceptors in the retina of older mice and found it greatly improved the restoration of vision.

Going further, her research team then investigated whether MANFs anti-inflammatory effects could have more general age-defying benefits. Previous research had already demonstrated that infusing old mice with blood from younger ones could reduce various signs of aging, and by carrying out similar experiments the team showed that MANF is one of the factors responsible for that outcome. They even showed that directly injecting mice with MANF could have similar effects.

Translating these ideas to treat other diseases and for use in humans will take some time, but the research chimes with work on an emerging class of drugs known as senolytics. These are drugs that kill senescent cells, which are zombie cells that become more prevalent as we age and spew out harmful chemicals that result in chronic inflammation.

Senolytics are generally seen as a broad-spectrum treatment that could help stave off multiple conditions at once, but they could also be used to create a more hospitable environment for stem cell treatments just like MANF.

There are still plenty of barriers to bringing any of these treatments to the clinic, from the difficulty of producing stem cells to the challenges of regulating treatments for aging (a condition we still dont formally class as a disease), or fighting back against the huge number of bogus treatments that threaten to undermine trust in the field. But given the huge potential for near-term impact, theres growing momentum.

Weve moved from being able to extend health and lifespan of simple organisms like yeast and worms and flies to being able to do this quite easily in animals, in mice and monkeys, David Sinclair, director of the Center for the Biology of Aging at Harvard Medical School, told the Harvard Gazette.

He added that instead of trying to treat one disease at a time, he believes we can develop medicines that will treat aging at its source, therefore having a much greater impact on health and lifespan than drugs that target single diseases.

The wheels are in motion for us to find out.

Image Credit: Monika Robak from Pixabay

Read this article:
To Turbocharge Anti-Aging Treatment, Just Add... a Protein Found in Fruit Flies? - Singularity Hub

Posted in Stem Cell Research | Comments Off on To Turbocharge Anti-Aging Treatment, Just Add… a Protein Found in Fruit Flies? – Singularity Hub

Newly Discovered Memory in Our Bones: Keeping a Record of Previous Infections to Boost Immunity – SciTechDaily

Posted: March 16, 2020 at 8:48 pm

Immune cells by fluorescence microscopy: Blood stem cells remember a previous attack and produce more immune cells like these macrophages to fight a new infection. Credit: Sieweke lab/CIML

These findings should have a significant impact on future vaccination strategies and pave the way for new treatments of an underperforming or over-reacting immune system. The results of this research are published in Cell Stem Cell on March 12, 2020.

Stem cells in our bodies act as reservoirs of cells that divide to produce new stem cells, as well as a myriad of different types of specialized cells, required to secure tissue renewal and function. Commonly called blood stem cells, the hematopoietic stem cells (HSC) are nestled in the bone marrow, the soft tissue that is in the center of large bones such as the hips or thighs. Their role is to renew the repertoire of blood cells, including cells of the immune system which are crucial to fight infections and other diseases.

Until a decade ago, the dogma was that HSCs were unspecialized cells, blind to external signals such as infections. Only their specialized daughter cells would sense these signals and activate an immune response. But work from Prof. Michael Siewekes laboratory and others over the past years has proven this dogma wrong and shown that HSCs can actually sense external factors to specifically produce subtypes of immune cells on demand to fight an infection. Beyond their role in an emergency immune response, the question remained as to the function of HSCs in responding to repeated infectious episodes. The immune system is known to have a memory that allows it to better respond to returning infectious agents. The present study now establishes a central role for blood stem cells in this memory.

We discovered that HSCs could drive a more rapid and efficient immune response if they had previously been exposed to LPS, a bacterial molecule that mimics infection, said Dr. Sandrine Sarrazin, Inserm researcher and senior-author of the publication. Prof. Michael Sieweke, Humboldt Professor at TU Dresden, CNRS Research Director and last author of the publication, explained how they found the memory was stored within the cells: The first exposure to LPS causes marks to be deposited on the DNA of the stem cells, right around genes that are important for an immune response. Much like bookmarks, the marks on the DNA ensure that these genes are easily found, accessible and activated for a rapid response if a second infection by a similar agent was to come.

The authors further explored how the memory was inscribed on the DNA, and found C/EBP? to be the major actor, describing a new function for this factor, which is also important for emergency immune responses. Together, these findings should lead to improvements in tuning the immune system or better vaccination strategies.

The ability of the immune system to keep track of previous infections and respond more efficiently the second time they are encountered is the founding principle of vaccines. Now that we understand how blood stem cells bookmark immune response circuits, we should be able to optimize immunization strategies to broaden the protection to infectious agents. It could also more generally lead to new ways to boost the immune response when it underperforms or turn it off when it overreacts, concluded Prof. Michael Sieweke.

The research group of Prof. Michael Sieweke works at the interface of immunology and stem cell research. The scientists focus on the study of hematopoietic stem cells and macrophages, long-lived mature cells of the immune system that fulfil an important role in tissue regeneration. In 2018, Prof. Michael Sieweke received the most valuable research award in Germany: the Alexander von Humboldt Professorship, which brings top international researchers to German universities. In addition to his position as Research Director at the Centre for Immunology at the University of Marseille Luminy, he now acts as Deputy Director at the Center for Regenerative Therapies at TU Dresden (CRTD). CRTD is academic home for scientists from more than 30 nations. Their mission is to discover the principles of cell and tissue regeneration and leveraging this for recognition, treatment and reversal of diseases. The CRTD links the bench to the clinic, scientists to clinicians to pool expertise in stem cells, developmental biology, gene-editing and regeneration towards innovative therapies for neurodegenerative diseases such as Alzheimers and Parkinsons disease, hematological diseases such as leukaemia, metabolic diseases such as diabetes, retina and bone diseases.

Reference: C/EBP-Dependent Epigenetic Memory Induces Trained Immunity in Hematopoietic Stem Cells by Brengre de Laval, Julien Maurizio, Prashanth K. Kandalla, Gabriel Brisou, Louise Simonnet, Caroline Huber, Gregory Gimenez, Orit Matcovitch-Natan, Susanne Reinhardt, Eyal David, Alexander Mildner, Achim Leutz, Bertrand Nadel, Christophe Bordi, Ido Amit, Sandrine Sarrazin and Michael H.Sieweke, 12 March 2020, Cell Stem Cell.DOI: 10.1016/j.stem.2020.01.017

This study was funded by TU Dresden / CRTD through the German Excellence Initiative, the German Research Foundation as well as through an ERC Advanced Grant from the European Research Council and the Alexander von Humboldt Foundation. The study was further supported by funding from the Institut National de la Sante et de la Recherche Medicale, the Centre National de la Recherche Scientifique, Aix-Marseille University, the Agence Nationale de la Recherche, the Foundation ARC pour la Recherche sur le Cancer, an INSERM-Helmholtz cooperation programme and the Einstein Foundation.

Read the rest here:
Newly Discovered Memory in Our Bones: Keeping a Record of Previous Infections to Boost Immunity - SciTechDaily

Posted in Stem Cell Research | Comments Off on Newly Discovered Memory in Our Bones: Keeping a Record of Previous Infections to Boost Immunity – SciTechDaily

Looking to the future with Dr. Francis Collins – Newswise

Posted: March 16, 2020 at 8:48 pm

Newswise What gets the leader of the NIH jazzed?

Speaking to a packed West Pavilion auditorium March 6, Francis Collins, M.D., Ph.D., director of the National Institutes of Health, shared his picks of 10 areas of particular excitement and promise in biomedical research. (Watch the full talk here.)

In nearly every area, UAB scientists are helping to lead the way as Collins himself noted in several cases. At the conclusion of his talk, Collins addedhis advice for young scientists. Here is Collins top 10 list, annotated with some of the UAB work ongoing in each area and ways that faculty, staff and students can get involved.

1. Single-cell sequencing

[see this section of the talk here]

I am so jazzed with what has become possible with the ability to study single cells and see what they are doing, Collins said. They have been out of our reach now we have reached in. Whether you are studying rheumatoid arthritis, diabetes or the brain, you have the chance to ask each cell what it is doing.

Single-cell sequencing and UAB:Collins noted that Robert Carter, M.D., the acting director of the National Institute of Arthritis and Musculoskeletal and Skin Diseases, was a longtime faculty member at UAB (serving as director of the Division of Clinical Immunology and Rheumatology). For the past several years, UAB researchers have been studying gene expression in subpopulations of immune cells inpatients with rheumatoid arthritis.

Join in:Researchers can take advantage of the single-cell sequencing core facility in UABsComprehensive Flow Cytometry Core, directed by John Mountz, M.D., Ph.D., Goodwin-Blackburn Research Chair in Immunology and professor in the Department of Medicine Division of Clinical Immunology and Rheumatology.

Learn more:Mountz and other heavy users of single-cell sequencing explain how the techniqueslet them travel back in time and morein this UAB Reporter story.

2. New ways to see the brain

[See this section of the talk here]

The NIHsBRAIN Initiativeis making this the era where we are going to figure out how the brain works all 86 billion neurons between your ears, Collins said. The linchpin of this advance will be the development of tools to identify new brain cell types and circuits that will improve diagnosis, treatment and prevention of autism, schizophrenia, Parkinsons and other neurological conditions, he said.

Brain tech and UAB:Collins highlighted thework of BRAIN Initiative granteeHarrison Walker, M.D., an associate professor in the Department of Neurology, whose lab has been developing a more sophisticated way to understand the benefits of deep brain stimulation for people with Parkinsons and maybe other conditions, Collins said.

Join in:UABs planned new doctoral program in neuroengineering would be the first of its kind in the country.

Learn more:Find out why neuroengineering is asmart career choicein this UAB Reporter story.

3. Induced pluripotent stem (iPS) cells

[See this section of the talk here]

Researchers can now take a blood cell or skin cell and, by adding four magic genes, Collins explained, induce the cells to become stem cells. These induced pluripotent stem (iPS) cells can then in turn be differentiated into any number of different cell types, including nerve cells, heart muscle cells or pancreatic beta cells. The NIH has invested in technology to put iPS-derived cells on specialized tissue chips. Youve got you on a chip, Collins explained. Some of us dream of a day where this might be the best way to figure out whether a drug intervention is going to work for you or youre going to be one of those people that has a bad consequence.

iPS cells at UAB:Collins displayed images of thecutting-edge cardiac tissue chipdeveloped by a UAB team led by Palaniappan Sethu, Ph.D., an associate professor in the Department of Biomedical Engineering and the Division of Cardiovascular Disease. The work allows the development of cardiomyocytes that can be used to study heart failure and other conditions, Collins said.

Join in:UABs biomedical engineering department, one of the leading recipients of NIH funding nationally, is a joint department of the School of Engineering and School of Medicine. Learn more about UABsundergraduate and graduate programs in biomedical engineering, and potential careers, here.

Learn more:See howthis novel bioprinterdeveloped by UAB biomedical researchers is speeding up tissue engineering in this story from UAB News.

4. Microbiome advances

[See this section of the talk here]

We have kind of ignored the fact that we have all these microbes living on us and in us until fairly recently, Collins said. But now it is clear that we are not an organism we are a superorganism formed with the trillions of microbes present in and on our bodies, he said. This microbiome plays a significant role not just in skin and intestinal diseases but much more broadly.

Microbiome at UAB:Collins explained that work led by Casey Morrow, Ph.D., and Casey Weaver, M.D., co-directors of theMicrobiome/Gnotobiotics Shared Facility, has revealed intriguing information abouthow antibiotics affect the gut microbiome. Their approach has potential implications for understanding, preserving and improving health, Collins said.

Join in:Several ongoing clinical trials at UAB are studying the microbiome, including a studymodifying diet to improve gut microbiotaand an investigation of the microbiomes ofpostmenopausal women looking for outcomes and response to estrogen therapy.

Learn more:This UAB News storyexplains the UAB researchthat Collins highlighted.

5. Influenza vaccines

[See this section of the talk here]

Another deadly influenza outbreak is likely in the future, Collins said. What we need is not an influenza vaccine that you have to redesign every year, but something that would actually block influenza viruses, he said. Is that even possible? It just might be.

Influenza research at UAB:Were probably at least a decade away from a universal influenza vaccine. But work ongoing at UAB in the NIH-fundedAntiviral Drug Discovery and Development Center(AD3C), led by Distinguished Professor Richard Whitley, M.D., is focused on such an influenza breakthrough.

Join in:For now, the most important thing you can do to stop the flu is to get a flu vaccination. Employees can schedule afree flu vaccination here.

Learn more:Why get the flu shot? What is it like? How can you disinfect your home after the flu? Get all the information atthis comprehensive sitefrom UAB News.

6. Addiction prevention and treatment of pain

[See this section of the talk here]

The NIH has a role to play in tackling the crisis of opioid addiction and deaths, Collins said. The NIHs Helping to End Addiction Long-term (HEAL) initiative is an all-hands-on-deck effort, he said, involving almost every NIH institute and center, with the goal of uncovering new targets for preventing addiction and improving pain treatment by developing non-addictive pain medicines.

Addiction prevention at UAB:A big part of this initiative involves education to help professionals and the public understand what to do, Collins said. The NIH Centers of Excellence in Pain Education (CoEPE), including one at UAB, are hubs for the development, evaluation and distribution of pain-management curriculum resources to enhance pain education for health care professionals.

Join in:Find out how to tell if you or a loved one has a substance or alcohol use problem, connect with classes and resources or schedule an individualized assessment and treatment through theUAB Medicine Addiction Recovery Program.

Learn more:Discover some of the many ways that UAB faculty and staff aremaking an impact on the opioid crisisin this story from UAB News.

7. Cancer Immunotherapy

[See this section of the talk here]

We are all pretty darn jazzed about whats happened in the past few years in terms of developing a new modality for treating cancer we had surgery, we had radiation, we had chemotherapy, but now weve got immunotherapy, Collins said.

Educating immune system cells to go after cancer in therapies such as CAR-T cell therapy is the hottest science in cancer, he said. I would argue this is a really exciting moment where the oncologists and the immunologists together are doing amazing things.

Immunotherapy at UAB:I had to say something about immunology since Im at UAB given that Max Cooper, whojust got the Lasker Awardfor [his] B and T cell discoveries, was here, Collins said. This is a place I would hope where lots of interesting ideas are going to continue to emerge.

Join in:The ONeal Comprehensive Cancer Center at UAB is participating in a number of clinical trials of immunotherapies.Search the latest trials at the Cancer Centerhere.

Learn more:Luciano Costa, M.D., Ph.D., medical director of clinical trials at the ONeal Cancer Center, discusses the promise ofCAR-T cell therapy in this UAB MedCast podcast.

Assistant Professor Ben Larimer, Ph.D., is pursuing a new kind of PET imaging test that could give clinicians afast, accurate picture of whether immunotherapy is workingfor a patient in this UAB Reporter article.

8. Tapping the potential of precision medicine

[See this section of the talk here]

The All of Us Research Program from NIH aims to enroll a million Americans to move away from the one-size-fits-all approach to medicine and really understand individual differences, Collins said. The program, which launched in 2018 and is already one-third of the way to its enrollment goal, has a prevention rather than a disease treatment approach; it is collecting information on environmental exposures, health practices, diet, exercise and more, in addition to genetics, from those participants.

All of Us at UAB:UAB has been doing a fantastic job of enrolling participants, Collins noted. In fact, the Southern Network of the All of Us Research Program, led by UAB, has consistently been at the top in terms of nationwide enrollment, as School of Medicine Dean Selwyn Vickers, M.D., noted in introducing Collins.

Join in:Sign up forAll of Usat UAB today.

Learn more:UABs success in enrolling participants has led to anew pilot study aimed at increasing participant retention rates.

9. Rare diseases

[See this section of the talk here]

Rare Disease Day, on Feb. 29, brought together hundreds of rare disease research advocates at the NIH, Collins said. NIH needs to play a special role because many diseases are so rare that pharmaceutical companies will not focus on them, he said. We need to find answers that are scalable, so you dont have to come up with a strategy for all 6,500 rare diseases.

Rare diseases at UAB: The Undiagnosed Diseases Network, which includes aUAB siteled by Chief Genomics Officer Bruce Korf, M.D., Ph.D., is a national network that brings together experts in a wide range of conditions to help patients, Collins said.

Participants in theAlabama Genomic Health Initiative, also led by Korf, donate a small blood sample that is tested for the presence of specific genetic variants. Individuals with indications of genetic disease receive whole-genome sequencing. Collins noted that lessons from the AGHI helped guide development of the All of Us Research Program.

Collins also credited UABs Tim Townes, Ph.D., professor emeritus in the Department of Biochemistry and Molecular Genetics, for developing the most significantly accurate model of sickle cell disease in a mouse which has been a great service to the [research] community. UAB is now participating in anexciting clinical trial of a gene-editing technique to treat sickle cellalong with other new targeted therapies for the devastating blood disease.

Join in:In addition to UABs Undiagnosed Diseases Program (which requires a physician referral) and the AGHI, patients and providers can contact theUAB Precision Medicine Institute, led by Director Matt Might, Ph.D. The institute develops precisely targeted treatments based on a patients unique genetic makeup.

Learn more:Discover how UAB experts solved medical puzzles for patients by uncovering anever-before-described mutationandcracking a vomiting mysteryin these UAB News stories.

10. Diversity in the scientific workforce

[See this section of the talk here]

We know that science, like everything else, is more productive when teams are diverse than if they are all looking the same, Collins said. My number one priority as NIH director is to be sure we are doing everything we can to nurture and encourage the best and brightest to join this effort.

Research diversity at UAB:TheNeuroscience Roadmap Scholars Programat UAB, supported by an NIH R25 grant, is designed to enhance engagement and retention of under-represented graduate trainees in the neuroscience workforce. This is one of several UAB initiatives to increased under-represented groups and celebrate diversity. These include several programs from theMinority Health and Health Disparities Research Centerthat support minority students from the undergraduate level to postdocs; thePartnership Research Summer Training Program, which provides undergraduates and especially minority students with the opportunity to work in UAB cancer research labs; theDeans Excellence Award in Diversityin the School of Medicine; and the newly announcedUnderrepresented in Medicine Senior Scholarship Programfor fourth-year medical students.

Join in:The Roadmap program engages career coaches and peer-to-peer mentors to support scholars. To volunteer your expertise, contact Madison Bamman atmdbamman@uab.eduorvisit the program site.

Learn more:Farah Lubin, Ph.D., associate professor in the Department of Neurobiology and co-director of the Roadmap Scholars Program,shares the words and deeds that can save science careersin this Reporter story. In another story, Upender Manne, Ph.D., professor in the Department of Pathology and a senior scientist in the ONeal Comprehensive Cancer Center, explains how students in the Partnership Research Summer Training Program gethooked on cancer research.

Read more:
Looking to the future with Dr. Francis Collins - Newswise

Posted in Stem Cell Research | Comments Off on Looking to the future with Dr. Francis Collins – Newswise

California Proposition 13 is the first statewide school bond rejected by voters since 1994 – Ballotpedia News

Posted: March 16, 2020 at 8:48 pm

On March 3, Californians voted on one statewide ballot measure, Proposition 13, which would have issued $15 billion in general obligation bonds for preschool, K-12, and higher education facilities. The ballot measure would have also made changes to the formula used to distribute state bond funds to schools, the rules governing local bond measures, and school districts abilities to assess developer fees.

Proposition 13 was behind on election night but millions of uncounted ballots remained. On March 11, Californians for Safe Schools and Healthy Learning, which led the campaign in support of Proposition 13, conceded that the ballot measure appeared to be defeated.

Asm. Patrick ODonnell (D-70), who co-authored Proposition 13 (2020), said, Despite this number having no relation to the content of the school facilities bond, many voters mistakenly believed the ballot measure made changes to the Proposition 13 originally passed in 1978 which dealt with property taxes. He introduced legislation to retire the use of Proposition 13 as an official ballot measure title. In California, statewide ballot measures are assigned official titles in the order that theyre placed on the ballot and reset each decade. In 2018, the official titles were Proposition 1 through Proposition 12. Therefore, the first statewide measure of 2020 was Proposition 13.

Susan Shelley, vice president of the Howard Jarvis Taxpayers Association, responded to the propositions defeated, saying, Confusion over Proposition 13 is not the whole story here. She added, People are cynical about how the money is being spent. Maybe the message is enough is enough. Beyond Proposition 13, there were 121 school bonds on local ballots throughout California. Since 2008, the average approval rate for local school bond measures was 75 percent. On March 3, less than 50 percent were approved.

Californians for Safe Schools and Healthy Learning, along with allied political action committees, raised $9.67 million to support Proposition 13 through February 15, 2020. The top donors included the California Teachers Association Issues PAC ($500,000), California Charter Schools Association ($400,000), and United Brotherhood of Carpenters and Joiners of America ($334,000.00). Opponents of Proposition 13 did not organize a committee to fund an opposition campaign.

The next statewide election in California to feature ballot measures is November 3, 2020. There are several bond measures that could appear on the general election ballot, including a $5.5 billion citizen-initiated stem cell research bond, a $600 million legislative veterans housing and homelessness bond, and a $4.75 or $5.5 billion legislative bond for projects related to changing climate conditions, fire prevention, and water infrastructure.

Additional Reading:California 2020 ballot propositionCalifornia Proposition 13, Tax Limitations Initiative (1978)Bond issues on the ballot

See the original post:
California Proposition 13 is the first statewide school bond rejected by voters since 1994 - Ballotpedia News

Posted in Stem Cell Research | Comments Off on California Proposition 13 is the first statewide school bond rejected by voters since 1994 – Ballotpedia News

Can hybrid embryos save the white rhinos from extinction? – Science 101

Posted: March 16, 2020 at 8:48 pm

The northern white rhino population is in jeopardy

The northern white rhino is one of the animal kingdoms many majestic giants, but years of poaching has taken a toll on their population. From 1970 to 1980, their numbers plummeted from 500 to 15 as illegal hunters pursued white rhinos for the ivory of their horns.

Things started to turn around during the 1990s and 2000s, groups and individuals began to crack down on poachers within the white rhinos range. As a result, the population of white rhinos in the wild recovered slightly, peaking at around 32 individuals.

Since 2003, the rate of white rhino poaching has been on the rise and has affected the animals numbers. As of 2008, northern white rhinos have been declared extinct in the wild, and in 2018, the last male northern white rhino died. Now, there are only two of these magnificent beasts left on Earth. Both of them are females.

Najin and Fatu are the last two northern white rhinos in existence. They live at the Ol Pejeta Conservancy in Kenya, and they could be the species last hope for the future. In 2014, keepers in the Czech Republic collected sperm samples from a male northern white rhino living in their care.

Those samples were frozen and stored, and later, they were used in an attempt to breed Najin and Fatu. Both attempts at inducing pregnancies in the two female rhinos were unsuccessful, forcing scientists to consider new methods of approach for saving the white rhinos from extinction.

Typically, when a species is placed on the endangered list, a recovery plan is established by whatever local conservancy group oversees the population. From there, breeding programs of captive individuals are used to begin bolstering the number of individuals on the planet.

When healthy breeding populations have been established, in most cases, reintroduction begins. Small populations of the species are released into the wild to begin repopulation. However, in the case of the northern white rhinos, scientists and conservationists alike have been stuck at step two for decades.

Unwillingness and inability to breed arent uncommon among captive species and individuals, and in most cases, zoos can jockey animals around until a pair matches and produces offspring. In the case of Najin and Fatu, the options for procreation are far more limited. Even the fallback of artificial insemination isnt working for them, so what are scientists to do?

Weve revived entire species from the dead before, but it has never been an easy task. Fortunately, the world of reproductive sciences has been evolving quickly, and conservationists and animal experts now have myriad options to choose from when it comes to creating new life.

Neither surviving female is healthy enough to birth live young. Aside from that, there is the added challenge of finding an option that preserves the northern white rhino genome while maintaining high enough levels of viability.

One possible route to repopulation involves approaching conventional methods from a new and enlightened angle. Although neither Najin nor Fatu can bear young, they both still produce viable egg cells, which can be harvested, frozen, and kept in a lab.

Much like humans undergoing fertility therapy or other conception aids, the grandmother-granddaughter pair or northern white rhinos can hope for success through in-vitro fertilization. This method of conception combines sperm and multiple egg cells in an external environment before implanting them in a host mother.

By using multiple eggs during the in-vitro process, the chances for success, even in females with fertility issues, is significantly increased. In some fortunate cases, the method is so effective, and it results in multiple pregnancies. Once the sperm has fertilized the eggs, the cells are transferred to a living host.

While Najin and Fatu may not be the physical mothers of any of their calves, modern reproductive science has made it possible for their genes to be passed on to another generation.

How? with modern science, a surrogate mother from the thriving population of southern white rhinos could become the mother to their children.The two types of animals have similar enough reproductive organs and their eggs could be used in place of Najin or Fatus.

While the animals are compatible, gathering eggs from them is a far more complicated procedure.

Researchers working on bringing back the northern white rhinos have managed to gather a few eggs so far, but not nearly enough to repopulate an entire species.

Its no secret that rhinoceroses are large animals. Just as cattle and horses have significantly larger hearts than we humans do, rhinos have much larger reproductive organs. Locating and withdrawing eggs from a rhinos ovaries is a far greater ordeal than it is for humans.

To complicate matters further, the ovaries of a southern white rhino are located three to four feet from her rump, and the veterinarian seeking to collect the eggs must guide a probe that distance up her rectum and into an ovary before using a catheter to remove the eggs.

The procedure is anything but easy. In addition to the difficulty involved in the process of extracting eggs, the success rate of current methods is hardly ideal. Researchers working on bringing back the northern white rhinos have managed to gather a few eggs so far, but not nearly enough to repopulate an entire species.

The odds of reestablishing a sustainable population of northern white rhinos through in-vitro fertilization and surrogacy currently seem pretty slim. Fortunately for the rhinos, science has a few other methods up its sleeve.

In the last decade, stem cell research has gone from a thing of whimsy to an advanced field of study that continues to improve by leaps and bounds with every passing year. Its applications are seemingly endless, and they just might be the answer that the northern white rhino conservationists have been looking for.

Stem cells are sort of like biological canvases. They come in different varieties: Totipotent, pluripotent, multipotent, oligopotent, and unipotent. Each of these types has unique limitations and can be found in various sources from embryonic tissue to adult bone marrow.

To make baby rhinos, scientists have been focused on induced pluripotent stem cells, which are gathered and grown from the skin of adult white rhinos

A cell from your bicep and a cell from your gametes (sperm or egg) both hold the same blueprints; they just come in different packaging.

Pluripotent cells behave similarly to embryonic stem cells, which can be coaxed into becoming just about any other type of cell. In this case, even though the original cells were taken from the skin of adult rhinos, they can be trained to become something different, such as egg cells.

Using what knowledge we currently have of stem cells and their manipulation, scientists can tell a northern white rhinos skin cell to become a viable egg or sperm cell. From there, they can attempt in-vitro fertilization and implantation into a surrogate, even without fertile parents.

The method is still in its infancy, but it has been successfully carried out more than once.

With stem cells as a backup and surrogates abound, Najin and Fatu have plenty of options. In late 2019, conservationists and rhinos alike received promising news. Eggs gathered from the two northern white rhinos had been fertilized and resulted in successful embryos. Those embryos were frozen in liquid nitrogen and prepared for a long journey.

Waiting down in southern Africa are the lucky mamas who will become the surrogates for the next generation of northern white rhinos. The embryos have quite a ways to travel before they can be implanted. After that, they can grow within their new mother for the 16 to 18-month gestation period typical of white rhinos.

Although the methods of creating viable embryos are currently long, challenging, and not terribly efficient, these babies-to-be are incredibly promising first steps. In addition to the two successful in-vitro attempts in September, December of 2019 saw the creation of a third viable embryo.

2020 will undoubtedly see further attempts at creating more embryos. With luck, we can soon hope to hear news of successful implantations in surrogate moms. In 2021, we can throw a worldwide baby shower for some bouncing baby northern white rhinos, whose births will serve as a beacon of hope for a dying species.

Excerpt from:
Can hybrid embryos save the white rhinos from extinction? - Science 101

Posted in Stem Cell Research | Comments Off on Can hybrid embryos save the white rhinos from extinction? – Science 101

Induced Pluripotent Stem Cells Market Is Predicted to Gain from The Launch of mTeSR Plus, says Fortune Business Insights – The RSFE News

Posted: March 16, 2020 at 8:48 pm

Induced Pluripotent Stem Cells Market Size To Expand Rapidly at Notable CAGR as the Rising RandD Investment, Increasing Shift Towards Regenerative Medicine are the factors contributing to the Market growth of Induced Pluripotent Stem Cells over the forecast period 2020 to 2026. Report segments Induced Pluripotent Stem Cells Market by Derived Cell Type, Application, End User, and Region With Global Industry Forecast To 2026.

The Report gives the clear picture of current scenario which includes historical and projected Induced Pluripotent Stem Cells Market size, Share, industry growth, trends in terms of value and volume, technological advancement, macro economical and governing factors in the market. The report also gives a broad study of the different market segments and regions.

Get Sample Copy of Induced Pluripotent Stem Cells Market 2020 Report

Report analyzes Global Induced Pluripotent Stem Cells Market Growth Information By Derived Cell Type (Amniotic cells, Fibroblasts, Keratinocytes, Hepatocytes, Others), By Application (Regenerative medicines, Drug development, Toxicity testing, Reprogramming technology, Academic research, Others), By End-user (Hospitals, Education and research institutes, Biotechnological companies), and Region.

The Global Induced Pluripotent Stem Cells is presumed to register a significant CAGR during the forecast period (2020-2026) owing to Launch of Next Generation Induced Pluripotent Stem Cells.

Induced Pluripotent Stem Cells Key Players Market Studied In Report:

Astellas Pharma, Ncardia, Applied StemCell, FUJIFILM Cellular Dynamics, Axol Bioscience, Bristol-Myers Squibb Company,RandD Systems, Fate Therapeutics, Evotec AG, ViaCyte Inc.

Active government support for RandD activities through research grants is driving the global induced pluripotent stem cells. Increasing private funding and rising shift towards regenerative medicines are predicted to favor induced pluripotent stem cells revenue. Further, induced pluripotent stem cells have created new avenues in clinical research, regenerative medicines, and disease modeling. This has also paved the way to numerous mergers and acquisitions and potential pipeline products and patents.

STEMCELL Technologies Inc., a global biotechnology company launched mTeSR Plus, an enhanced version of mTeSR1, a widely published feeder-free human pluripotent stem cell (hPSC) maintenance medium. mTeSR Plus will be used to prevent onset acidosis. The launch of mTeSR Plus is likely to encourage global induced pluripotent stem cells growth owing to the design of the mTeSR Plus, which offers more consistent cell culture environment through sustained medium pH and stabilized components including FGF2.

In addition, the diversity of donor candidates is a factor predicted to aid induced pluripotent stem cells growth. Moreover, increasing accessibility towards the cell of origin is also expected to boost the global induced pluripotent stem cell market in the forthcoming year. However, ethical issues related to the donors and potential risk of tumors are factors predicted to hamper the growth of the global induced pluripotent stem cells.

Market Segmentation:

The global Induced Pluripotent Stem Cells Market Trends has been segmented based on Derived Cell Type, Application, End User, and Region.

By Derived Cell Type, the Market for Induced Pluripotent Stem Cells has been segmented into Amniotic cells, Fibroblasts, Keratinocytes, Hepatocytes, Others.

By mode of Application, the Market for Induced Pluripotent Stem Cells has been segmented into Regenerative medicines, Drug development, Toxicity testing, Reprogramming technology, Academic research, Others.

By mode of End User, the market has been segmented into Hospitals, Education and research institutes, Biotechnological companies.

By mode of Region, the Induced Pluripotent Stem Cells Industry has been segmented into North America, Asia-Pacific, Europe, Middle East-Africa, South America and Rest of the World.

Regional Analysis:

Geographically, the global induced pluripotent stem cell market is segmented into North America, Europe, Asia Pacific, Latin America, and Middle East and Africa. North America is expected to dominate the global induced pluripotent stem cells market during the forecast period due to the increasing RandD investment by key players for potential pipeline products.

In Europe, the global induced pluripotent stem cell market is anticipated to grow significantly during the forecast period. The active government support and product launches are predicted to favor growth in the region. For instance, in 2018, Ncardia, a company working for drug discovery using stem cell, launched Xpress.4U LightPace Cor.4U, a kit for improving and simplifying the use of optical pacing of cardiomyocytes, a human induced pluripotent stem cell. The aforementioned factors together are enabling growth in Europe.

Intended Audience:

Induced Pluripotent Stem Cells Key Players

Induced Pluripotent Stem Cells Suppliers

Research and Development (RandD) Companies

Distributer and Supplier companies

End Users

Consultants and Investment bankers

Government as well as Independent Regulatory Authorities

Report Highlights:

In-depth information about the latest Induced Pluripotent Stem Cells Industry trends, opportunities, and challenges.

Extensive analysis of the growth drivers And barriers.

Competitive landscape consisting of investments, agreements, contracts, novel product launches, strategic collaborations, and mergers and acquisitions.

List of the segments and the niche areas.

Comprehensive details about the strategies that are being adopted by key players.

Table Of Content:

Introduction

1.1. Research Scope

1.2. Market Segmentation

1.3. Research Methodology

1.4. Definitions and Assumptions

Executive Summary

Market Dynamics

3.1. Market Drivers

3.2. Market Restraints

3.3. Market Opportunities

Key Insights

Continued

Browse Complete Induced Pluripotent Stem Cells Market Report Information

About us:

Fortune Business Insights offers expert corporate analysis and accurate data, helping organizations of all sizes make timely decisions. We tailor innovative solutions for our clients, assisting them address challenges distinct to their businesses. Our goal is to empower our clients with holistic market intelligence, giving a granular overview of the market they are operating in.

At Fortune Business Insights we aim at highlighting the most lucrative growth opportunities for our clients. We therefore offer recommendations, making it easier for them to navigate through technological and market-related changes. Our consulting services are designed to help organizations identify hidden opportunities and understand prevailing competitive challenges.

Contact Us:

US: +1 424 253 0390

UK: +44 2071 939123

APAC: +91 744 740 1245

Email: [emailprotected]

Press Release Distributed by The Express Wire

To view the original version on The Express Wire visit Induced Pluripotent Stem Cells Market Is Predicted to Gain from The Launch of mTeSR Plus, says Fortune Business Insights

Originally posted here:
Induced Pluripotent Stem Cells Market Is Predicted to Gain from The Launch of mTeSR Plus, says Fortune Business Insights - The RSFE News

Posted in Stem Cell Research | Comments Off on Induced Pluripotent Stem Cells Market Is Predicted to Gain from The Launch of mTeSR Plus, says Fortune Business Insights – The RSFE News

Page 31«..1020..30313233..4050..»