Page 29«..1020..28293031..4050..»

Category Archives: Genetic medicine

Huntington’s disease setback for Roche shifts the research spotlight to Prilenia – S&P Global

Posted: May 13, 2021 at 1:49 am

Huntington's disease research suffered a double whammy after Swiss pharmaceutical giant Roche Holding AG halted late-stage trials of an experimental medicine and Wave Life Sciences Ltd. abandoned two drug studies for futility.

Roche stopped dosing patients with tominersen after an independent data monitoring committee questioned whether the drug's benefits outweighed its risks.

"Obviously, it's a very sad situation when we have to stop a pivotal program in a disease like Huntington's where there's such a high unmet need and such a terrible impact on these patients and their families," Bill Anderson, head of Roche's pharmaceuticals business, said on a call with reporters following Roche's first-quarter results. "It's a major setback for the field. But we will do everything we can to learn from the work that's been done. And if there's a way forward, we would certainly pursue it."

The research stumbles, while not uncommon in the notoriously complex world of central nervous system drug development, leave only a single experimental compound in the last stage of trials usually required to seek marketing approval: pridopidine from Naarden, Netherlands-based Prilenia Therapeutics BV.

First developed at Israel's Teva Pharmaceutical Industries Ltd., where Prilenia CEO Michael Hayden was global head of R&D and chief scientific officer until 2017, pridopidine is being studied in phase 3 trials that will probably read out by the third quarter of 2022. That makes it the most advanced experimental compound in development for the hereditary disease, which affects about 70,000 people in the U.S. and Europe, the biggest potential markets for treatments. No medicines have been approved to either delay onset or slow the disease's progression.

Roche is following up with the patients on the trials of tominersen to thoroughly assess the effect of therapy. The Basel, Switzerland-based pharma company intends to continue research into Huntington's in its early-stage neurology research groups, as well as possibly via gene therapy, Anderson said.

Regulators have expressed more support for Huntington's drug developers after the influence and investment brought to bear by Roche, Europe's largest pharmaceutical company by revenue.

"They know all about Huntington's disease," Prilenia's Hayden said in an interview with S&P Global Market Intelligence. "I'm very grateful to Roche in particular, that they brought their muscle and their weight and their resources to raising awareness [of the disease] all over the world."

A number of early studies are still ongoing, including one by Roche's crosstown rival Novartis AG, which is investigating its experimental spinal muscular atrophy treatment, branaplam, as a treatment for Huntington's. The once-a-week oral therapy is in phase 1 trials after securing orphan-drug designation from the U.S. Food and Drug Administration, with the first regulatory submissions planned for 2025.

Gene therapy?

Other early-stage approaches to treating the neurodegenerative disease include one-time gene therapies in trials with companies including uniQure NV and Voyager Therapeutics Inc., which had a clinical hold lifted by the FDA on April 26.

But gene therapy may not be the approach to take, Roche's Anderson said. Huntington's disease is caused by a single mistake in a particular gene that triggers the formation of a toxic protein that kills nerve cells. Gene therapy introduces genetic material into cells to make up for abnormal genes or to produce a necessary protein. The therapy also needs to be distributed throughout the brain, and that requires intracranial surgery, injections into the brain or both.

"There are different types of genetic disorders," Anderson said. "Some of them, you have a case where you're missing a protein. And it's a relatively easier thing to add a protein when you're missing a protein with gene therapy, than if you have a genetic defect that is causing a toxic protein to form. In which case, you have to knock that down. That's a harder task for gene therapy. It doesn't mean it's not possible. It's just a trickier thing to do."

Anderson said he was not referring to any research at Spark Therapeutics, the gene therapy company that Roche acquired in 2019.

Hayden, who is also a professor of medical genetics at the University of British Columbia, hopes to show the safety and tolerability already seen in more than 1,300 people to date. The phase 3 trial of the oral compound known as a sigma-1 receptor agonist is focused on the early Huntington's patient population, with a regulatory accepted endpoint of total functional capacity.

"We've learned deeply from the past. And we think we have it at least as close to right as we can now," Hayden said. "We believe that the study is quite de-risked, because we're not trying to look for new findings."

Pridopidine, which has patent protection until 2038, is easy to produce and available in tablet form. Hayden is keen to make the therapy readily available, should it gain approval, noting that the highest prevalence of the disease in the world was discovered in a remote tribe in Venezuela. Hayden also witnessed Huntington's impact at the start of his medical career in South Africa.

"I travelled the country and recognized that Huntington's disease was alive and well in Africa. These were [many] people who were disenfranchised by apartheid and disenfranchised by this disease," Hayden said.

While not wanting to raise unrealistic hopes, both Hayden and Anderson signaled that Huntington's researchers are not undeterred by recent setbacks.

"There are lots of things that we're doing these days that we didn't think we can do a few years ago," Anderson said. "And so we remain hopeful that we will find a solution."

See the original post:
Huntington's disease setback for Roche shifts the research spotlight to Prilenia - S&P Global

Posted in Genetic medicine | Comments Off on Huntington’s disease setback for Roche shifts the research spotlight to Prilenia – S&P Global

Should You Buy Akouos Inc (AKUS) Stock on Wednesday? – InvestorsObserver

Posted: May 13, 2021 at 1:49 am

Overall market sentiment has been high on Akouos Inc (AKUS) stock lately. AKUS receives a Bullish rating from InvestorsObserver's Stock Sentiment Indicator.

When making investment decisions, sentiment gives a good overview of what stocks investors currently favor. Sentiment incorporates short-term technical analysis into its score and does not encompass any fundamental analysis such as profitability of the company. This means that earnings updates and other news can greatly impact overall sentiment.

Recent trends are a good indicator of current market sentiments. In its most basic form, stocks that are trending up are desirable by investors while stocks currently falling must be unattractive.

InvestorsObserver's Sentimental Indicator tracks both changes in price and volume to analyze the most recent trends. Typically an increase in volume indicates ongoing trends are getting stronger, while a decrease in volume usually signals an end to the current trend.

Available options can also represent current sentiments for a given stock. Since investors are able to bet on future trends of stocks using options, we consider the ratio of calls to puts when analyzing market sentiments .

Akouos Inc (AKUS) stock has gained 1.08% while the S&P 500 has fallen -1.5% as of 12:11 PM on Wednesday, May 12. AKUS has risen $0.14 from the previous closing price of $12.98 on volume of 96,352 shares. Over the past year the S&P 500 has risen 35.92% while AKUS has fallen -40.36%. AKUS lost -$2.77 per share in the over the last 12 months.

To see the top 5 stocks in the Biotechnology industry click here.

Akouos Inc is a genetic medicine company focused on developing gene therapies that restore, improve, and preserve hearing. The company is involved in developing potential genetic medicines for a variety of inner ear disorders.

Click Here to get the full Stock Score Report on Akouos Inc (AKUS) Stock.

Here is the original post:
Should You Buy Akouos Inc (AKUS) Stock on Wednesday? - InvestorsObserver

Posted in Genetic medicine | Comments Off on Should You Buy Akouos Inc (AKUS) Stock on Wednesday? – InvestorsObserver

Vertex and CRISPR Therapeutics to Present New Clinical Data – GlobeNewswire

Posted: May 13, 2021 at 1:49 am

CAMBRIDGE, Mass. and ZUG, Switzerland and BOSTON, May 12, 2021 (GLOBE NEWSWIRE) -- Vertex Pharmaceuticals Incorporated (Nasdaq: VRTX) and CRISPR Therapeutics (Nasdaq: CRSP) today announced two abstracts detailing updated data from the ongoing CTX001 clinical trials have been accepted for presentation during the European Hematology Association (EHA) 2021 Virtual Congress.

Abstract #EP736 entitled CTX001 for Sickle Cell Disease: Safety and Efficacy Results from the Ongoing CLIMB SCD-121 Study of Autologous Crispr-Cas9-Modified CD34+ Hematopoietic Stem and Progenitor Cells, will be made available on the virtual platform as an e-poster Friday, June 11 at 9:00 CEST. The abstract posted online today includes data on patients with severe sickle cell disease with more than 3 months of follow-up, as of the interim data cut on January 28, 2021. Data will be updated and information on additional patients will be included for the congress.

Abstract #EP733 entitled CTX001 for Transfusion-Dependent -Thalassemia: Safety and Efficacy Results from the Ongoing CLIMB Thal-111 Study of Autologous Crispr-Cas9-Modified CD34+ Hematopoietic Stem and Progenitor Cells, will be made available on the virtual platform as an e-poster Friday, June 11 at 9:00 CEST. The abstract posted online today includes data on patients with transfusion-dependent beta thalassemia (TDT) with more than 3 months of follow-up, including patients with the most severe genotypes, as of the interim data cut on January 21, 2021. Data will be updated and information on additional patients will be included for the congress.

The accepted abstracts are now available online on the EHA website https://library.ehaweb.org/eha/#!*menu=6*browseby=8*sortby=2*media=3*ce_id=2035*label=21989*ot_id=25562*marker=1286.

CTX001 is being investigated in two ongoing clinical trials as a potential one-time curative therapy for patients suffering from TDT and severe SCD.

About CTX001CTX001 is an investigational, autologous, ex vivo CRISPR/Cas9 gene-edited therapy that is being evaluated for patients suffering from TDT or severe SCD, in which a patients hematopoietic stem cells are edited to produce high levels of fetal hemoglobin (HbF; hemoglobin F) in red blood cells. HbF is a form of the oxygen-carrying hemoglobin that is naturally present at birth, which then switches to the adult form of hemoglobin. The elevation of HbF by CTX001 has the potential to alleviate transfusion requirements for patients with TDT and reduce painful and debilitating sickle crises for patients with SCD. Earlier results from these ongoing trials were published as a Brief Report in The New England Journal of Medicine in January of 2021.

Based on progress in this program to date, CTX001 has been granted Regenerative Medicine Advanced Therapy (RMAT), Fast Track, Orphan Drug, and Rare Pediatric Disease designations from the U.S. Food and Drug Administration (FDA) for both TDT and SCD. CTX001 has also been granted Orphan Drug Designation from the European Commission, as well as Priority Medicines (PRIME) designation from the European Medicines Agency (EMA), for both TDT and SCD.

Among gene-editing approaches being investigated/evaluated for TDT and SCD, CTX001 is the furthest advanced in clinical development.

About CLIMB-111The ongoing Phase 1/2 open-label trial, CLIMB-Thal-111, is designed to assess the safety and efficacy of a single dose of CTX001 in patients ages 12 to 35 with TDT. The trial will enroll up to 45 patients and follow patients for approximately two years after infusion. Each patient will be asked to participate in a long-term follow-up trial.

About CLIMB-121The ongoing Phase 1/2 open-label trial, CLIMB-SCD-121, is designed to assess the safety and efficacy of a single dose of CTX001 in patients ages 12 to 35 with severe SCD. The trial will enroll up to 45 patients and follow patients for approximately two years after infusion. Each patient will be asked to participate in a long-term follow-up trial.

About CLIMB-131This is a long-term, open-label trial to evaluate the safety and efficacy of CTX001 in patients who received CTX001 in CLIMB-111 or CLIMB-121. The trial is designed to follow participants for up to 15 years after CTX001 infusion.

About the Gene-Editing Process in These TrialsPatients who enroll in these trials will have their own hematopoietic stem and progenitor cells collected from peripheral blood. The patients cells will be edited using the CRISPR/Cas9 technology. The edited cells, CTX001, will then be infused back into the patient as part of a stem cell transplant, a process which involves, among other things, a patient being treated with myeloablative busulfan conditioning. Patients undergoing stem cell transplants may also encounter side effects (ranging from mild to severe) that are unrelated to the administration of CTX001. Patients will initially be monitored to determine when the edited cells begin to produce mature blood cells, a process known as engraftment. After engraftment, patients will continue to be monitored to track the impact of CTX001 on multiple measures of disease and for safety.

About the Vertex-CRISPR CollaborationVertex and CRISPR Therapeutics entered into a strategic research collaboration in 2015 focused on the use of CRISPR/Cas9 to discover and develop potential new treatments aimed at the underlying genetic causes of human disease. CTX001 represents the first potential treatment to emerge from the joint research program. Under a recently amended collaboration agreement, Vertex will lead global development, manufacturing and commercialization of CTX001 and split program costs and profits worldwide 60/40 with CRISPR Therapeutics. This amendment is subject to customary closing conditions and clearances, including clearance under the Hart-Scott Rodino Antitrust Improvements Act.

About VertexVertex is a global biotechnology company that invests in scientific innovation to create transformative medicines for people with serious diseases. The company has multiple approved medicines that treat the underlying cause of cystic fibrosis (CF) a rare, life-threatening genetic disease and has several ongoing clinical and research programs in CF. Beyond CF, Vertex has a robust pipeline of investigational small molecule medicines in other serious diseases where it has deep insight into causal human biology, including pain, alpha-1 antitrypsin deficiency and APOL1-mediated kidney diseases. In addition, Vertex has a rapidly expanding pipeline of cell and genetic therapies for diseases such as sickle cell disease, beta thalassemia, Duchenne muscular dystrophy and type 1 diabetes mellitus.

Founded in 1989 in Cambridge, Mass., Vertex's global headquarters is now located in Boston's Innovation District and its international headquarters is in London. Additionally, the company has research and development sites and commercial offices in North America, Europe, Australia and Latin America. Vertex is consistently recognized as one of the industry's top places to work, including 11 consecutive years on Science magazine's Top Employers list and a best place to work for LGBTQ equality by the Human Rights Campaign. For company updates and to learn more about Vertex's history of innovation, visit http://www.vrtx.com or follow us on Facebook, Twitter, LinkedIn, YouTube and Instagram.

Vertex Special Note Regarding Forward-Looking StatementsThis press release contains forward-looking statements as defined in the Private Securities Litigation Reform Act of 1995, including, without limitation, our plans and expectations to present clinical data from the ongoing CTX001 clinical trials during the EHA Virtual Congress, expectations regarding the abstracts that will be made available on the virtual platform, the expectation that data will be updated for the conference, the potential benefits of CTX001, our plans and expectations for our clinical trials and pipeline products, the status of our clinical trials of our product candidates under development by us and our collaborators, including activities at the clinical trial sites and patient enrollment, and our expectations regarding the transaction contemplated by the amended collaboration agreement with CRISPR, including satisfaction of closing conditions and antitrust clearances, and the future activities of the parties pursuant to the amended collaboration agreement. While Vertex believes the forward-looking statements contained in this press release are accurate, these forward-looking statements represent the company's beliefs only as of the date of this press release and there are a number of risks and uncertainties that could cause actual events or results to differ materially from those expressed or implied by such forward-looking statements. Those risks and uncertainties include, among other things, that data from a limited number of patients may not be indicative of final clinical trial results, that data from the company's development programs, including its programs with its collaborators, may not support registration or further development of its compounds due to safety and/or efficacy, or other reasons, that the COVID-19 pandemic may impact the status or progress of our clinical trials and clinical trial sites and the clinical trials and clinical trial sites of our collaborators, including patient enrollment, or other reasons, and other risks listed under the heading Risk Factors in Vertex's most recent annual report filed with the Securities and Exchange Commission at http://www.sec.gov and available through the company's website at http://www.vrtx.com. You should not place undue reliance on these statements or the scientific data presented. Vertex disclaims any obligation to update the information contained in this press release as new information becomes available.

(VRTX-GEN)

About CRISPR TherapeuticsCRISPR Therapeutics is a leading gene editing company focused on developing transformative gene-based medicines for serious diseases using its proprietary CRISPR/Cas9 platform. CRISPR/Cas9 is a revolutionary gene editing technology that allows for precise, directed changes to genomic DNA. CRISPR Therapeutics has established a portfolio of therapeutic programs across a broad range of disease areas including hemoglobinopathies, oncology, regenerative medicine and rare diseases. To accelerate and expand its efforts, CRISPR Therapeutics has established strategic collaborations with leading companies including Bayer, Vertex Pharmaceuticals and ViaCyte, Inc. CRISPR Therapeutics AG is headquartered in Zug, Switzerland, with its wholly-owned U.S. subsidiary, CRISPR Therapeutics, Inc., and R&D operations based in Cambridge, Massachusetts, and business offices in San Francisco, California and London, United Kingdom. For more information, please visit http://www.crisprtx.com.

CRISPR Therapeutics Forward-Looking StatementThis press release may contain a number of forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, as amended, as well as statements regarding CRISPR Therapeutics expectations about any or all of the following: (i) the safety, efficacy and clinical progress of CRISPR Therapeutics various clinical programs, including CTX001, including expectations regarding the abstracts that will be made available on the virtual platform and the clinical data that are being presented from the ongoing CTX001 clinical trials during the EHA Virtual Congress; (ii) the timing of the potential closing of the transaction contemplated by the amended collaboration agreement, future activities of the parties pursuant to the collaboration and the potential benefits of CRISPR Therapeutics collaboration withVertex; and (iii) the therapeutic value, development, and commercial potential of CRISPR/Cas9 gene editing technologies and therapies. Without limiting the foregoing, the words believes, anticipates, plans, expects and similar expressions are intended to identify forward-looking statements. You are cautioned that forward-looking statements are inherently uncertain. Although CRISPR Therapeutics believes that such statements are based on reasonable assumptions within the bounds of its knowledge of its business and operations, existing and prospective investors are cautioned that forward-looking statements are inherently uncertain, are neither promises nor guarantees and not to place undue reliance on such statements, which speak only as of the date they are made. Actual performance and results may differ materially from those projected or suggested in the forward-looking statements due to various risks and uncertainties. These risks and uncertainties include, among others: the potential for initial and preliminary data from any clinical trial and initial data from a limited number of patients (as is the case with CTX001 at this time) not to be indicative of final or future trial results; the potential that CTX001 clinical trial results may not be favorable or may not support registration or further development; that future competitive or other market factors may adversely affect the commercial potential for CTX001; the transaction contemplated by the amended collaboration agreement is subject to certain closing conditions, including the expiration of the waiting period under the Hart-Scott-Rodino Antitrust Improvements Act; CRISPR Therapeutics may not realize the potential benefits of the collaboration with Vertex; potential impacts due to the coronavirus pandemic, such as to the timing and progress of clinical trials; the potential that future competitive or other market factors may adversely affect the commercial potential for CTX001; uncertainties regarding the intellectual property protection for CRISPR Therapeutics technology and intellectual property belonging to third parties; and those risks and uncertainties described under the heading Risk Factors in CRISPR Therapeutics most recent annual report on Form 10-K, quarterly report on Form 10-Q, and in any other subsequent filings made by CRISPR Therapeutics with the U.S. Securities and Exchange Commission, which are available on the SEC's website at http://www.sec.gov. CRISPR Therapeutics disclaims any obligation or undertaking to update or revise any forward-looking statements contained in this press release, other than to the extent required by law.

CRISPR THERAPEUTICS word mark and design logo and CTX001 are trademarks and registered trademarks of CRISPR Therapeutics AG. All other trademarks and registered trademarks are the property of their respective owners.

Vertex Pharmaceuticals IncorporatedInvestors:Michael Partridge, +1 617-341-6108orBrenda Eustace, +1 617-341-6187OrManisha Pai, +1 617-429-6891

Media:mediainfo@vrtx.com orU.S.: +1 617-341-6992orHeather Nichols: +1 617-839-3607orInternational: +44 20 3204 5275

CRISPR Therapeutics Investors:Susan Kim, +1 617-307-7503susan.kim@crisprtx.com

Media:Rachel Eides, +1-617-315-4493Rachel.Eides@crisprtx.com

Read more:
Vertex and CRISPR Therapeutics to Present New Clinical Data - GlobeNewswire

Posted in Genetic medicine | Comments Off on Vertex and CRISPR Therapeutics to Present New Clinical Data – GlobeNewswire

Gracell Biotechnologies Appoints Seasoned Gene & Cell Therapy Executive Dr. Jenny (Yajin) Ni as Chief Technology Officer – PRNewswire

Posted: May 13, 2021 at 1:49 am

SUZHOU, China and PALO ALTO, California, May 10, 2021 /PRNewswire/--Gracell Biotechnologies Inc. (NASDAQ: GRCL) ("Gracell"), a global clinical-stage biopharmaceutical company dedicated to developing highly efficacious and affordable cell therapies for the treatment of cancer, today announced the appointment of Dr. Jenny (Yajin) Ni as its Chief Technology Officer (CTO). In her role, Dr. Ni will be responsible for strategically leading CAR-T product development, Chemistry, Manufacturing, and Control (CMC), and supply chain management activities. Dr. Ni will lead the efforts to ensure the smooth technology transfer to Gracell's strategic collaborator, Lonza, for manufacturing of FasTCAR-enabled product candidates in the U.S.

Dr. Ni brings over 25 years of experience in process and product development for gene & cell therapies and vaccines to Gracell. Prior to joining Gracell, Dr. Ni served as Head of Process Development at both Pfizer and Allogene Therapeutics, where she served in senior leadership roles in technical development and operation functions, led allogeneic CAR-T product development, and advanced multiple first-in-human allogeneic CAR-T pipeline programs through preclinical to clinical development, including five IND approvals for hematological malignancy and solid tumor indications. Prior to that, Dr. Ni also served as Director of Tech Operations at VIRxSYS Inc., where she held roles of increasing responsibility across process and analytical development, technology transfer, as well as technical support for GMP manufacturing and QC testing. While at VIRxSYS, Dr. Ni was instrumental in bringing the first-ever lentiviral vector-modified autologous T cell product for HIV infection into clinical development. Dr. Ni holds a Ph.D. in Molecular Virology from Kyoto University in Japan and an M.D. in Internal Medicine from Kunming Medical University in China.

"We are delighted that Dr. Ni has joined Gracell as CTO," said Dr. William (Wei) Cao, Founder, Chairman and Chief Executive Officer of Gracell. "Manufacturing is often a critical bottleneck in developing and commercializing CAR-T therapies. With the establishment of an internal GMP-compliant manufacturing facility in Suzhou and a process development center in Shanghai, we are well-positioned to support our extensive pipeline. A key component of our manufacturing strategy is a fully-closed system that enables us to substantially reduce costs, improve productivity, and scale-up production of our autologous FasTCAR product candidates. With Dr. Ni's extensive knowledge and experience, I am confident that Gracell will further accelerate the expansion of its global manufacturing capability and enhance our leadership position within the cell and gene therapy field."

"Gracell has successfully built a GMP-compliant manufacturing facility and an R&D center in China, as well as started establishing a state-of-the-art cGMP process in the U.S. in collaboration with Lonza. Gracell's comprehensive manufacturing strategy serves as a great foundation for its preclinical and clinical development initiatives," said Dr. Jenny (Yajin) Ni. "As CTO, I am excited to lead our efforts to ensure the smooth transfer of our pioneering FasTCAR technology to Lonza, and continuously broaden our proprietary genetic engineering and cell manufacturing capabilities and advance the next generation of CAR-T cell therapies for the treatment of cancer."

About Gracell

Gracell Biotechnologies Inc.("Gracell") is a global clinical-stage biopharmaceutical company dedicated to discovering and developing breakthrough cell therapies. Leveraging its pioneering FasTCAR and TruUCAR technology platforms, Gracell is developing a rich clinical-stage pipeline of multiple autologous and allogeneic product candidates with the potential to overcome major industry challenges that persist with conventional CAR-T therapies, including lengthy manufacturing time, suboptimal production quality, high therapy cost and lack of effective CAR-T therapies for solid tumors. For more information on Gracell, please visit http://www.gracellbio.com. Follow @GracellBio on LinkedIn.

Cautionary Noted Regarding Forward-Looking Statements

Statements in this press release about future expectations, plans and prospects, as well as any other statements regarding matters that are not historical facts, may constitute "forward-looking statements" within the meaning of The Private Securities Litigation Reform Act of 1995. These statements include, but are not limited to, statements relating to the expected trading commencement and closing date of the offering. The words "anticipate," "believe," "continue," "could," "estimate," "expect," "intend," "may," "plan," "potential," "predict," "project," "should," "target," "will," "would" and similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words. Actual results may differ materially from those indicated by such forward-looking statements as a result of various important factors, including factors discussed in the section entitled "Risk Factors" in Gracell's most recent annual report on Form 20-F as well as discussions of potential risks, uncertainties, and other important factors in Gracell's subsequent filings with the Securities and Exchange Commission. Any forward-looking statements contained in this press release speak only as of the date hereof, and Gracell specifically disclaims any obligation to update any forward-looking statement, whether as a result of new information, future events or otherwise. Readers should not rely upon the information on this page as current or accurate after its publication date.

Media contact Marvin Tang [emailprotected]

Investor contact Gracie Tong [emailprotected]

SOURCE Gracell Biotechnologies Inc.

More:
Gracell Biotechnologies Appoints Seasoned Gene & Cell Therapy Executive Dr. Jenny (Yajin) Ni as Chief Technology Officer - PRNewswire

Posted in Genetic medicine | Comments Off on Gracell Biotechnologies Appoints Seasoned Gene & Cell Therapy Executive Dr. Jenny (Yajin) Ni as Chief Technology Officer – PRNewswire

Russia Is Going to Try to Clone an Army of 3,000-Year-Old Scythian Warriors – Popular Mechanics

Posted: May 13, 2021 at 1:49 am

Russian Geographical Society

When you hold a job like Defense Minister of Russia, you presumably have to be bold and think outside the box to protect your country from enemy advances. And with his latest strategic ideacloning an entire army of ancient warriorsSergei Shoigu is certainly taking a big swing.

In an online session of the Russian Geographical Society last month, Shoigu, a close ally of Russian President Vladimir Putin, suggested using the DNA of 3,000-year-old Scythian warriors to potentially bring them back to life. Yes, really.

First, some background: The Scythian people, who originally came from modern-day Iran, were nomads who traveled around Eurasia between the 9th and 2nd centuries B.C., building a powerful empire that endured for several centuries before finally being phased out by competitors. Two decades ago, archaeologists uncovered the well-preserved remains of the soldiers in a kurgan, or burial mound, in the Tuva region of Siberia.

Because of Tuvas position in southern Siberia, much of it is permafrost, meaning a form of soil or turf that always remains frozen. Its here where the Scythian warrior saga grows complex, because the frozen soil preserves biological matter better than other kinds of ground. Russian defense minister Sergei Shoigu knows this better than anyone, because hes from Tuva.

Of course, we would like very much to find the organic matter and I believe you understand what would follow that, Shoigu told the Russian Geographical Society. It would be possible to make something of it, if not Dolly the Sheep. In general, it will be very interesting.

Shoigu subtly suggested going through some kind of human cloning process. But is that even possible?

To date, no one has cloned a human being. But scientists have successfully executed the therapeutic cloning of individual kinds of cells and other specific gene-editing work, and of course, there are high-profile examples of cloning pretty complex animals. Earlier this year, for example, scientists cloned an endangered U.S. species for the first time: a black-footed ferret whose donor has been dead for more than 30 years.

So, why are humans still off the menu?

Blame a technical problem with the most common form of cloning, which is called nuclear transfer. In this process, a somatic cell (like a skin or organ cell, with a specific established purpose in the body) has its nucleus carefully lifted out, and this nucleus is deposited in an oocyte, or egg cell, with its nucleus carefully removed. Its like a blank template waiting to have a new nucleus swapped in.

gremlinGetty Images

From a technical perspective, cloning humans and other primates is more difficult than in other mammals, the National Institutes of Healths (NIH) National Human Genome Research Institute says on its website:

You might remember spindle proteins from your mitosis diagrams back in high school biology. And while theres a relatively easy way around this problem, its almost moot when cloning humans is considered extremely taboo in most of the world. In some places, its also explicitly illegal.

We would like very much to find the organic matter and I believe you understand what would follow that.

Curiously, the U.S. hasnt banned the gene editing of embryos. But the NIH doesnt fund research on the practice, and places like in-vitro clinics arent allowed to do any non-U.S. Food and Drug Administration-approved manipulation of embryos under any circumstances.

That example starts to illustrate why the problem is so complexbecause a lot of cutting-edge genetic medicine is walking right up to the line without crossing it. Making laws that address full human embryo cloning, then, requires a jigsaw puzzle of careful language that doesnt rule out these kinds of therapeutic cloning.

HandoutGetty Images

But lets say Russia ignores all legality in favor of Shoigus big plans. In that case, scientists would have to develop a way to lift out the human nucleus without damaging the cell beyond repair.

Scientists have cloned certain monkeys, so primates are at least hypothetically still in the mix, despite the spindle proteins. But the success rate even for non-primate clones is already very lowit took Dolly the sheeps research team 277 attempts to get a viable embryo.

And what if all of that went perfectly? Well, the Scythians were powerful warriors and gifted horsemen, but scientistsor the Kremlinmust carefully monitor a cloned baby version of a deceased adult warrior for illnesses and other prosaic childhood problems. Who will raise these children? Who will be legally responsible for their wellbeing?

Shoigu may envision a future race of extremely capable fighters, but ... thats at least 20 years away, with an added coin flip on nature versus nurture. After all, the Scythian warriors didnt have plumbing, let alone smartphones. This is a whole new world.

This content is created and maintained by a third party, and imported onto this page to help users provide their email addresses. You may be able to find more information about this and similar content at piano.io

More:
Russia Is Going to Try to Clone an Army of 3,000-Year-Old Scythian Warriors - Popular Mechanics

Posted in Genetic medicine | Comments Off on Russia Is Going to Try to Clone an Army of 3,000-Year-Old Scythian Warriors – Popular Mechanics

Precision NanoSystems Receives Contribution from the Government of Canada to Build RNA Medicine Biomanufacturing Centre – BioSpace

Posted: February 4, 2021 at 9:50 am

VANCOUVER, BC, Feb. 2, 2021 /PRNewswire/ -Precision NanoSystems, Inc. (PNI), a global leader in technologies and solutions for development of genetic medicines, announced today that it has received a contribution of CAD $25.1 million through the Strategic Innovation Fund (SIF). This contribution will support a CAD $50.2-million project to establish a biomanufacturing centre in Vancouver dedicated to the production of ribonucleic acid (RNA) lipid nanoparticle vaccines and genetic medicines. The centre will support the Government of Canada's national biomanufacturing strategy to expand production capacity of critical medicines for the prevention and treatment of diseases such as COVID-19.

"Our government is bringing back the vaccine manufacturing capacity that Canadians expect and need. These investments will help to ensure that Canada has modern, flexible vaccine manufacturing capabilities now and in the future. With the investments announced today, our government is helping Canadian companies advance made-in-Canada vaccines and therapies, while securing domestic manufacturing options for international vaccine candidates. This is all part of our government's commitment to protect the health and safety of all Canadians today, and in the future", said the Honourable Franois-Philippe Champagne, Minister of Innovation, Science and Industry.

PNI supports the development of genetic medicines by providing products and services to its clients worldwide who are creating new treatments for infectious diseases, rare diseases, cancer and other areas of unmet need. This project will help PNI establish a Biomanufacturing Centre that will expand Canada's epidemic and pandemic preparedness capacity and will enable PNI to expand its development and manufacturing services to support the clinical development and supply of new medicines.

"PNI's centre of manufacturing excellence of nanomedicine will be a state-of-the-art facility for the development and manufacture of genetic therapeutics and vaccines," James Taylor, CEO, Precision NanoSystems stated. "The centre will continue Canada's leadership in the creation of innovative solutions for the development and production of new medicines for the benefit of patients in Canada and beyond. This support from the Government of Canada helps PNI to further achieve our mission of accelerating the creation of transformative medicines that significantly impact human well-being."

About Precision NanoSystems Inc. (PNI)

PNI is a global leader in ushering in the next wave of genetic medicines in infectious diseases, cancer and rare diseases. We work with the world's leading drug developers to understand disease and create the therapeutics and vaccines that will define the future of medicine.PNI offers proprietary technology platforms and comprehensive expertise to enable researchers to translate disease biology insights into non-viral genetic medicines.

View original content to download multimedia:http://www.prnewswire.com/news-releases/precision-nanosystems-receives-contribution-from-the-government-of-canada-to-build-rna-medicine-biomanufacturing-centre-301220444.html

SOURCE Precision Nanosystems

View original post here:
Precision NanoSystems Receives Contribution from the Government of Canada to Build RNA Medicine Biomanufacturing Centre - BioSpace

Posted in Genetic medicine | Comments Off on Precision NanoSystems Receives Contribution from the Government of Canada to Build RNA Medicine Biomanufacturing Centre – BioSpace

Regenerative Medicine Market to be Valued at USD 6.49 Billion by 2027 | The Escalating Burden of Chronic Diseases and Genetic Aberrations will be the…

Posted: February 4, 2021 at 9:50 am

Vancouver, British Columbia, Feb. 04, 2021 (GLOBE NEWSWIRE) -- The Global Regenerative Medicine Market is predicted to attain a market valuation of USD 6.49 billion by 2027, growing at a CAGR of 9.3% throughout the estimated period, according to a recent analysis by Emergen Research. Targeted therapy of specific disease indication and chronic illnesses are anticipated to alter the dynamics of the healthcare field. The escalating prevalence of chronic health conditions and increasing patient pool of geriatric populace coupled with neurodegenerative disorders, cancers, orthopedic, and other age-related conditions are further bolstering the industrys expansion.

The numerous applications and subsequent advancements in tissue engineering, gene therapy, nanotechnology, and stem cells research are foreseen to boost the scope of regenerative medicine. 3D printing is playing a pivotal role in stem cells research as it allows for the easy restoration of structural and functional properties.

North America is predicted to occupy a significant share of the market in the projected timeframe and the growth can be attributed to the increasing number of academic institutions and universities extensively exploring regenerative medicine approaches based on stem cells.

Claim Your FREE Sample Copy with Table of content@ https://www.emergenresearch.com/request-sample-form/9

Key Highlights from the Report:

Claim Your FREE Sample Copy with Table of content@ https://www.emergenresearch.com/request-sample-form/9

For the purpose of this report, Emergen Research has segregated the Global Regenerative Medicine Market on the basis of product, therapeutic category, application, and region:

Product Outlook (Volume, Million Tons; Revenue, USD Billion; 2017-2027)

Therapeutic Category Outlook (Volume, Million Tons; Revenue, USD Billion; 2017-2027)

Application Outlook (Volume, Million Tons; Revenue, USD Billion; 2017-2027)

Click to access the Report Study, Read key highlights of the Report and Look at Projected Trends: https://www.emergenresearch.com/industry-report/regenerative-medicine-market

Regional Outlook (Volume, Million Tons; Revenue, USD Billion; 2017-2027)

Take a Look at our Related Reports:

Topical Drug Delivery Market By Product Form (Semi-Solid, Solid Formulations, Transdermal Products, and Liquid Formulations), By Route (Dermal, Ophthalmic, Nasal, Others), By End-Use (Hospitals, Home Healthcare, Clinics, Diagnostic Centers, Burn Center), and By Regions

Medical Smart Textiles Market By Technology (Textile Sensors, Wearable Technology), By Application (Surgery, Bio-Monitoring, Therapy, and Wellness), By End-use (Hospitals and Clinics, Medical Academic and Research Center), and By Region

Operating Room Management Solutions Market By Solution Type (Data management and communication solutions, Operating room supply management solutions, Anesthesia information management solutions, Operating room scheduling solutions, Performance management solutions), By Mode of Deployment (Ob-premises, Cloud-based), By End-Use (Hospitals, Ambulatory surgical centers), and By Region

Patient Registry Software Market By Delivery, By Database, By Registry Type, By Function, By Software Type (Integrated, Standalone), By End-use (Government & Third-Party Administrators, Pharmaceutical Companies, Hospitals, Research Centers, Others), and By Region, Forecast to 2027

Ambulatory EHR Market By Deployment (Cloud-based, On-premises), By Practice Size (Solo Practices, Large Practices, Small-medium-sized Practices), By Application, By End-use (Independent Centers, Hospital-owned Ambulatory Centers, Others), and By Region, Forecasts to 2027

About Emergen Research

Emergen Research is a market research and consulting company that provides syndicated research reports, customized research reports, and consulting services. Our solutions purely focus on your purpose to locate, target, and analyze consumer behavior shifts across demographics, across industries, and help clients make smarter business decisions. We offer market intelligence studies ensuring relevant and fact-based research across multiple industries, including Healthcare, Touch Points, Chemicals, Types, and Energy. We consistently update our research offerings to ensure our clients are aware of the latest trends existent in the market. Emergen Research has a strong base of experienced analysts from varied areas of expertise. Our industry experience and ability to develop a concrete solution to any research problems provides our clients with the ability to secure an edge over their respective competitors.

Contact Us:

Eric Lee

Corporate Sales Specialist

Emergen Research | Web: http://www.emergenresearch.com

Direct Line: +1 (604) 757-9756

E-mail: sales@emergenresearch.com

Facebook | LinkedIn | Twitter | Blogs

Read Full Press Release: https://www.emergenresearch.com/press-release/global-regenerative-medicine-market

Continue reading here:
Regenerative Medicine Market to be Valued at USD 6.49 Billion by 2027 | The Escalating Burden of Chronic Diseases and Genetic Aberrations will be the...

Posted in Genetic medicine | Comments Off on Regenerative Medicine Market to be Valued at USD 6.49 Billion by 2027 | The Escalating Burden of Chronic Diseases and Genetic Aberrations will be the…

The Worldwide Precision Medicine Industry is Expected to Reach $100 Billion by 2026 – PRNewswire

Posted: February 4, 2021 at 9:50 am

DUBLIN, Feb. 3, 2021 /PRNewswire/ -- The "Precision Medicine Market - Forecasts from 2021 to 2026" report has been added to ResearchAndMarkets.com's offering.

The precision medicine market is evaluated at US$60.422 billion for the year 2020 growing at a CAGR of 8.79% reaching the market size of US$100.168 billion by the year 2026.

Increasing Chronic Diseases

The market is expected to be driven by the growth and surge in several chronic diseases such as cardiovascular diseases, obesity, and other related diseases. According to the World Health Organization, Cardiovascular diseases are one of the major causes of deaths, globally, every year. In 2016, an approx. 17.9 million people died from cardiovascular diseases, which represented approx. 31% of global deaths. Most of these deaths were due to different types of strokes and heart attacks. Precision Medicines have been quickly moving towards real-world clinical features, and various scientific and research organizations, have been looking at different strategies to apply medicine to chronic disease management. Alzheimer's and other related cognitive disorders are among some of the most frequent chronic diseases, which has been making a major impact on individuals, globally. According to the Alzheimer's Association, approx. 5.8 million Americans, have been living with this chronic disease. And, according to the estimation, the number is projected to increase to approx. 14 million, by the year 2050.

There have been various developments in this market when it comes to cognitive disorders. In recent years, Scientists discovered at the University of Buffalo, that a human gene, which is present in 75% of the American population, is one of the major reasons why a section of Alzheimer's Disease medicine or a drug, fails in human studies, despite showing promising results in animal studies. This is expected to be one of the factors in the growth of Precision Medicine, over conventional medicines. Diabetes is also one of the major reasons, which is expected to drive precision market growth. The National Institute of Diabetes and Digestive and Kidney Diseases, made precision medicines and drugs a major priority, for the institute's Diabetes Genomics and Genetics Program. The program has aimed to identify the intergenic regions and genes that provide protection, against type 1 or 2 diabetes.

Other major organizations have also been applying precision medicine techniques and technology for diabetes treatment. Massachusetts General Hospital discovered that the interventions, which had been focussed on individuals' genetic profiles and data, had been able to reduce the risk of type 2 diabetes. The Louisiana Health system performed around 300,000 virtual visits in the year 2020. The health system which is also known as Ochsner Health, provides digital health programs and solutions, to its patients. The Ochsner made substantial investments in the last four years, in developing direct to consumer telemedicine care services and delivery. The Ochsner will also develop telehealth for ICU, psychiatry, and stroke in the next decade.

Precision Medicine In Cancer Treatment

Precision Medicine is also known as personalized medicine, as doctors select this medicine based on a genetic understanding of the patient. The market is expected to be driven by the use of precision medicines for cancer treatment. According to the World Health Organisation, Cancer is the second major cause of death, worldwide. Cancer killed an estimated number of 9.6 million people, in the year 2018. There has been approx. 70% of deaths from cancer, in lower and middle-income countries.

There are several infections caused by cancer such as HPV, Hepatitis B Virus, C virus, and others. Precision medicine could be used to treat cancer, as there are genetic changes constantly occurring in a person's cancer problem. Scientists have been working to identify and conduct genetic tests, which would be used to decide the treatment of a person's cancer or a tumor. In January 2021, Researchers from the John Hopkins Kimmel Cancer Centre, The John Hopkins Departments of Oncology and Pathology, and other 18 organizations around Poland and the United States, compiled a database of neck and head cancers, which would be used to speed up the development and production of precision medicine therapies. With the collected database, the researchers got the clarification of key cancer-associated proteins, genes, which resulted in the advancement in the pathway of these cancers. Precision medicines will also be used for oncology, as major companies have been making developments in advancement and innovation.

In January 2021, Illumina, one of the major players in the market, announced an expanded and novel oncology partnership with Merck, Myriad Genetics, Kura Oncology, Bristol Myers Squibb, to advance a complete and detailed genomic profiling. Genetic sequencing is a major part of precision medicine, and this partnership would result in the advancement of novel and innovative precision medicines.

Current Trends

Key Topics Covered:

1. Introduction1.1. Market Definition1.2. Market Segmentation

2. Research Methodology2.1. Research Data2.2. Assumptions

3. Executive Summary3.1. Research Highlights

4. Market Dynamics4.1. Market Drivers4.2. Market Restraints4.3. Porters Five Forces Analysis4.3.1. Bargaining Power of End-Users4.3.2. Bargaining Power of Buyers4.3.3. Threat of New Entrants4.3.4. Threat of Substitutes4.3.5. Competitive Rivalry in the Industry4.4. Industry Value Chain Analysis

5. Precision Medicine Market Analysis, By Technology5.1. Introduction5.2. Data Analytics5.3. Bioinformatics5.4. Gene Sequencing5.5. Others

6. Precision Medicine Market Analysis, by Application6.1. Introduction6.2. Oncology6.3. Central Nervous System6.4. Immunology6.5. Cardiovascular6.6. Others

7. Precision Medicine Market Analysis, by Geography7.1. Introduction7.2. North America7.2.1. North America Precision Medicine Market, By Technology, 2021 to 20267.2.2. North America Precision Medicine Market, By Application, 2021 to 20267.2.3. By Country7.2.3.1. USA7.2.3.2. Canada7.2.3.3. Mexico7.3. South America7.3.1. South America Precision Medicine Market, By Technology, 2021 to 20267.3.2. North America Precision Medicine Market, By Application, 2021 to 20267.3.3. By Country7.3.3.1. Brazil7.3.3.2. Argentina7.3.3.3. Others7.4. Europe7.4.1. Europe Precision Medicine Market, By Technology, 2021 to 20267.4.2. Europe Precision Medicine Market, By Application, 2021 to 20267.4.3. By Country7.4.3.1.1. Germany7.4.3.1.2. France7.4.3.1.3. UK7.4.3.1.4. Others7.5. Middle East and Africa7.5.1. Middle East and Africa Precision Medicine Market, By Technology, 2021 to 20267.5.2. Middle East and Africa Precision Medicine Market, By Application, 2021 to 20267.5.3. By Country7.5.3.1. Saudi Arabia7.5.3.2. UAE7.5.3.3. Others7.6. Asia Pacific7.6.1. Asia Pacific Precision Medicine Market, By Technology, 2021 to 20267.6.2. Asia Pacific Precision Medicine Market, By Application, 2021 to 20267.6.3. By Country7.6.3.1. China7.6.3.2. India7.6.3.3. Japan7.6.3.4. South Korea7.6.3.5. Others

8. Competitive Environment and Analysis8.1. Major Players and Strategy Analysis8.2. Emerging Players and Market Lucrativeness8.3. Mergers, Acquisitions, Agreements, and Collaborations8.4. Vendor Competitiveness Matrix

9. Company Profiles9.1. Thermo Fisher Scientific Inc.9.2. AstraZeneca plc9.3. F. Hoffmann-La Roche Ltd9.4. Pfizer Inc.9.5. Nordic Bioscience A/S9.6. Medtronic9.7. Novartis AG9.8. QIAGEN9.9. Quest Diagnostics Incorporated9.10. Bristol Myers Squibb

For more information about this report visit https://www.researchandmarkets.com/r/8dixfx

Media Contact:

Research and Markets Laura Wood, Senior Manager [emailprotected]

For E.S.T Office Hours Call +1-917-300-0470 For U.S./CAN Toll Free Call +1-800-526-8630 For GMT Office Hours Call +353-1-416-8900

U.S. Fax: 646-607-1907 Fax (outside U.S.): +353-1-481-1716

SOURCE Research and Markets

http://www.researchandmarkets.com

Originally posted here:
The Worldwide Precision Medicine Industry is Expected to Reach $100 Billion by 2026 - PRNewswire

Posted in Genetic medicine | Comments Off on The Worldwide Precision Medicine Industry is Expected to Reach $100 Billion by 2026 – PRNewswire

Breast Cancer Gene Mutations Found in 30% of All Women – Medscape

Posted: February 4, 2021 at 9:50 am

New findings of breast cancer gene mutations in women who have no family history of the disease offer a new way of estimating risk and may change the way in which these women are advised on risk management.

The findings come from two large studies, both published on January 20 in The New England Journal of Medicine.

The two articles are "extraordinary" for broadening and validating the genomic panel to help screen women at risk for breast cancer in the future, commented Eric Topol, MD, professor of molecular medicine, Scripps Research, La Jolla, California, and Medscape editor-in-chief.

"Traditionally, genetic testing of inherited breast cancer genes has focused on women at high risk who have a strong family history of breast cancer or those who were diagnosed at an early age, such as under 45 years," commented the lead investigator of one of studies, Fergus Couch, PhD, pathologist at the Mayo Clinic, Rochester, Minnesota.

"[Although] the risk of developing breast cancer is generally lower for women without a family history of the disease...when we looked at all women, we found that 30% of breast cancer mutations occurred in women who are not high-risk," he said.

In both studies, mutations or variants in eight genes BRCA1, BRCA2, PALB2, BARD1, RAD51C, RAD51D, ATM, and CHEK2 were found to be significantly associated with breast cancer risk.

However, the distribution of mutations among women with breast cancer differed from the distribution among unaffected women, notes Steven Narod, MD, from the Women's College Research Institute, Toronto, Ontario, Canada, in an accompanying editorial.

"What this means to clinicians, now that we are expanding the use of gene-panel testing to include unaffected women with a moderate risk of breast cancer in the family history, is that our time will increasingly be spent counseling women with CHEK2 and ATM mutations," he writes. Currently these two are "clumped in with 'other genes'.... [M]ost of the pretest discussion is currently focused on the implications of finding a BRCA1 or BRCA2 mutation."

The new findings may lead to new risk management strategies, he suggests. "Most breast cancers that occur in women with a mutation in ATM or CHEK2 are estrogen receptor positive, so these women may be candidates for anti-estrogen therapies such as tamoxifen, raloxifene, or aromatase inhibitors," he writes.

Narod observes that for now, the management of most women with either mutation will consist of screening alone, starting with MRI at age 40 years.

The medical community is not ready yet to expand genetic screening to the general population, cautions Walton Taylor, MD, past president of the American Society of Breast Surgeons (ASBrS).

The ASBrS currently recommends that all patients with breast cancer as well as those at high risk for breast cancer be offered genetic testing. "All women at risk should be tested, and all patients with pathogenic variants need to be managed appropriately it saves lives," Taylor emphasized.

However, "unaffected people with no family history do not need genetic testing at this time," he told Medscape Medical News.

As to what physicians might do to better manage patients with mutations that predispose to breast cancer, Taylor said, "It's surprisingly easy."

Every genetic testing company provides genetic counselors to guide patients through next steps, Taylor pointed out, and most cancer patients have nurse navigators who make sure patients get tested and followed appropriately.

Members of the ASBrS follow the National Comprehensive Cancer Network guidelines when they identify carriers of a pathogenic variant. Taylor says these are very useful guidelines for virtually all mutations identified thus far.

"This research is not necessarily new, but it is confirmatory for what we are doing, and that helps us make sure we are going down the right pathway," Taylor said. "It confirms that what we think is right is right and that matters," he reaffirmed.

The study led by Mayo's Couch was carried out by the Cancer Risk Estimates Related to Susceptibility (CARRIERS) consortium. It involved analyzing data from 17 epidemiology studies that focused on women in the general population who develop breast cancer. For the studies, which were conducted in the United States, pathogenic variants in 28 cancer-predisposition genes were sequenced from 32,247 women with breast cancer (case patients) and 32,544 unaffected women (control persons).

In the overall CARRIERS analysis, the prevalence of pathogenic variants in 12 clinically actionable genes was 5.03% among case patients and 1.63% among control persons. The prevalence was similar in non-Hispanic White women, non-Hispanic Black women, and Hispanic case patients, as well as control persons, they add. The prevalence of pathogenic variants among Asian American case patients was lower, at only 1.64%, they note.

Among patients who had breast cancer, the most common pathogenic variants included BRCA2, which occurred in 1.29% of case patients, followed by CHEK2, at a prevalence of 1.08%, and BRCA1, at a prevalence of 0.85%.

Mutations in BRCA1 increased the risk for breast cancer more than 7.5-fold; mutations in BRCA2 increased that risk more than fivefold, the investigators state.

Mutations in PALB2 increased the risk of breast cancer approximately fourfold, they add.

Prevalence rates for both BRCA1 and BRCA2 among breast cancer patients declined rapidly after the age of 40. The decline in other variants, including ATM, CHEK2, and PALB2, was limited with increasing age.

Indeed, mutations in all five of these genes were associated with a lifetime absolute risk for breast cancer greater than 20% by the age of 85 among non-Hispanic Whites.

Pathogenic variants in BRCA1 or BRCA2 yielded a lifetime risk for breast cancer of approximately 50%. Mutations in PALB2 yielded a lifetime breast cancer risk of approximately 32%.

The risk of having a mutation in specific genes varied depending on the type of breast cancer. For example, mutations in BARD1, RAD51C, and RAD51d increased the risk for estrogen receptor (ER)negative breast cancer as well as triple-negative breast cancer, the authors note, whereas mutations in ATM, CDH1, and CHEK2 increased the risk for ER-positive breast cancer.

"These refined estimates of the prevalences of pathogenic variants among women with breast cancer in the overall population, as opposed to selected high-risk patients, may inform ongoing discussions regarding testing in patients with breast cancer," the BCAC authors observe.

"The risks of breast cancer associated with pathogenic variants in the genes evaluated in the population-based CARRIERS analysis also provide important information for risk assessment and counselling of women with breast cancer who do not meet high-risk selection criteria," they suggest.

The second study was conducted by the Breast Cancer Association Consortium (BCAC) under lead author Leila Dorling, PhD, University of Cambridge, United Kingdom. This group sequenced 34 susceptibility genes from 60,466 women with breast cancer and 53,461 unaffected control persons.

"Protein-truncating variants in 5 genes (ATM, BRCA1, BRCA2, CHEK2 and PALB2) were associated with a significant risk of breast cancer overall (P < .0001)," the BCAC members report. "For these genes, odds ratios ranged from 2.10 to 10.57," they add.

The association between overall breast cancer risk and mutations in seven other genes was more modest, conferring approximately twice the risk for breast cancer overall, although that risk was threefold higher for the TP53 mutation.

For the 12 genes the consortium singled out as being associated with either a significant or a more modest risk for breast cancer, the effect size did not vary significantly between European and Asian women, the authors note. Again, the risk forER-positive breast cancer was over two times greater for those who had either the ATM or the CHEK2 mutation. Having mutations in BARD1, BRCA1, BRCA1, PALB2, RAD51C, and RAD51D conferred a higher risk for ER-negative disease than for ER-positive disease.

There was also an association between rare missense variants in six genes CHEK2, ATM, TP53, BRCA1, CDH1, and RECQL and overall breast cancer risk, with the clearest evidence being for CHEK2.

"The absolute risk estimates place protein-truncating variants in BRCA1, BRCA2, and PALB2 in the high-risk category and place protein-truncating variants in ATM, BARD1, CHEK2, RAD51CC, and RAD51D in the moderate-risk category," Dorling and colleagues reaffirm.

"These results may guide screening as well as prevention with risk-reducing surgery or medication, in accordance with national guidelines," the authors suggest.

The CARRIERS study was supported by the National Institutes of Health. The study by Dorling and colleagues was supported by the European Union Horizon 2020 research and innovation programs, among others. Narod has disclosed no relevant financial relationships.

New Eng J Med. Published online January 20, 2021. Couch et al, Abstract; BCAC study, Full text; Editorial

For more from Medscape Oncology, join us on Twitter and Facebook.

Read more:
Breast Cancer Gene Mutations Found in 30% of All Women - Medscape

Posted in Genetic medicine | Comments Off on Breast Cancer Gene Mutations Found in 30% of All Women – Medscape

Parexel and NeoGenomics Announce Strategic Collaboration in Precision Medicine to Improve Study Designs and Accelerate Patient Matching in Oncology…

Posted: February 4, 2021 at 9:50 am

Access to industry-leading genomic database and real-world evidence designed to optimize trial design, site selection, clinical trial matching and translational research

BOSTON, MA, DURHAM, NC and FT. MYERS, FL / ACCESSWIRE / February 4, 2021 / Parexel, a leading provider of solutions to accelerate the development and delivery of innovative therapies to improve world health, from clinical through commercialization, and NeoGenomics, Inc. (Acquired By American Communications Enterprises,Inc.(NASDAQ:NEO), a leading provider of cancer-focused genetic testing services and global oncology contract research services, today announced a strategic partnership to advance the application of precision medicine in oncology clinical trials by applying real-world genomics data to accelerate patient matching and optimize trial design, site selection, clinical development and translational research.

The collaboration with NeoGenomics will enhance Parexel's use of real-world data across various applications, including identifying and estimating prevalence of genomic mutations within respective populations, genomic patterning to stratify patients according to novel biomarkers, and use of de-identified patient data to precisely target patient populations. Collectively these data are designed to better inform clinical trial feasibility, enhance patient matching and create a holistic view of the patient journey by linking genomic data with clinical and consumer datasets. The collaboration will ultimately enable researchers to quickly enroll patients with common to rare cancer mutations and connect them to clinical trials providing the best likelihood of potential treatment success.

"Parexel's partnership with NeoGenomics provides access to greater predictive modeling capabilities so that we can rapidly identify specific patients and connect them to clinical trials that provide them with the best potential for treatment, advance our understanding of their disease and identify the drug's effects and potential benefits," said Sy Pretorius, MD, President, Clinical Development and Chief Medical Officer at Parexel. "This collaboration supports our efforts to adopt more novel approaches in the identification of data populations for oncology studies while keeping the patient at the center of everything we do."

"We are thrilled to collaborate with Parexel to provide our robust genomic and clinical database to help match cancer patients to clinical trials and therapies that are precisely targeted to their unique tumor types and genomic biomarkers," said Douglas VanOort, NeoGenomics' Chairman and Chief Executive Officer. "We look forward to our strategic partnership and future opportunities to broaden our relationship based on customer needs in the oncology space."

The strategic partnership between Parexel and NeoGenomics will enable biopharmaceutical customers to make evidence-based decisions regarding trial designs, companion diagnostics and drug repurposing as well as to build external control arms using genomic data, ultimately providing cancer patients access to the most effective therapies when and where they need them. The companies are considering potential opportunities to expand the scope of the partnership, including lab services and biomarker capabilities.

About ParexelParexel supports the development of innovative new medicines to improve the health of patients. We provide services to help life science and biopharmaceutical clients worldwide transform scientific discoveries into new treatments. From clinical trials to regulatory and consulting services to commercial and market access, our therapeutic, technical and functional ability is underpinned by a deep conviction in what we do. Our Oncology Center of Excellence combines our early advisory core services of medical, regulatory, biostatistics and genomic/biomarker expertise with a multi-disciplinary team of oncology experts and key technology platform partnerships to bring your breakthrough treatments to market faster.

Parexel was named "Best Contract Research Organization" in December 2020 by an independent panel for Informa Pharma Intelligence. For more information, visit our website and follow us on LinkedIn, Twitter and Instagram.

About NeoGenomics, Inc.NeoGenomics, Inc. specializes in cancer genetics testing and information services, providing one of the most comprehensive oncology-focused testing menus in the world for physicians to help them diagnose and treat cancer. The Company's Pharma Services Division serves pharmaceutical clients in clinical trials and drug development.

Headquartered in Fort Myers, FL, NeoGenomics operates CAP accredited and CLIA certified laboratories in Fort Myers and Tampa, Florida; Aliso Viejo, Carlsbad and San Diego, California; Houston, Texas; Atlanta, Georgia; Nashville, Tennessee; and CAP accredited laboratories in Rolle, Switzerland, and Singapore. NeoGenomics serves the needs of pathologists, oncologists, academic centers, hospital systems, pharmaceutical firms, integrated service delivery networks, and managed care organizations throughout the United States, and pharmaceutical firms in Europe and Asia.

CONTACTS:ParexelBecky Levine+1 919 271-5151lori.dorer@parexel.com

W2OLindsay LeCain+1 508 259 9521parexelpr@w2ogroup.com

NeoGenomicsDoug Brown+1 239.768.0600 x2539doug.brown@neogenomics.com

SOURCE: NeoGenomics, Inc.

View source version on accesswire.com:https://www.accesswire.com/627830/Parexel-and-NeoGenomics-Announce-Strategic-Collaboration-in-Precision-Medicine-to-Improve-Study-Designs-and-Accelerate-Patient-Matching-in-Oncology-Clinical-Trials

Go here to see the original:
Parexel and NeoGenomics Announce Strategic Collaboration in Precision Medicine to Improve Study Designs and Accelerate Patient Matching in Oncology...

Posted in Genetic medicine | Comments Off on Parexel and NeoGenomics Announce Strategic Collaboration in Precision Medicine to Improve Study Designs and Accelerate Patient Matching in Oncology…

Page 29«..1020..28293031..4050..»