Page 83«..1020..82838485..90100..»

Category Archives: Gene therapy

Hammered on a gene therapy setback, Dimension cuts staff and circles the wagons – Endpoints News

Posted: July 1, 2017 at 6:46 pm

Dimension Therapeutics is winnowing out 25% of its staff as it concentrates on three gene therapy programs, including one partnered with Bayer that has the potential to generate some badly needed milestone cash.

The biotech says it has enough revenue in hand to operate for another year, adding that it can extend the runway out to the end of 2018, provided it bags about $15 million in cash in its deal with Bayer. Three years ago Dimension inked a $252 million pact with Bayer, with $20 million of that upfront.

Annalisa Jenkins

Counting milestone money in your business plan isnt likely to generate much confidence among investors, especially after some disappointing results and evidence of liver toxicity for its initial lead gene therapy for hemophilia B in January crushed the biotechs stock price. DTX101 which faced more advanced competitors with better data has now been shoved out of the spotlight.

The biotechs market cap has now shrunk to $38 million.

The lead program in the clinic now is DTX301 for rare cases of ornithine transcarbamylase (OTC) deficiency. The biotech is lining up two more programs for INDs, including DTX201 allied with Bayer.

Dimension was one of several gene therapy companies to get started with a technology licensing deal with ReGenX, a spinoff from the University of Pennsylvania which is working with AAV technology developed by scientific founder James Wilson.

Our key focus is to deliver initial data from our ongoing Phase I/II clinical trial for DTX301 in OTC deficiency, advance two proof-of-concept studies for glycogen storage disease type Ia (GSDIa) and hemophilia A, the latter in collaboration with Bayer, and advance our unique HeLa 2.0 manufacturing platform, says CEO Annalisa Jenkins. We believe we can deliver these important objectives in 2017-2018 with our current financial position.

News reports for those who discover, develop, and market drugs. Join 16,000+ biopharma pros who read Endpoints News articles by email every day. Free subscription.

Read more here:
Hammered on a gene therapy setback, Dimension cuts staff and circles the wagons - Endpoints News

Posted in Gene therapy | Comments Off on Hammered on a gene therapy setback, Dimension cuts staff and circles the wagons – Endpoints News

Arix leads $45M series B for gene therapy biotech LogicBio – FierceBiotech

Posted: July 1, 2017 at 6:46 pm

LogicBio Therapeutics has got off a $45 million series B funding round as it eyes the cash for disease-modifying gene therapies in rare childhood diseases.

London-based investment firm Arix Bioscience led the oversubscribed round in the semi-stealth biotech, with new investors OrbiMed, Edmond De Rothschild Investment Partners, Pontifax, and SBI, along with previous investors OrbiMed Israel Partners, also stumping up cash.

Arix Bioscience's investment manager, Daniel OConnell, M.D., Ph.D, will join Cambridge, Massachusetts-based LogicBios board as part of the raise. This brings its total raised to $50 million, much of which will be put toward finishing off preclinical work and moving them into human tests.

The biotech sets itself up as a breakthrough gene therapy company targeting lifelong cures for serious, early-onset rare diseases by combining the best of gene therapy and gene editing in a one-time treatment.

It was founded in 2014 with platform technologies discovered by Adi Barzel, Tel Aviv University, Dr Leszek Lisowski, Childrens Medical Research Institute, Australia, and Professor Mark Kay at Stanford University School of Medicine.

The first platform, GeneRide, is a technology that uses homologous recombination that is designed to allow site-specific transfer of therapeutic genetic material without the use of promoters or nucleases. The company says it also has access to a library of synthetic, non-pathogenic, recombinant adeno-associated viral (rAAV) vectors developed at Stanford that allows for better predictability of vector performance in clinical trials.

Joe Anderson, CEO of Arix Bioscience, said: Early intervention for rare genetic disorders in children is important and LogicBio is uniquely positioned at the forefront of this research area with its proprietary genetic therapy technology to deliver a durable cure for young patients with life-threatening genetic diseases and otherwise limited options. LogicBio has huge potential and, alongside its excellent team and investors, we look forward to supporting the company to achieve continued success in this area.

See original here:
Arix leads $45M series B for gene therapy biotech LogicBio - FierceBiotech

Posted in Gene therapy | Comments Off on Arix leads $45M series B for gene therapy biotech LogicBio – FierceBiotech

NightstaRx Raises $45M to Fund Phase III Study with Retinal … – Genetic Engineering & Biotechnology News (blog)

Posted: July 1, 2017 at 6:46 pm

U.K. firm NightstaRx raised $45 million in a Series C financing round to support continued clinical development of its pipeline of retinal gene therapies, including a pending Phase III study with lead candidate NSR-REP1 for treating choroideremia. The new funds will also be used to support an ongoing Phase I/II study with NSR-RPGR in patients with X-linked retinitis pigmentosa (RP), and a proposed Phase I/II trial with a gene therapy product targeting an inherited form of macular dystrophy. Nightstar projects starting the macular dystrophy clinical trial during late 2018.

Investors in the Series C round included Nightstars existing investors Syncona and New Enterprise Associates (NEA) and new investors Wellington Management Company and Redmile Group. As an original investor in Nightstar, our goal from day one was to build a global gene therapy leader with the capability of developing multiple programs for inherited retinal diseases, commented Chris Hollowood, Ph.D., chairman of the board of Nightstar and chief investment officer of Syncona, which is funded by The Wellcome Trust. We welcome Wellington Management and Redmile Group as investors and look forward to working with them and NEA to fulfill Nightstars potential.

Founded in 2014 by researchers at the University of Oxford, Nightstar is developing a pipeline of one-time potentially curative treatments for rare inherited retinal diseases. Lead candidate NSR-REP1 is an adeno-associated virus (AAV) vector-based gene therapy in development for treating choroideremia, a rare X-linked inherited retinal dystrophy for which there are currently no disease-modifying therapies. The AAV vector is administered by injection under the retina, using standard surgical procedures performed under local anesthetic. Nightstar says a Phase I/II study carried out by the University of Oxford confirmed long-term benefits of the treatment including vision improvement or stabilization.

The firms AAV-vector-based NSR-RPGR gene therapy for X-linked RP is designed to deliver a normal copy of the RP GTPase regulator (RPGR) gene, which Nightstar says is mutated in more than 70% of cases of X-linked RP. The procedure similarly involves injecting the gene-carrying vector under the retina. The ongoing Phase I/II study with NSR-RPGR was started in March.

Nightstar has ongoing collaborations with the University of Oxford, the Bascom Palmer Eye Institute, and the Institute for Ophthalmic Research, Tbingen University Hospital. In February, the firm inked a collaboration with Netherlands-based Preceyes to develop a subretinal drug delivery technology based on the latters high-precision robotic device for ocular surgery.

More:
NightstaRx Raises $45M to Fund Phase III Study with Retinal ... - Genetic Engineering & Biotechnology News (blog)

Posted in Gene therapy | Comments Off on NightstaRx Raises $45M to Fund Phase III Study with Retinal … – Genetic Engineering & Biotechnology News (blog)

Gene Therapy: A New Twist on an Old Helix – Genetic Engineering & Biotechnology News

Posted: July 1, 2017 at 6:46 pm

Many Helpers Make Light Work

Targeting cancer cells that have spread to several organs of the body is difficult. Targeted radiation therapy or chemotherapy tends to destroy not only the cancer cells but also normal cells. Turning to gene therapy to selectively deliver therapeutic genes into these cancer cells on a larger scale and eliminating them in one fell swoop is the ultimate goal of Tocagen.

Using two products, Toca 511 and Toca FC, the company plans on developing an effective combination therapy that could hit the cancer hard. Toca 511 is an injectable retroviral replicating vector (RRV) that provides the genetic material to encode a prodrug activator enzyme, cytosine deaminase (CD), which is derived from yeast and has no human counterpart. It is selectively delivered to only cancer cells, thus producing the CD protein in each cell.

Part two of this therapy involves a pill called Toca FC, which contains 5-fluorocytosine (5-FC) that converts to the anticancer agent 5-FU in the presence of CD protein. Toca FC kills not only the cancer cells, but also the myeloid-derived suppressor cells (MDSCs), which suppress the immune system, and tumor-associated macrophages (TAMs).

Harry Gruber, M.D., cofounder and former CEO of Tocagen, talks about the use of gamma-retroviruses: The advantage of using a gamma-retrovirus (as opposed to the lentivirus) is that it cannot enter the nucleus on its own. This makes it selective to dividing cells only, and since cancer cells are rapidly dividing, [gamma-retroviruses] help in spreading the virus and its genetic information. They live in defective cells that lack an innate immunity, and due to this selectivity, they are designed to be universally geared toward only cancer cells.

Dr. Gruber also mentioned that Toca 511/FC received the FDAs Breakthrough therapy designation, which expedites drug development.

The field of gene therapy has come a long way since its inception. Early failures and setbacks forced researchers back to the drawing board to figure out how viral vectors could be accepted by the human body, which ordinarily rejects foreign particles. Researchers also had to learn how such vectors could reach specific targets and deliver foreign DNA that could be integrated into the genome. This dance between therapy and the innate immune system is getting more complex, but is also showing its true beauty within the complexity.

See original here:
Gene Therapy: A New Twist on an Old Helix - Genetic Engineering & Biotechnology News

Posted in Gene therapy | Comments Off on Gene Therapy: A New Twist on an Old Helix – Genetic Engineering & Biotechnology News

Gene Therapy – Learn Genetics

Posted: September 24, 2016 at 9:44 pm

What Is Gene Therapy?

Explore the what's and why's of gene therapy research, includingan in-depth look at the genetic disorder cystic fibrosis and how gene therapy could potentially be used to treat it.

Gene Delivery: Tools of the Trade

Explore the methods for delivering genes into cells.

Space Doctor

You are the doctor! Design and test gene therapy treatments with ailing aliens.

Challenges In Gene Therapy

Researchers hoping to bring gene therapy to the clinic face unique challenges.

Approaches To Gene Therapy

Beyond adding a working copy of a broken gene, gene therapy can also repair or eliminate broken genes.

Gene Therapy Successes

The future of gene therapy is bright. Learn about some of its most encouraging success stories.

Gene Therapy Case Study: Cystic Fibrosis

APA format:

Genetic Science Learning Center. (2012, December 1) Gene Therapy. Retrieved September 23, 2016, from http://learn.genetics.utah.edu/content/genetherapy/

CSE format:

Gene Therapy [Internet]. Salt Lake City (UT): Genetic Science Learning Center; 2012 [cited 2016 Sep 23] Available from http://learn.genetics.utah.edu/content/genetherapy/

Chicago format:

Genetic Science Learning Center. "Gene Therapy." Learn.Genetics.December 1, 2012. Accessed September 23, 2016. http://learn.genetics.utah.edu/content/genetherapy/.

See the original post:
Gene Therapy - Learn Genetics

Posted in Gene therapy | Comments Off on Gene Therapy – Learn Genetics

Gene therapy – Wikipedia, the free encyclopedia

Posted: October 28, 2015 at 12:42 pm

Posted in Gene therapy | Comments Off on Gene therapy – Wikipedia, the free encyclopedia

Gene therapy – Wikipedia, the free encyclopedia

Posted: October 27, 2015 at 5:40 pm

Posted in Gene therapy | Comments Off on Gene therapy – Wikipedia, the free encyclopedia

Gene therapy – PBS

Posted: October 25, 2015 at 3:43 am

A treatment for Cystic Fibrosis. A cure for AIDS. The end of cancer. That's what the newspapers promised us in the early 1990's. Gene therapy was the answer to what ailed us. Scientists had at last learned how to insert healthy genes into unhealthy people. And those healthy genes would either replace the bad genes causing diseases like CF, sickle-cell anemia and hemophilia or stimulate the body's own immune system to rid itself of HIV and some forms of cancer. A decade later, none of these treatments have come to fruition and research into gene therapy has become politically unpopular, making clinical trials hard to approve and research dollars hard to come by. But some researchers who are taking a different approach to gene therapy could be on the road to more success than ever before. - - - - - - - - - - - -

Early Promise

Almost as soon as Watson and Crick unwound the double helix in the 1950's, researchers began considering the possibility- and ethics- of gene therapy. The goals were lofty- to fix inherited genetic diseases such as Cystic Fibrosis and hemophilia forever.

Gene therapists planned to isolate the relevant gene in question, prepare good copies of that gene, then deliver them to patients' cells. The hope was that the treated cells would give rise to new generations of healthy cells for the rest of the patient's life. The concept was elegant, but would require decades of research to locate the genes that cause illnesses.

By 1990, it was working in the lab. By inserting healthy genes into cells from CF patients, scientists were able to transmogrify the sick cells as if by magic into healthy cells.

That same year, four-year-old Ashanti DeSilva became the first person in history to receive gene therapy. Dr. W. French Anderson of the National Heart, Lung and Blood Institute and Dr. Michael Blaese and Dr. Kenneth Culver, both of the National Cancer Institute, performed the historic and controversial experiment.

DeSilva suffered from a rare immune disorder known as ADA deficiency that made her vulnerable to even the mildest infections. A single genetic defect- like a typo in a novel- left DeSilva unable to produce an important enzyme. Without that enzyme, DeSilva was likely to die a premature death.

Anderson, Blaese and Culver drew the girl's blood and treated her defective white blood cells with the gene she lacked. The altered cells were then injected back into the girl, where- the scientists hoped- they would produce the enzyme she needed as well as produce future generations of normal cells.

Though the treatment proved safe, its efficacy is still in question. The treated cells did produce the enzyme, but failed to give rise to healthy new cells. DeSilva, who is today relatively healthy, still receives periodic gene therapy to maintain the necessary levels of the enzyme in her blood. She also takes doses of the enzyme itself, in the form of a drug called PEG-ADA, which makes it difficult to tell how well the gene therapy would have worked alone.

"It was a very logical approach," says Dr. Jeffrey Isner, Chief of Vascular Medicine and Cardiovascular Research at St. Elizabeth's Medical Center in Boston as well as Professor of Medicine at Tufts University School of Medicine. "But in most cases the strategy failed, because the vectors we have today are not ready for prime time." - - - - - - - - - - - - 4 pages: | 1 | 2 | 3 | 4 |

Photo: Dr. W. French Anderson

Continued here:
Gene therapy - PBS

Posted in Gene therapy | Comments Off on Gene therapy – PBS

Gene therapy | Cancer Research UK

Posted: October 23, 2015 at 5:41 pm

Researchers are looking at different ways of using gene therapy, including

Some types of gene therapy aim to boost the body's natural ability to attack cancer cells. Our immune system has cells that recognise and kill harmful things that can cause disease, such as cancer cells.

There are many different types of immune cell. Some of them produce proteins that encourage other immune cells to destroy cancer cells. Some types of therapy add genes to a patient's immune cells to make them better at finding or destroying particular types of cancer. There are a few trials using this type of gene therapy in the UK.

Some gene therapies put genes into cancer cells to make the cells more sensitive to particular treatments such as chemotherapy or radiotherapy. This type of gene therapy aims to make the other cancer treatments work better.

Some types of gene therapy deliver genes into the cancer cells that allow the cells to change drugs from an inactive form to an active form. The inactive form of the drug is called a pro drug.

After giving the carrier containing the gene, the doctor gives the patient the pro drug. The pro drug may be a tablet or capsule that you swallow, or you may have it into the bloodstream.

The pro drug circulates in the body and doesn't harm normal cells. But when it reaches the cancer cells, the gene activates it and the drug kills the cancer cells.

Some gene therapies block processes that cancer cells use to survive. For example, most cells in the body are programmed to die if their DNA is damaged beyond repair. This is called programmed cell death or apoptosis. But cancer cells block this process so they don't die even when they are supposed to. Some gene therapy strategies aim to reverse this blockage. Doctors hope that these new types of treatment will make the cancer cells die.

Some viruses infect and kill cells. Researchers are working on ways to change these viruses so that they only target and kill cancer cells, leaving healthy cells alone. This sort of treatment uses the viruses to kill cancer cells directly rather than to deliver genes. So it is not cancer gene therapy in the true sense of the word. But doctors sometimes refer to it as gene therapy.

One example of this type of research uses the cold sore virus (herpes simplex virus). The changed virus is called Oncovex. It has been tested in early clinical trials for advanced melanoma, pancreatic cancer and head and neck cancers.

See the rest here:
Gene therapy | Cancer Research UK

Posted in Gene therapy | Comments Off on Gene therapy | Cancer Research UK

Types of Gene Therapy Treatment | MD Anderson Cancer Center

Posted: October 12, 2015 at 9:41 pm

Much of today's cancer research is devoted to finding missing or defective genes that cause cancer or increase an individual's risk for certain types of cancer. Gene research at MDAnderson has resulted in many important discoveries. We identified the mutated multiple advanced cancers gene (MMAC1) involved in some common cancers. We also performed the first successful correction of a defective tumor suppressor gene (p53) in human lung cancer. Current gene therapies are experimental, and many are still tested only on animals. There are some clinical trials involving a very small number of human subjects.

The potential benefits of gene therapy are two-fold:

The focus of most gene therapy research is the replacement of a missing or defective gene with a functional, healthy copy, which is delivered to target cells with a "vector." Viruses are commonly used as vectors because of their ability to penetrate a cells DNA. These vector viruses are inactivated so they cannot reproduce and cause disease. Gene transfer therapy can be done outside the body (ex vivo) by extracting bone marrow or blood from the patient and growing the cells in a laboratory. The corrected copy of the gene is introduced and allowed to penetrate the cells DNA before being injected back into the body. Gene transfers can also be done directly inside the patients body (in vivo).

Other therapies include:

Gene therapy is a complicated area of research, and many questions remain unanswered. Some cancers are caused by more than one gene, and some vectors, if used incorrectly, can actually cause cancer or other diseases. Replacing faulty genes with working copies also brings up ethical issues that must be addressed before these therapies can be accepted for preventing cancer. Talk to your cancer specialist about the implications of gene therapy.

See the rest here:
Types of Gene Therapy Treatment | MD Anderson Cancer Center

Posted in Gene therapy | Comments Off on Types of Gene Therapy Treatment | MD Anderson Cancer Center

Page 83«..1020..82838485..90100..»