Page 41«..1020..40414243..5060..»

Category Archives: Gene therapy

2020 Report: Growth Opportunities in Gene Therapy, Automated Bioanalytics, and Biomarker Platforms – ResearchAndMarkets.com – Business Wire

Posted: December 1, 2020 at 12:57 pm

DUBLIN--(BUSINESS WIRE)--The "Growth Opportunities in Gene Therapy, Automated Bioanalytics, and Biomarker Platforms" report has been added to ResearchAndMarkets.com's offering.

The research provides technological insights across inflammation, infectious diseases, and microbiomics.

The Life Science, Health & Wellness TOE will feature disruptive technology advances in the global life sciences industry. The technologies and innovations profiled will encompass developments across genetic engineering, drug discovery and development, biomarkers, tissue engineering, synthetic biology, microbiome, disease management, as well as health and wellness among several other platforms.

The Health & Wellness cluster tracks developments in a myriad of areas including genetic engineering, regenerative medicine, drug discovery and development, nanomedicine, nutrition, cosmetic procedures, pain and disease management and therapies, drug delivery, personalized medicine, and smart healthcare.

Innovations in Life Sciences, Health & Wellness from:

For more information about this report visit https://www.researchandmarkets.com/r/tkufmb

See the original post:
2020 Report: Growth Opportunities in Gene Therapy, Automated Bioanalytics, and Biomarker Platforms - ResearchAndMarkets.com - Business Wire

Posted in Gene therapy | Comments Off on 2020 Report: Growth Opportunities in Gene Therapy, Automated Bioanalytics, and Biomarker Platforms – ResearchAndMarkets.com – Business Wire

BioStock: Status report CombiGene – In the front line of gene therapy – marketscreener.com

Posted: December 1, 2020 at 12:57 pm

In recent years, gene therapies have emerged as one of the hottest areas within life science and the temperature is rising as the first treatments are now available to patients in the US and Europe. During the 2020s, several new therapies are expected to be marketed, a breakthrough period for these therapies that through one or a few treatments have the potential not only to relieve but to cure diseases. The attention focused on gene therapies has lately resulted in several acquisitions and licensing deals. On the Swedish stock market, there is only one listed gene therapy company, CombiGene. BioStock has now published a status report of the company, which can be downloaded below.

Read the full CombiGene status report at biostock.se:

https://www.biostock.se/en/status-report-combigene-in-the-front-line-of-gene-therapy/

This is a pressrelease from BioStock - Connecting Innovation & Capital.https://www.biostock.se/

https://news.cision.com/combigene/r/biostock--status-report-combigene---in-the-front-line-of-gene-therapy,c3245958

(c) 2020 Cision. All rights reserved., source Press Releases - English

See more here:
BioStock: Status report CombiGene - In the front line of gene therapy - marketscreener.com

Posted in Gene therapy | Comments Off on BioStock: Status report CombiGene – In the front line of gene therapy – marketscreener.com

Irish scientists develop gene therapy for inherited vision loss disorder – The Irish Times

Posted: December 1, 2020 at 12:57 pm

A team of Irish scientists have developed a gene therapy that could potentially lead to a new treatment for an eye disease causing progressive loss of vision, which affects many thousands of people across the globe.

The breakthrough therapy, which offers hope for people with dominant optic atrophy (DOA), was devised by researchers at Trinity College Dublin in collaboration with clinicians at the Royal Victoria Eye and Ear Hospital and the Mater hospital in Dublin.

It also has implications for a much wider suite of neurological disorders associated with ageing which collectively affect millions of people worldwide.

DOA is an inherited disorder characterised by degeneration of optic nerves. It typically starts during the first decade of life. Affected people usually develop moderate visual loss and colour vision defects but severity varies, symptoms can worsen over time and some people become blind. At present, there is no way to prevent or cure DOA.

The scientists published their results in Frontiers in Neuroscience on Thursday.

A gene (OPA1) provides instructions for making a protein found in cells and tissues throughout the body that is pivotal to the proper function of mitochondria, the energy generators in cells.

Without the protein, mitochondrial function is sub-optimal; the normally well-interconnected mitochondrial network in healthy cells becomes highly disrupted. For those with DOA, it is mutations in OPA1 and the dysfunctional mitochondria that are responsible for onset and progression of the disorder.

Led by research fellow Dr Daniel Maloney and Prof Jane Farrar from TCD School of Genetics and Microbiology, the gene therapy successfully protected the visual function of mice who were treated with a chemical targeting the mitochondria and were consequently living with dysfunctional mitochondria.

The scientists also found the gene therapy improved mitochondrial performance in human cells that contained mutations in the OPA1 gene.

We used a clever lab technique that allows scientists to provide a specific gene to cells that need it using specially engineered non-harmful viruses, Dr Maloney said.

This allowed us to directly alter the functioning of the mitochondria in the cells we treated, boosting their ability to produce energy which, in turn, helps protect them from cell damage.

Excitingly, our results demonstrate that this OPA1-based gene therapy can potentially provide benefit for diseases like DOA, which are due to OPA1 mutations, and also possibly for a wider array of diseases involving mitochondrial dysfunction.

Mitochondrial dysfunction causes problems in neurological disorders such as Alzheimers and Parkinsons disease. The impacts gradually build up over time, which is why many may associate such disorders with ageing.

Prof Farrar added: We are very excited by the prospect of this new gene therapy strategy, although it is important to highlight that there is still a long journey to complete from a research and development perspective before this therapeutic approach may one day be available as a treatment.

Because mitochondrial dysfunction was implicated in so many neurological disorders, there was great potential for this type of therapeutic strategy to make a major societal impact, she said.

The research was supported by Science Foundation Ireland, the Health Research Board of Ireland, Fighting Blindness Ireland, and Health Research Charities Ireland.

See the original post:
Irish scientists develop gene therapy for inherited vision loss disorder - The Irish Times

Posted in Gene therapy | Comments Off on Irish scientists develop gene therapy for inherited vision loss disorder – The Irish Times

New gene therapy could help treat bowel cancer that reaches the liver – 9News

Posted: December 1, 2020 at 12:57 pm

Gene therapy has shown promise for the first time to help treatbowelcancerthat has spread to the liver.

Adelaide researchers showed the novel approach, which uses a modified virus to infect the liver, was able to shrink tumours in mice.

"We're very excited by these results," Dr Susan Woods, one of the investigators in the study that was published in the Gastroenterology journal, said.

Further testing will be carried out to see whether the therapy could work for othercancers that travel to the liver such as tumours of the breast, lung and pancreas.

The modified virus exclusively targets the liver and introduces a copy of a gene that instructs the organ to make more cells called fibroblasts which are known to be good and slowcancergrowth.

The team from SAHMRI and the University of Adelaide have been investigating why normal cells that surround thecancerare good while others are corrupted and promote tumour growth.

"Inbowelcancer, we know that patients with the poorest prognosis have a lot of these corrupted or bad tumour supporting fibroblasts," Dr Susan Woods said.

This type of gene therapy that uses a modified virus to enter the liver is currently being used on patients with blood disorders.

"This is the first sign that we could use this to treatcancerthat has spread to the liver," Dr Woods said.

Bowelcancersurvivor Hannah Devereux is heartened by the research and said there needs to be more treatment options for people who are diagnosed with the disease late, when it has already spread.

Hannah was only 34 when she was diagnosed withbowelcancer, soon after her second child was born.

"Had the baby, he was 10 days old, and they found two tumours. My world came crashing down," she said.

Hannah had complained about digestive symptoms during the pregnancy.

"The doctor just thought it was pregnancy related," she said.

Hannah required intensive treatment for a year including six months of chemotherapy, radiotherapy and two major surgeries.

She has now reached the five-yearcancer-free milestone and is the ambassador of the Jodi Lee Foundation to preventbowelcancer.

Bowelcanceraffects more than 15,000 Australians each year and fewer than 50 per cent of cases are detected early.

More than 100 Australians each week die frombowelcancer.

Original post:
New gene therapy could help treat bowel cancer that reaches the liver - 9News

Posted in Gene therapy | Comments Off on New gene therapy could help treat bowel cancer that reaches the liver – 9News

Navigating the challenge of covering breakthrough therapies at MedCity INVEST Precision Medicine – MedCity News

Posted: December 1, 2020 at 12:57 pm

Our virtualMedCity INVEST Precision Medicine conference, December 9-11, will highlight aspects of precision medicine from the biopharma companies developing cell and gene therapies to diagnostics and the data sharing initiatives to support precision and personalized medicine.

One vexing part of any conversation on precision medicine and breakthrough therapies that have been developed and are continuing to work their way through clinical trials for cancer to rare disease is how to address the practical challenge of their high price tags. Although there are several models to cover the cost of these therapies such as Cignas Embarc Benefit Protection program,what happens when someone changes insurers when they change their job? What is fair for patients and whats fair for companies? When do these conversations even start?

The panel, Reimbursement Models for Cell and Gene Therapies, will highlight some of the pros and cons of different models that are coming to market. Panelists include Laura Okpala, Director, Reimbursement Policy, Gilead Sciences, and Mark Trusheim, Strategic Director, NEWDIGS initiative at the MIT Center for Biomedical Innovation.

Heres a preview of some of the sessions. Click here to see the agenda.

Interoperability Progress Report

How far have we progressed with sharing patient medical records? Patient data is key in unlocking riddles of medical science but interoperability is necessary to facilitate this. What companies are making an impact on a regional and national scale? What milestones are on the horizon? What obstacles continue to vex further advancement? How can we make medical records more accessible to patients?

Moderator: Elise Reuter, Senior Reporter, MedCity NewsSpeakers:Kevin Chaney, Senior Program Manager, Office of the National Coordinator for Health ITIda Sim, M.D., Ph.D., Professor of Medicine, University of California, San FranciscoNiko Skievaski, Co-Founder and President, Redox

What It Takes To Build A Successful, Regional BioInnovation HubPhiladelphia is one of many cities seeking to support the continued growth of cell and gene therapy and connected health industries. What do cities need to do to address education, training and other needs to support these sectors? This session will be held as part ofVenture Cafe Philadelphia.

(sponsored by IBX)

Lisa Dalton, Chief People Officer,Spark TherapeuticsAudrey Greenberg, Executive Managing Director,The Discovery LabsTiffany Wilson, President & CEO,University City Science Center

Moderator:Michelle Histand, Director of Innovation, Independence Blue Cross

Register nowand be part of the conversation at INVEST Precision Medicine.

Read the original here:
Navigating the challenge of covering breakthrough therapies at MedCity INVEST Precision Medicine - MedCity News

Posted in Gene therapy | Comments Off on Navigating the challenge of covering breakthrough therapies at MedCity INVEST Precision Medicine – MedCity News

A new gene therapy against eye diseases – Phone Mantra

Posted: December 1, 2020 at 12:57 pm

Mitochondria degeneration

Characterized by degeneration of the optic nerves, the dominant optic atrophy usually begins to cause symptoms in patients in early adulthood: moderate vision loss and some color vision defects, although their severity varies.Symptoms can also worsen over time and lead to total blindness in some patients.There is currently no way to prevent or cure AOD.

Its occurrence is due to mutations in the OPA1 gene, essential for the proper functioning of the mitochondria, which are the energy producers in cells.Without the protein made by OPA1, mitochondrial function is suboptimal and the mitochondrial network, which is well interconnected in healthy cells, is severely disrupted, which can lead to the onset and then the progression of optic atrophy. dominant.

This new gene therapy has been successfully tested in mice treated with a chemical targeting the mitochondria and therefore living with dysfunctional mitochondria.It also improved the performance of mitochondria in human cells that contained mutations in the OPA1 gene, which gives hope that it could be effective in humans.

The scientists also found that their gene therapy improved the performance of mitochondria in human cells that contained mutations in the OPA1 gene, raising hopes that it might be effective in humans.

Our results fascinatingly demonstrate that this OPA1-based gene therapy has the potential to provide benefits for diseases like ODA, which are due to OPA1 mutations, and possibly for a wider range as well. of diseases involving mitochondrial dysfunction,says Dr. Daniel Maloney, lead author of the study.This includesother neurodegenerative diseases like Parkinsons and Alzheimers, which are linked to aging and the progressive dysfunction of mitochondria.

We are very enthusiastic about the idea of this new gene therapy strategy, explains Professor Jane Farrar, co-author of the work.Even if, she adds,there is still a long way to go from the point of view of research and development before this therapeutic approach can one day be available as a treatment.

Read the original post:
A new gene therapy against eye diseases - Phone Mantra

Posted in Gene therapy | Comments Off on A new gene therapy against eye diseases – Phone Mantra

Global Gene Therapy Industry – GlobeNewswire

Posted: November 19, 2020 at 10:58 am

New York, Nov. 19, 2020 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "Global Gene Therapy Industry" - https://www.reportlinker.com/p05817594/?utm_source=GNW 6% in the year 2020 and thereafter recover and grow to reach US$3.3 billion by the year 2027, trailing a post COVID-19 CAGR of 19.5% over the analysis period 2020 through 2027. Governments worldwide are focusing all healthcare resources on fighting the global pandemic. Billions of dollars have poured into researching COVID-19 drugs, therapies and vaccines. Over US$8 billion globally excluding the U.S. has been pledged only for vaccine development. The U.S. has independently pumped billions of dollars into COVID-19 research and response. The massive reallocation of funds and reprioritization of efforts has left a glaring gap in other sectors of healthcare. Gene therapy which holds promise for treating cancer, cystic fibrosis, heart disease, diabetes, hemophilia & AIDS, is slumping due to lack of research funds & reduced footfall of patients seeking treatment. Given the complex and fragile manufacturing and delivery system along with funding models of the industry, COVID-19 has emerged as a black swan event. Various players still find it challenging to ensure timely delivery of gene therapy to patients and clinical sites. There are concerns regarding administration of cell and gene therapies. The chances of virus transmission, mainly to people in the high-risk group, coerced hospitals to delay or cancel appointments. In addition, travel restrictions and stay-at-home orders discouraged patients from visiting to treatment centres. Treatments intended to be delivered into ICUs are being impacted by bed reservations made for patients with COVID-19 infection.

R&D and preclinical activities are also affected by supply shortages as a result of strong demand for consumables like reagents and PPE from COVID-19 laboratories. The clinical development segment suffered the most due to concerns regarding recruitment of patients and suspension of trial enrolments for protecting participants from the risk of infection. These issues are delaying activation of new sites, prompting players to postpone new clinical trials. However, the intensity of disruptions for cell and gene therapy trials was less in comparison to the pharmaceutical industry due to association of the former with rare and serious medical conditions, enabling participants to continue trials. While companies targeting paediatric diseases suspended trials, others dealing with oncology maintained the pace. COVID-19 has also impacted patient assessment and has made it difficult for companies to perform follow-up evaluations for trial participants. These issues are attributed to confluence of various factors like travel ban, withdrawal of several services from healthcare sites and the risk of virus transmission. In addition, these disruptions are anticipated to threaten existence of certain cell and gene therapy companies, particularly small-scale biotech players that are in pre-commercial phase and rely on external funding. As governments, stakeholders, pharmaceutical companies and venture capitalists invest in these players on the basis of research milestones, pipeline progress and data readouts, ability of these companies to secure future funding will also be affected.

In the post COVID-19 period, growth will be led by therapy indications in the field of oncology. Gene therapies hold promise to improve the condition of patients where traditional cancer treatments such as radiation and chemotherapy are not effective. Blood and lymphatic cancers hold huge potential as gene therapies can manipulate the genetic information to target the cancerous proteins, thereby enabling the body to fight against the cancers. Oncology will remain the key area of focus for gene therapy applications. Cancer therapies represent the leading category, as is gauged through robust rise in the number of molecules being tested across numerous clinical trials. Novartis which recently bagged the U.S. FDA approval for Kymriah, a gene therapy designed for the treatment of hematological cancer, is seeking to gain commercial approval in established and emerging countries. Similarly, Kite Pharma, the developer of YESCARTA, the first CAR T-cell therapy approved for certain types of non-Hodgkin lymphoma in adults, has formed a separate team to provide end-to-end support for its Yescarta customers including hospitals and clinics. Such efforts by developers would augment the use case of gene therapies in treatment of large B-cell lymphoma and acute lymphoblastic leukemia (ALL), the high potential cancer treatment verticals. More developmental focus will also be shed on monogenic rare diseases which have clearer genomic targets and the unmet need in smaller patient populations. Majority gene therapies so far have come to market through accelerated review pathways of regulatory authorities. In the year 2018 alone, over 150 applications for investigational new drugs for gene therapies were filed. In the coming years, there will be significant improvement in the number of approvals for new gene therapies. The growth is anticipated to emerge from different modalities including RNAi, ASOs and CRISPR gene editing based therapeutics which offer long term opportunities for growth. These technologies are generating much excitement for investors.

Competitors identified in this market include, among others,

Read the full report: https://www.reportlinker.com/p05817594/?utm_source=GNW

I. INTRODUCTION, METHODOLOGY & REPORT SCOPE I-1

II. EXECUTIVE SUMMARY II-1

1. MARKET OVERVIEW II-1 A Prelude to Gene Therapy II-1 Classification of Gene Therapies II-1 Impact of Covid-19 and a Looming Global Recession II-2 COVID-19 Causes Gene Therapy Market to Buckle & Collapse II-2 COVID-19 Impact on Different Aspects of Gene Therapy II-2 Manufacturing & Delivery II-2 Research & Clinical Development II-3 Commercial Operations & Access II-3 Managing Derailed Operations II-4 Focus on Clinical Development Programs II-4 Targeting Manufacturing & Delivery Strategies II-4 Securing Supplies II-4 Remote Working II-4 Gene Therapy Set to Witness Rapid Growth Post COVID-19 II-5 By Vector Type II-5 VIRAL VECTORS ACCOUNT FOR A MAJOR SHARE OF THE MARKET II-5 Adeno-Associated Virus Vectors II-6 Lentivirus II-6 NON-VIRAL VECTORS TO WITNESS FASTER GROWTH II-7 US and Europe Dominate the Gene Therapy Market II-8 Oncology Represents the Largest Indication for Gene Therapy II-9 Market Outlook II-9 WORLD BRANDS II-10

2. FOCUS ON SELECT PLAYERS II-16 Recent Market Activity II-18 Select Innovations II-24

3. MARKET TRENDS & DRIVERS II-25 Availability of Novel Therapies Drive Market Growth II-25 Select Approved Gene Therapy Products II-26 Adeno-associated Virus Vectors - A Leading Platform for Gene Therapy II-27 Lentiviral Vectors Witness Increased Interest II-27 Rising Cancer Incidence Worldwide Spurs Demand for Gene Therapy II-28 Exhibit 1: Global Cancer Incidence: Number of New Cancer Cases in Million for the Years 2018, 2020, 2025, 2030, 2035 and 2040 II-28 Exhibit 2: Global Number of New Cancer Cases and Cancer-related Deaths by Cancer Site for 2018 II-29 Exhibit 3: Number of New Cancer Cases and Deaths (in Million) by Region for 2018 II-30 Compelling Level of Technology & Innovation to Ignite Gene Therapy II-30 Promising Gene Therapy Innovations for Treatment of Inherited Retinal Diseases II-31 Gene Therapy Pivots M&A Activity in Dynamic Domain of Genomic Medicine II-31 M&As Rampant in Gene Therapy Space II-31 Gene Therapy Deals: 2018 and 2019 II-32 Emphasis on Formulating Robust Regulatory Framework II-33 Strong Gene Therapy Pipeline II-33 Gene Therapy: Phase III Clinical Trials II-33 OHSU Implements First-Ever LCA10 Gene Therapy Clinical Trial with CRISPR II-35 Growing Funding for Gene Therapy Research II-35 Market Issues & Challenges II-35

4. GLOBAL MARKET PERSPECTIVE II-37 Table 1: World Current & Future Analysis for Gene Therapy by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-37

Table 2: World Historic Review for Gene Therapy by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2017 through 2019 II-38

Table 3: World 10-Year Perspective for Gene Therapy by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets for Years 2017, 2020 & 2027 II-39

Table 4: World Current & Future Analysis for Viral by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-40

Table 5: World Historic Review for Viral by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2017 through 2019 II-41

Table 6: World 10-Year Perspective for Viral by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2017, 2020 & 2027 II-42

Table 7: World Current & Future Analysis for Non-Viral by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-43

Table 8: World Historic Review for Non-Viral by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2017 through 2019 II-44

Table 9: World 10-Year Perspective for Non-Viral by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2017, 2020 & 2027 II-45

Table 10: World Current & Future Analysis for Oncological Disorders by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-46

Table 11: World Historic Review for Oncological Disorders by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2017 through 2019 II-47

Table 12: World 10-Year Perspective for Oncological Disorders by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2017, 2020 & 2027 II-48

Table 13: World Current & Future Analysis for Rare Diseases by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-49

Table 14: World Historic Review for Rare Diseases by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2017 through 2019 II-50

Table 15: World 10-Year Perspective for Rare Diseases by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2017, 2020 & 2027 II-51

Table 16: World Current & Future Analysis for Neurological Disorders by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-52

Table 17: World Historic Review for Neurological Disorders by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2017 through 2019 II-53

Table 18: World 10-Year Perspective for Neurological Disorders by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2017, 2020 & 2027 II-54

Table 19: World Current & Future Analysis for Other Applications by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-55

Table 20: World Historic Review for Other Applications by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2017 through 2019 II-56

Table 21: World 10-Year Perspective for Other Applications by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2017, 2020 & 2027 II-57

III. MARKET ANALYSIS III-1

GEOGRAPHIC MARKET ANALYSIS III-1

UNITED STATES III-1 Table 22: USA Current & Future Analysis for Gene Therapy by Vector Type - Viral and Non-Viral - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-1

Table 23: USA Historic Review for Gene Therapy by Vector Type - Viral and Non-Viral Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2017 through 2019 III-2

Table 24: USA 10-Year Perspective for Gene Therapy by Vector Type - Percentage Breakdown of Value Sales for Viral and Non-Viral for the Years 2017, 2020 & 2027 III-3

Table 25: USA Current & Future Analysis for Gene Therapy by Application - Oncological Disorders, Rare Diseases, Neurological Disorders and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-4

Table 26: USA Historic Review for Gene Therapy by Application - Oncological Disorders, Rare Diseases, Neurological Disorders and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2017 through 2019 III-5

Table 27: USA 10-Year Perspective for Gene Therapy by Application - Percentage Breakdown of Value Sales for Oncological Disorders, Rare Diseases, Neurological Disorders and Other Applications for the Years 2017, 2020 & 2027 III-6

CANADA III-7 Table 28: Canada Current & Future Analysis for Gene Therapy by Vector Type - Viral and Non-Viral - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-7

Table 29: Canada Historic Review for Gene Therapy by Vector Type - Viral and Non-Viral Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2017 through 2019 III-8

Table 30: Canada 10-Year Perspective for Gene Therapy by Vector Type - Percentage Breakdown of Value Sales for Viral and Non-Viral for the Years 2017, 2020 & 2027 III-9

Table 31: Canada Current & Future Analysis for Gene Therapy by Application - Oncological Disorders, Rare Diseases, Neurological Disorders and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-10

Table 32: Canada Historic Review for Gene Therapy by Application - Oncological Disorders, Rare Diseases, Neurological Disorders and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2017 through 2019 III-11

Table 33: Canada 10-Year Perspective for Gene Therapy by Application - Percentage Breakdown of Value Sales for Oncological Disorders, Rare Diseases, Neurological Disorders and Other Applications for the Years 2017, 2020 & 2027 III-12

JAPAN III-13 Table 34: Japan Current & Future Analysis for Gene Therapy by Vector Type - Viral and Non-Viral - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-13

Table 35: Japan Historic Review for Gene Therapy by Vector Type - Viral and Non-Viral Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2017 through 2019 III-14

Table 36: Japan 10-Year Perspective for Gene Therapy by Vector Type - Percentage Breakdown of Value Sales for Viral and Non-Viral for the Years 2017, 2020 & 2027 III-15

Table 37: Japan Current & Future Analysis for Gene Therapy by Application - Oncological Disorders, Rare Diseases, Neurological Disorders and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-16

Table 38: Japan Historic Review for Gene Therapy by Application - Oncological Disorders, Rare Diseases, Neurological Disorders and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2017 through 2019 III-17

Table 39: Japan 10-Year Perspective for Gene Therapy by Application - Percentage Breakdown of Value Sales for Oncological Disorders, Rare Diseases, Neurological Disorders and Other Applications for the Years 2017, 2020 & 2027 III-18

CHINA III-19 Table 40: China Current & Future Analysis for Gene Therapy by Vector Type - Viral and Non-Viral - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-19

Table 41: China Historic Review for Gene Therapy by Vector Type - Viral and Non-Viral Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2017 through 2019 III-20

Table 42: China 10-Year Perspective for Gene Therapy by Vector Type - Percentage Breakdown of Value Sales for Viral and Non-Viral for the Years 2017, 2020 & 2027 III-21

Table 43: China Current & Future Analysis for Gene Therapy by Application - Oncological Disorders, Rare Diseases, Neurological Disorders and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-22

Table 44: China Historic Review for Gene Therapy by Application - Oncological Disorders, Rare Diseases, Neurological Disorders and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2017 through 2019 III-23

Table 45: China 10-Year Perspective for Gene Therapy by Application - Percentage Breakdown of Value Sales for Oncological Disorders, Rare Diseases, Neurological Disorders and Other Applications for the Years 2017, 2020 & 2027 III-24

EUROPE III-25 Table 46: Europe Current & Future Analysis for Gene Therapy by Geographic Region - France, Germany, Italy, UK and Rest of Europe Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 III-25

Table 47: Europe Historic Review for Gene Therapy by Geographic Region - France, Germany, Italy, UK and Rest of Europe Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2017 through 2019 III-26

Table 48: Europe 10-Year Perspective for Gene Therapy by Geographic Region - Percentage Breakdown of Value Sales for France, Germany, Italy, UK and Rest of Europe Markets for Years 2017, 2020 & 2027 III-27

Table 49: Europe Current & Future Analysis for Gene Therapy by Vector Type - Viral and Non-Viral - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-28

Table 50: Europe Historic Review for Gene Therapy by Vector Type - Viral and Non-Viral Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2017 through 2019 III-29

Table 51: Europe 10-Year Perspective for Gene Therapy by Vector Type - Percentage Breakdown of Value Sales for Viral and Non-Viral for the Years 2017, 2020 & 2027 III-30

Table 52: Europe Current & Future Analysis for Gene Therapy by Application - Oncological Disorders, Rare Diseases, Neurological Disorders and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-31

Table 53: Europe Historic Review for Gene Therapy by Application - Oncological Disorders, Rare Diseases, Neurological Disorders and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2017 through 2019 III-32

Table 54: Europe 10-Year Perspective for Gene Therapy by Application - Percentage Breakdown of Value Sales for Oncological Disorders, Rare Diseases, Neurological Disorders and Other Applications for the Years 2017, 2020 & 2027 III-33

FRANCE III-34 Table 55: France Current & Future Analysis for Gene Therapy by Vector Type - Viral and Non-Viral - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-34

Table 56: France Historic Review for Gene Therapy by Vector Type - Viral and Non-Viral Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2017 through 2019 III-35

Table 57: France 10-Year Perspective for Gene Therapy by Vector Type - Percentage Breakdown of Value Sales for Viral and Non-Viral for the Years 2017, 2020 & 2027 III-36

Table 58: France Current & Future Analysis for Gene Therapy by Application - Oncological Disorders, Rare Diseases, Neurological Disorders and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-37

Table 59: France Historic Review for Gene Therapy by Application - Oncological Disorders, Rare Diseases, Neurological Disorders and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2017 through 2019 III-38

Table 60: France 10-Year Perspective for Gene Therapy by Application - Percentage Breakdown of Value Sales for Oncological Disorders, Rare Diseases, Neurological Disorders and Other Applications for the Years 2017, 2020 & 2027 III-39

GERMANY III-40 Table 61: Germany Current & Future Analysis for Gene Therapy by Vector Type - Viral and Non-Viral - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-40

Table 62: Germany Historic Review for Gene Therapy by Vector Type - Viral and Non-Viral Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2017 through 2019 III-41

Table 63: Germany 10-Year Perspective for Gene Therapy by Vector Type - Percentage Breakdown of Value Sales for Viral and Non-Viral for the Years 2017, 2020 & 2027 III-42

Table 64: Germany Current & Future Analysis for Gene Therapy by Application - Oncological Disorders, Rare Diseases, Neurological Disorders and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-43

Table 65: Germany Historic Review for Gene Therapy by Application - Oncological Disorders, Rare Diseases, Neurological Disorders and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2017 through 2019 III-44

Table 66: Germany 10-Year Perspective for Gene Therapy by Application - Percentage Breakdown of Value Sales for Oncological Disorders, Rare Diseases, Neurological Disorders and Other Applications for the Years 2017, 2020 & 2027 III-45

ITALY III-46 Table 67: Italy Current & Future Analysis for Gene Therapy by Vector Type - Viral and Non-Viral - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-46

Table 68: Italy Historic Review for Gene Therapy by Vector Type - Viral and Non-Viral Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2017 through 2019 III-47

Table 69: Italy 10-Year Perspective for Gene Therapy by Vector Type - Percentage Breakdown of Value Sales for Viral and Non-Viral for the Years 2017, 2020 & 2027 III-48

Table 70: Italy Current & Future Analysis for Gene Therapy by Application - Oncological Disorders, Rare Diseases, Neurological Disorders and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-49

Table 71: Italy Historic Review for Gene Therapy by Application - Oncological Disorders, Rare Diseases, Neurological Disorders and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2017 through 2019 III-50

Table 72: Italy 10-Year Perspective for Gene Therapy by Application - Percentage Breakdown of Value Sales for Oncological Disorders, Rare Diseases, Neurological Disorders and Other Applications for the Years 2017, 2020 & 2027 III-51

UNITED KINGDOM III-52 Table 73: UK Current & Future Analysis for Gene Therapy by Vector Type - Viral and Non-Viral - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-52

Table 74: UK Historic Review for Gene Therapy by Vector Type - Viral and Non-Viral Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2017 through 2019 III-53

Table 75: UK 10-Year Perspective for Gene Therapy by Vector Type - Percentage Breakdown of Value Sales for Viral and Non-Viral for the Years 2017, 2020 & 2027 III-54

Table 76: UK Current & Future Analysis for Gene Therapy by Application - Oncological Disorders, Rare Diseases, Neurological Disorders and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-55

Table 77: UK Historic Review for Gene Therapy by Application - Oncological Disorders, Rare Diseases, Neurological Disorders and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2017 through 2019 III-56

Table 78: UK 10-Year Perspective for Gene Therapy by Application - Percentage Breakdown of Value Sales for Oncological Disorders, Rare Diseases, Neurological Disorders and Other Applications for the Years 2017, 2020 & 2027 III-57

REST OF EUROPE III-58 Table 79: Rest of Europe Current & Future Analysis for Gene Therapy by Vector Type - Viral and Non-Viral - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-58

Table 80: Rest of Europe Historic Review for Gene Therapy by Vector Type - Viral and Non-Viral Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2017 through 2019 III-59

Table 81: Rest of Europe 10-Year Perspective for Gene Therapy by Vector Type - Percentage Breakdown of Value Sales for Viral and Non-Viral for the Years 2017, 2020 & 2027 III-60

Table 82: Rest of Europe Current & Future Analysis for Gene Therapy by Application - Oncological Disorders, Rare Diseases, Neurological Disorders and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-61

Table 83: Rest of Europe Historic Review for Gene Therapy by Application - Oncological Disorders, Rare Diseases, Neurological Disorders and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2017 through 2019 III-62

Table 84: Rest of Europe 10-Year Perspective for Gene Therapy by Application - Percentage Breakdown of Value Sales for Oncological Disorders, Rare Diseases, Neurological Disorders and Other Applications for the Years 2017, 2020 & 2027 III-63

ASIA-PACIFIC III-64 Table 85: Asia-Pacific Current & Future Analysis for Gene Therapy by Vector Type - Viral and Non-Viral - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-64

Table 86: Asia-Pacific Historic Review for Gene Therapy by Vector Type - Viral and Non-Viral Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2017 through 2019 III-65

Table 87: Asia-Pacific 10-Year Perspective for Gene Therapy by Vector Type - Percentage Breakdown of Value Sales for Viral and Non-Viral for the Years 2017, 2020 & 2027 III-66

Table 88: Asia-Pacific Current & Future Analysis for Gene Therapy by Application - Oncological Disorders, Rare Diseases, Neurological Disorders and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-67

Read more here:
Global Gene Therapy Industry - GlobeNewswire

Posted in Gene therapy | Comments Off on Global Gene Therapy Industry – GlobeNewswire

Avrobio tracks improvements in first patient treated with Gaucher gene therapy – FierceBiotech

Posted: November 19, 2020 at 10:58 am

Avrobio has shared data on the first Gaucher disease patient to receive its gene therapy AVR-RD-02. The patient, who was stable on enzyme replacement therapy at baseline, experienced a 22% drop in a toxic metabolite after receiving AVR-RD-02 and stopping taking the standard of care.

Gaucher, like the Fabry disease targeted by Avrobios lead prospect, is currently treated using enzyme replacement therapies sold by Sanofi and Takeda, which entered the market through its takeover of Shire. However, a significant minority of patients experience physical limitations despite treatment. Negative outcomes include bone pain and spleen enlargement. Johnson & Johnsons Zavesca offers an oral alternative, but there remain unmet medical needs.

Avrobio is developing AVR-RD-02 to address those needs. The data shared as part of Avrobios R&D day mark the start of the effort to show AVR-RD-02 performs as hoped in the clinic.

The first patient to receive AVR-RD-02 discontinued enzyme replacement therapy one month before taking the gene therapy. Three months after receiving the gene therapy, levels of Gaucher biomarker lyso-Gb1 had fallen 22%. The patients level of plasma chitotriosidase, a biomarker of cells associated with severe organ damage, was down 17%. Hemoglobin and platelets were in the normal range.

AVR-RD-02 triggered those changes without causing serious adverse events. The data drop offers an early indication that Avrobio may be able to improve outcomes by harvesting hematopoietic stem cells, adding a gene that encodes for glucocerebrosidase and reinfusing the cells back into the same patient. With enzyme replacement therapies costing healthcare systems up to $400,000 a year per patient, there is scope for AVR-RD-02 to cut the cost of treating Gaucher disease.

Avrobio shared the early look at clinical data on AVR-RD-02 alongside updates about other assets. There is now more than three years of data on some Fabry patients treated with Avrobios lead asset, putting the company in a position to plot a path to accelerated approval. Avrobio plans to submit its briefing book to the FDA by the end of the year to align on an accelerated approval strategy.

The update also covered cystinosis candidate AVR-RD-04. The first patient to receive the candidate is off oral and eye drop cysteamine 12 months after receiving the gene therapy. The number of crystals in the patients skin are down 56%, leading Avrobio to posit they may have gained the ability to make their own functional cystinosin protein.

See more here:
Avrobio tracks improvements in first patient treated with Gaucher gene therapy - FierceBiotech

Posted in Gene therapy | Comments Off on Avrobio tracks improvements in first patient treated with Gaucher gene therapy – FierceBiotech

Prevail Therapeutics Granted Composition of Matter Patent for Experimental Gene Therapy Program PR001 – GlobeNewswire

Posted: November 19, 2020 at 10:58 am

NEW YORK, Nov. 18, 2020 (GLOBE NEWSWIRE) -- Prevail Therapeutics Inc. (Nasdaq: PRVL), a biotechnology company developing potentially disease-modifying AAV-based gene therapies for patients with neurodegenerative diseases, today announced that the United States Patent and Trademark Office (USPTO) onNovember 17, 2020issued a composition of matter patent, U.S. Patent No. 10,837,028,with claims directed to the AAV vector used in PR001, Prevails experimental gene therapy program for the treatment of Parkinsons disease with GBA1 mutations (PD-GBA) and neuronopathic Gaucher disease (nGD). The base patent term extends until October 3, 2038, excluding patent term extensions or coverage in additional related patent filings.

We are excited to make important progress this year with PR001, which is being evaluated in the Phase 1/2 PROPEL trial for patients with Parkinsons disease with GBA1 mutations and in the Phase 1/2 PROVIDE trial for patients with Type 2 Gaucher disease, said Asa Abeliovich, M.D., Ph.D., Founder and Chief Executive Officer of Prevail. We are advancing clinical development of PR001 to make a potentially transformative difference for these patients who currently have no approved treatment options.

The Company recently announced that patient dosing has continued in the Phase 1/2 PROPEL clinical trial of PR001 for PD-GBA patients, and it expects to provide the next biomarker and safety analysis on a subset of patients in the PROPEL trial by mid-2021. The Company expects to initiate enrollment of the Phase 1/2 PROVIDE clinical trial of PR001 for Type 2 Gaucher disease patients in the fourth quarter of 2020 and currently anticipates it will provide the next update on PR001 biomarker and safety data for nGD in 2021.

The U.S. Food and Drug Administration has granted Fast Track designations for PR001 for the treatment of PD-GBA and nGD. In addition, the FDA granted PR001 Rare Pediatric Diseasedesignation for the treatment of nGD, and Orphan Drugdesignation for the treatment of patients with Gaucher disease.

About Prevail TherapeuticsPrevail is a gene therapy company leveraging breakthroughs in human genetics with the goal of developing and commercializing disease-modifying AAV-based gene therapies for patients with neurodegenerative diseases. The Company is developing PR001 for patients with Parkinsons disease with GBA1mutations (PD-GBA) and neuronopathic Gaucher disease (nGD); PR006 for patients with frontotemporal dementia withGRNmutations (FTD-GRN); and PR004 for patients with certain synucleinopathies.

Prevail was founded by Dr.Asa Abeliovichin 2017, through a collaborative effort withThe Silverstein Foundationfor Parkinsons with GBA and OrbiMed, and is headquartered inNewYork, NY.

Forward-Looking Statements Related to PrevailStatements contained in this press release regarding matters that are not historical facts are forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, as amended. Examples of these forward-looking statements include statements concerning the potential for Prevails gene therapy candidates to make a transformative difference for patients with neurodegenerative diseases; the expected timing of reporting additional interim data on a subset of patients from the PROPEL trial; and the anticipated timing of enrollment of and the next update on data from the PROVIDE trial. Because such statements are subject to risks and uncertainties, actual results may differ materially from those expressed or implied by such forward-looking statements. These risks and uncertainties include, among others: Prevails novel approach to gene therapy makes it difficult to predict the time, cost and potential success of product candidate development or regulatory approval; Prevails gene therapy programs may not meet safety and efficacy levels needed to support ongoing clinical development or regulatory approval; the regulatory landscape for gene therapy is rigorous, complex, uncertain and subject to change; the fact that gene therapies are novel, complex and difficult to manufacture; and risks relating to the impact on our business of the COVID-19 pandemic or similar public health crises. These and other risks are described more fully in Prevails filings with the Securities and Exchange Commission (SEC), including the Risk Factors sections of the Companys most recent Annual Report on Form 10-K and Quarterly Report on Form 10-Q filed with the SEC, and its other documents subsequently filed with or furnished to the SEC. All forward-looking statements contained in this press release speak only as of the date on which they were made. Except to the extent required by law, Prevail undertakes no obligation to update such statements to reflect events that occur or circumstances that exist after the date on which they were made.

Media Contact:Lisa QuTen Bridge Communications LQu@tenbridgecommunications.com678-662-9166

Investor Contact:investors@prevailtherapeutics.com

Read more:
Prevail Therapeutics Granted Composition of Matter Patent for Experimental Gene Therapy Program PR001 - GlobeNewswire

Posted in Gene therapy | Comments Off on Prevail Therapeutics Granted Composition of Matter Patent for Experimental Gene Therapy Program PR001 – GlobeNewswire

Orgenesis CEO talks disruption: ‘We are the Uber of the cell and gene therapy space’ – BioPharma-Reporter.com

Posted: November 19, 2020 at 10:58 am

Maryland, US headquartered company, Orgenesis, is championing a model that aims to bring down those costs it works with partner hospitals throughout the commercialization process.

The companys CGT platform, consisting of a pipeline of licensed cell and gene therapies, scientific expertise, customised processing systems, and an ecosystem of healthcare providers and research institutes, is designed to provide a pathway for groundbreaking autologous therapies to become commercially available on an industrial scale and at prices accessible to large populations.

Orgenesis business model is one focused on decentralization, enabling precision medicines to be prepared on-site at hospitals. In this way, we can really expedite cell and gene therapy development, said Orgenesis CEO, Vered Caplan.

With operations in the US, Europe, Israel and South Korea, Orgenesis has now created an international network of point of care (POCare) centers to serve patients directly in the hospital setting.

Beyond the US, we have POCare centers in many countries in Europe such as Greece, the Netherlands, Belgium, Slovenia, Italy and Spain; we also have centers in Israel, in Korea and in India and we will be starting up soon in Dubai,said the CEO.

The goal is to make gene and cell therapies feasible for large numbers of patients, said Caplan. We used to work as a contract development and manufacturing organization (CDMO) but we sold that business to Catalent at the beginning of the year.

The centralized processing and supply chain model only served to create a frustrating working environment, with plenty of constraints, said the Orgenesis lead.

We realized very quickly that we couldnt really ramp up to large scale relying on that kind of centralized model, particularly for autologous products, which represent most of the market today. It takes six months to train someone to work in a high-grade cleanroom there is a lot of work and expense involved in that and there is a limited number of patients that can be treated in such cleanrooms the utilization rate is very low - it [centralized processing and supply] is a very inefficient and costly way to supply and to develop medicine there is so much manual work involved, she told BioPharma-Reporter.

The company had been working for a number of years, investing a huge amount of effort in developing a range of automation solutions to supplant those manual processes, as well as building its mobile CGT processing labs and units (OMPULs), she said.

We had been fielding so many requests from hospitals that wanted to collaborate with us, asking us to make or scale up their CAR-T and other therapies. We realized that in order to get this done, we needed to take a decentralized approach and that we needed to provide a solution, not only for one hospital, but for every hospital that wanted these type of therapies; and we saw that such a model brings down the price of the therapy tremendously.

A hospital gives Orgenesis a license to work on the therapy, on the processing; production of the final product is automated and supplied via an on-site point-of-care processing unit. Orgenesis then sets about democratizing the treatment,making it available to any hospital in its POCare network.

The company says the final customized, automated processing system it has developed, with the integrated specific therapy, solves a variety of processing and cost hurdles. It results in a lower required grade of cleanroom, it simplifies facility management requirements, it enables multi-batch processing per cleanroom, which means reduced technical staffing. Moreover, the localized processing eliminates the many logistical difficulties associated with traditional, centralized manufacturing and transport.

Overall, it is said to provide faster turnaround, increased safety, and improved quality control management on-site.

Hospitals really want to supply CGTs, while patients are reading about such treatments and making inquiries of healthcare providers, she added.

Ours is really a combined licensing and service model.

We are like Uber. If you have a car, you want to make some extra revenue, you call up Uber and it gives you the network, the technology and all the operating procedures to be a taxi driver. That is very much what we do in terms of hospitals we give them the ability to be biotech companies, because this is not the standard thing they do, they dont want to take responsibility for cell and gene therapy it is too much for them. They want to treat patients, but they want to have that local supply, so we give them the technology and the capabilities to do that. We give them regulatory support for clinical trials, we give them CRO support, we give them a network - so they can function and do what they need to do, which is to undertake research and treat patients.

Orgenesis intends to leverage its network of regional partners to advance the development and commercialization of its therapeutic pipeline. Towards this end, it said its partners have committed to funding the clinical programs. In turn, the company typically grants its partners geographic rights in exchange for future royalties, and a partnership with Orgenesis to support the supply of the targeted therapies. Through this model, Orgenesis has already signed contracts, which it expect to generate over US$40M in revenue over the next three years, if fully realized.

On the therapeutic front, Orgenesis is focused on several key verticals, including immuno-oncology, anti-viral, and metabolic/auto-immune diseases.

It recently acquired Koligo Therapeutics, with the aim of leveraging Koligos 3D-V bioprinting technology across its POCare Platform. That technology, which utilizes 3D bioprinting and vascularization with autologous cells to create biodegradable and shelf-stable three-dimensional cell and tissue implants, is being developed for diabetes and pancreatitis, with longer term applications for neural, liver, and other cell/tissue transplants.

In February this year, Orgenesis announced that it has entered into a collaboration agreement with the John Hopkins University to utilize the POCare platform to develop and supply a variety of CGTs including cell-based immunotherapy technologies.

And the University of California, Davis (UC Davis) joined its POCare network in January. The collaboration will involve the scale up and integration of UC Davis lentiviral vector process.

Today we are very much in validation mode. Most of the therapies in this space, and the ones we have licensed from the hospitals I think we have about 25 today are all at different stages of clinical development. Some have been used to treat patients but that has all been done under hospital exception.

When we adopt a therapy into the network, we run it through the entire R&D, formal clinical and regulatory processes as [our goal] is a harmonized process, to have the same standard [in our closed systems] at our [POCare] centers, whether that is in Germany or Korea, said the CEO.

The rest is here:
Orgenesis CEO talks disruption: 'We are the Uber of the cell and gene therapy space' - BioPharma-Reporter.com

Posted in Gene therapy | Comments Off on Orgenesis CEO talks disruption: ‘We are the Uber of the cell and gene therapy space’ – BioPharma-Reporter.com

Page 41«..1020..40414243..5060..»