Page 7«..6789..20..»

Category Archives: California Stem Cells

Astrocytes Derived from Patients with Bipolar Disorder Malfunction – UC San Diego Health

Posted: March 11, 2021 at 4:46 am

Brain cells called astrocytes derived from the induced pluripotent stem cells of patients with bipolar disorder offer suboptimal support for neuronal activity. In a paper in the journal Stem Cell Reports, researchers show that this malfunction can be traced to an inflammation-promoting molecule called interleukin-6 (IL-6), which is secreted by astrocytes. The results highlight the potential role of astrocyte-mediated inflammatory signaling in the psychiatric disease, although further investigation is needed.

Our findings suggest that IL-6 may contribute to defects associated with bipolar disorder, opening new avenues for clinical intervention, said co-senior study author Fred Gage of the Salk Institute for Biological Studies.

Approximately 1-3% of individuals suffer from bipolar disorder, which is characterized by recurrent mood states ranging from high energy and elation, known as mania, to low energy and depressive episodes. Several lines of evidence suggest a link between imbalanced inflammatory signaling and bipolar disorder. For example, these patients show signs of chronic inflammation and have a higher prevalence of inflammation-related conditions such as cardiovascular disease, diabetes, and metabolic syndrome. Moreover, they have higher concentrations of circulating pro-inflammatory cytokines such as IL-1 and IL-6, particularly during manic episodes.

While mild inflammation can be beneficial for many neural processes, the overproduction of IL-6 may worsen the symptoms of bipolar disorder and may be an important therapeutic target, said co-senior study author Maria Carolina Marchetto of the Salk Institute and the University of California San Diego Department of Anthropology.

Astrocytes are known to participate in the inflammatory cascade within the brain. These cells are activated by IL-1 and other pro-inflammatory cytokines and in turn secrete cytokines that participate in the process of neuroinflammation. Due to a growing understanding of the role of neuroinflammation in psychiatric disorders, we wondered whether altered inflammation-driven signaling in astrocytes was associated with bipolar disorder, said co-senior study author Renata Santos of Salk and the Institute of Psychiatry and Neuroscience of Paris.

The researchers previously developed a method for rapidly generating inflammation-responsive astrocytes from human induced pluripotent stem cells (iPSCs). In the new study, they compared the inflammation signatures in iPSC-derived astrocytes generated from six patients with bipolar disorder and four healthy individuals.

The response of astrocytes from patients to pro-inflammatory cytokines revealed a unique transcriptional pattern, which was characterized by higher expression of the IL-6 gene. As a result, these cells secreted more IL-6, which negatively impacted the activity of co-cultured neurons. Exposure to the culture medium of the astrocytes was sufficient to decrease neuronal activity, and this effect was partially blocked by IL-6-inactivating antibody. Moreover, blood levels of IL-6 were higher in patients compared to healthy individuals.

These results suggest that secreted factors from astrocytes play a role in regulating neuronal activity and that, in the case of bipolar disorder, IL-6 at least in part mediated the effects of inflammation-primed astrocytes on neuronal activity, said first author Krishna Vadodaria of Salk.

Moving forward, the researchers plan to further investigate the effect of IL-6 on neuronal activity. In the meantime, the findings should be interpreted with caution. The experiments may not mimic conditions of chronic inflammation associated with bipolar disorder, and the culture system did not include many cell types involved in potentially relevant immune responses. In addition, iPSC-derived astrocytes are relatively immature compared to those in the brains of bipolar patients, and there is a lack of reliable biomarkers for pinpointing exact developmental age.

At this moment, direct extrapolation of the results to patients remains challenging, Gage said. Despite these limitations, our findings elucidate aspects of the understudied role of astrocytes in neuroinflammation in psychiatric disorders.

This research was supported by the Robert and Mary Jane Engman Foundation, Lynn and Edward Streim, the Paul G. Allen Family Foundation, Bob and Mary Jane Engman, the Leona M. and Harry B. Helmsley Charitable Trust, Annette C. Merle-Smith, the G. Harold & Leila Y. Mathers Foundation, the National Institute of Mental Health, and the Department of Veterans Affairs.

View original post here:
Astrocytes Derived from Patients with Bipolar Disorder Malfunction - UC San Diego Health

Posted in California Stem Cells | Comments Off on Astrocytes Derived from Patients with Bipolar Disorder Malfunction – UC San Diego Health

Peer Recognition | The UCSB Current – The UCSB Current

Posted: March 11, 2021 at 4:46 am

Three professors from the UC Santa Barbara College of Engineering and one from the Department of Molecular, Cellular and Developmental Biology (MCDB) have been named Fellows of the prestigious American Institute for Medical and Biological Engineering (AIMBE), recognizing their interdisciplinary achievements.

Nominated by their peers, fellows represent the top 2% of the medical and biological engineering community.

Mechanical engineers Linda Petzold, Sumita Pennathur and Megan Valentine, and MCDBs Dennis Clegg, are among this years 174 new AIMBE fellows. Members are nominated by their peers and represent the top two percent of the medical and biological engineering community, having made transformational contributions to the medical and biological engineering (MBE) community in academia, industry, government and education.

We are extremely proud to have four UC Santa Barbara faculty members selected as AIMBE Fellows for 2021, saidRod Alferness, dean of the UCSB College of Engineering. Being named an AIMBE Fellow is a particularly notable achievement, first, because it is highly competitive and second, and perhaps more importantly, because it recognizes achievements at the intersection of science and engineering, which may have life-changing impacts. We offer our most sincere congratulations to Linda Petzold, Sumita Pennathur, Megan Valentine and Dennis Clegg on this significant achievement.

I congratulate all four professors from UC Santa Barbara on this honor, said Pierre Wiltzius, the Susan & Bruce Worster Dean of Science in the College of Letters & Science. AIMBE Fellows are known foremost for their transformative interdisciplinary research, which is something we champion on this campus. Our faculty have a long and fruitful history of integrating science and engineering, and I couldnt be happier to see the work of these leading scholars recognized.

Linda Petzold, also a professor of computer science, has been widely recognized for her impactful work on mathematical modeling and computational simulation in a variety of disciplines and applications. Her breakthrough 1982 paper Differential-Algebraic Equations (DAEs) are not ODEs [ordinary differential equations] opened up a new subfield in computational mathematics, and her public-domain software DASSL has enabled the simulation of countless systems in engineering and science.

It is a pleasure for me to receive this recognition from the AIMBE community for my work in medical and biological engineering, she said.I greatly enjoy working in this area, as it allows me the opportunity to address challenges and further understanding in a variety of diverse subject areas.

Petzolds algorithm and software (LSODA), described in a 1983 paper, has been used extensively and remains in widespread use, in particular as part of Mathematica (a modern and widely applied technical computing system), as well as in the chemical and pharmaceutical industries. More recently, her work has focused on algorithms and software for discrete stochastic systems, motivated by the need to model the inherent randomness of biochemical reactions in the cell. In this work, she and her collaborators have developed algorithms and the public-domain software StochSS for discrete stochastic simulation of biochemical systems. Her work on mathematical modeling of biological systems has elucidated a mechanism for the onset of coagulopathy, revealed the role of stochasticity in cell polarization, derived the network structure of neurons involved in Circadian Rhythm, and contributed in numerous other areas.

Petzold, a member of the National Academy of Engineering, has contributed extensively to the profession and to diversity in the sciences. She serves on the Board of Directors of the Society for Industrial and Applied Mathematics (SIAM), in 2016 receiving the SIAM Prize for Distinguished Service to the Profession. Committed to promoting and supporting diversity in the profession, she has served as director of the UCSB Institute for Collaborative Biotechnologies Diversity Program, focused on underrepresented students with a special emphasis on women in science.

Sumita Pennathur, a pioneer in nanofluidics, interfacial science and biological engineering,has a longstanding commitment to advancing human health through innovative science and engineering. Her seminal work has revealed unique physics at the nanoscale, making it possible to model, predict and, ultimately, control fluids and the molecules they contain. Researchers in the Pennathur laboratory invent, design and build nanoscale devices to measure key fluidic parameters with unprecedented accuracy and precision via a tight integration of theory, modeling and reduction to practice.

Pennathur has applied her discoveries to develop novel biomedical technologies, leading her to found three startup companies:Asta Fluidics, for rapid diagnosis of potentially lethal complications during pregnancy;Alveo Technologies, which is developing an in-home diagnostic for COVID-19; and Laxmi Therapeutic Devices,amicroneedle based continuous glucose monitoring company.

I am honored to be recognized alongside a cohort of amazing biomedical engineers and innovators, Pennathur said. I fully supportthe AIMBE mission to advance medicine and bioengineering innovations and commend the society of their impact in funding for medical science and education.

For her early academic research accomplishments, Pennathur in 2010 received a coveted PECASE award (Presidential Early Career Awards for Scientists and Engineers) from President Obama. She also was awarded the Defense Advanced Research Programs Administration (DARPA) Young Faculty Award in 2008, the UC Regents Junior Faculty Fellowship in 2009, and the ADA Pathway to Stop Diabetes Visionary Award in 2017.

Megan Valentine is an internationally recognized leader in biomaterials science, cellular mechanics and mechanotransduction. Her pioneering research establishes how forces are generated, transmitted and sensed in soft living matter, and how to capture the properties of living systems in synthetic materials. Her innovative approaches bridge length scales from molecular to macroscopic and combine her significant biological expertise with innovative tool development and a deep understanding of physical phenomena to impact multiple areas of biomedical engineering.

It's an honor to be selected as an AIMBE Fellow and a testament to the collaborative and interdisciplinary nature of both my work and UC Santa Barbara, Valentine said. Ive dedicated my career to working across disciplines: my undergraduate and graduate degrees are in physics, I completed a post-doc in biological sciences and am a professor of mechanical engineering. Each specialty has its own jargon and culture, and I am proud that my ability to innovate across boundaries has been recognized. I am eager to continue working with doctors, scientists and engineers from diverse communities to address pressing societal needs.

Valentines groundbreaking studies have provided a critically important understanding of the molecular mechanisms underlying normal cell division. Her work has established the use of microrheology for unprecedented measurements of the interplay among structure, mechanics and dynamics of complex biomaterials, such as cytoplasm.

By developing innovative imaging methods and mechanical testing devices, she has established the role of mechanosensation in regulating vascular growth dynamics, as well as the response of cells to high strain and high strain-rate impacts, providing novel insight into vascular regeneration and traumatic brain injury, respectively.

Finally, Valentine has become a leader in the area of bio-inspired materials, with an emphasis on developing high-performance adhesives and load-bearing composites. She established the nonlinear elastic and fracture behavior of natural materials, and is developing new classes of strong stimuli-responsive polymeric materials, with applications to healthcare, packaging and robotics.

Valentine is a devoted advocate for women and underrepresented minority students both at UCSB and in the broader bioengineering community. Particularly invested in engaging student veterans in hands-on research, she has developed two NSF-supported programs to support their summer internships at UCSB.

She is an active organizer in the American Physical Society March Meeting, and recently completed a three-year term on the Executive Committee of the Division of Biological Physics. She has served as a member of the Early Careers Committee of the Biophysical Society, where she led efforts in advocacy, training and professional development for graduate students and postdoctoral scholars. An AIMBE fellowship will provide her with new avenues of engagement and new opportunities to work for the betterment of our community and society.

Valentine is a co-director of the California NanoSystems Institute (CNSI) at UCSB and a fellow of the American Physical Society. She received a Career Award at the Scientific Interface (CASI) from the Burroughs Wellcome Fund, a UC Regents Junior Faculty Fellowship, a Hellman Family Faculty Fund Fellowship, a CAREER award from the National Science Foundation, and a Fulbright Scholar Award from the U.S. Department of State.

Dennis Clegg, a pioneer in translational regenerative medicine, achieved world renown for developing a bioengineered implant consisting of stem-cell-derived retinal cells on a synthetic parylene membrane. The technology is now in clinical trials for the treatment of dry age-related macular degeneration (AMD), a leading cause of blindness.

Cleggs lab discovered methods to differentiate pluripotent stem cells into retinal pigmented epithelial (RPE) cells, which degenerate in AMD. His group was the first to report that bona fide RPE cells could be derived from induced pluripotent stem cells (iPS). He established and is co-PI of the California Project to Cure Blindness, a multidisciplinary team comprising stem cell biologists, engineers and surgeons who developed the RPE implant and devised a surgical delivery strategy. Their Phase I trial has generated promising results for the dry form of AMD, a blinding condition with no treatment.

This is a great honor; it underscores the importance of thinking outside the disciplinary box, and collaboration between biologists and engineers, Clegg said of this election as an AIMBE Fellow. UCSB has provided a fertile ground for cutting-edge work, which will continue to thrive, resulting in advances in biomedical engineering.

Clegg has made impactful contributions to our understanding of cell-extracellular matrix interactions during ocular development. These studies informed further research of novel bio-mimetic materials that support survival and differentiation of stem cells. Clegg has navigated these discoveries all the way to clinical application.

Chair of MCDB from 2004-2009, and founder and co-director, since 2008, of the Center for Stem Cell Biology and Engineering, Clegg has served on the Chancellors Committee on Diversity, as director of an HHMI Undergraduate Program, and as director of two graduate training programs aimed at promoting underrepresented minorities and women in science. He was a speaker at the California Graduate Diversity Forum (2006-2014) and currently serves on Scientific Advisory Boards for biotechnology programs at California State University Channel Islands, which, like UCSB, is a Hispanic-Serving Institution.

Clegg also is noted for his ability to communicate complex science to general audiences, as evidenced in his 2012 TedX talk and in his extensive public outreach, particularly in educational activities related to stem cell biology and regenerative medicine.

All 160 members of the AIMBE College of Fellows Class of 2021 will be inducted at a ceremony to be held remotely March 26.

Read more from the original source:
Peer Recognition | The UCSB Current - The UCSB Current

Posted in California Stem Cells | Comments Off on Peer Recognition | The UCSB Current – The UCSB Current

Stem cells on the ballot – Science Magazine

Posted: January 20, 2021 at 6:51 pm

California's ballot measures often reveal much about the broader U.S. policy environment. This is particularly true of the approval by the state's voters in November of Proposition 14, The California Stem Cell Research, Treatments, and Cures Initiative of 2020. Proposition 14 extends the 2004 ballot Proposition 71, which established the California Institute for Regenerative Medicine (CIRM) and authorized $3 billion in state-issued bonds for CIRM to fund stem cell and regenerative research and medicine (restricted to California). Proposition 14, which authorizes $5.5 billion over the next 10 years to continue CIRM's work, succeeded in part by informing voters of CIRM's successes and that its conflict-of-interest provisions are extremely strong. This state-level action is critical because, contrary to opponents' opinions, the overall policy environment for human stem cell research in the United States is in some ways worse now than when Proposition 71 passed.

Since 2004, CIRM has funded groundbreaking work on immune disorders, cancer, spinal cord injury, diabetes, and more. The result has been more than 90 stem cellrelated clinical trials (directly or indirectly supported by CIRM), almost 3000 scientific papers, and contributions to two cancer therapies approved by the U.S. Food and Drug Administration. The lives of many patients have improved because of CIRM. Notably, many CIRM-funded clinical trials rely on human embryonic or fetal stem cells, whereas the federal government currently does not fund any clinical trials using these types of cells.

Proposition 71 was motivated largely in response to restrictions on human embryonic stem cell research in the United States in 2004. However, although research was limited to a small number of human embryonic stem cell lines, there was no formal ban on federal funding of research on such stem cells. In addition, in 2004 there were no restrictions on federal funding of human fetal stem cell and tissue research; however, there is now near-complete blockage of federal funding for such research. And federal funding for human embryonic stem cell research is again at risk. On 4 September 2020, 22 Republican senators and 72 Republican House members wrote to President Trump requesting an end to all federal funding of human embryonic stem cell research. Could President Trump impose a ban that would be difficult to revoke? Or, could Republican senators manufacture a ban by legislative maneuvering on a budget reconciliation vote, which requires 60% support? Such maneuvering created the effectively permanent 1995 Dickey-Wicker amendment, which prohibits federal funding of any research in which human embryos are created or destroyed. Dickey-Wicker has limited research on in vitro fertilization methods and stalled progress on understanding early human development. It has not solved the problem of the many, perhaps 1 million frozen embryos in the United States that will not be used for in vitro fertilization and will be destroyed without benefit if not used for research. Vital long-term research is greatly harmed by the U.S. policy environment, with the likely outcome that many young scientists will avoid research using human embryonic stem cells and human fetal tissue.

Restrictions on valuable, ethical research appear particularly fool-hardy during a deadly pandemic. Research on viruses such as HIV and SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) can benefit greatly from work using mice that utilize human fetal stem cells and tissues to generate a human-like immune system. These mice allow evaluation of a human immune system in the contexts of infection mechanisms, generation of immunity, and drug response. These studies can be supported with Proposition 14 funds in California, but not with federal funds. It is crucial for the incoming Biden administration to evaluate the need for federal funding in these important areas with high-quality scientific input and evidence.

California's vote on Proposition 14 should also help the rest of the country appreciate the need to increase investments in biomedical research at the U.S. National Institutes of Health and other federal agencies. Current biomedical research expenditures amount to only a tiny fraction of the costs of disease, so an objective evaluation of appropriately increased research funding relative to disease costs is warranted. Once again, California is showing the way.

See the rest here:
Stem cells on the ballot - Science Magazine

Posted in California Stem Cells | Comments Off on Stem cells on the ballot – Science Magazine

Controlling the immune system with ‘invisible stem’ cells – BioNews

Posted: January 20, 2021 at 6:51 pm

18 January 2021

A new way of controlling the immune system's 'natural killer' cells has been identified, which could help prevent rejection of transplanted cells.

Natural killer cells act as a front-line defence against foreign cells in the body. Overcoming this defence has represented a major challenge to transplant, cancer immunotherapy and regenerative medicine. The new research provides a possibility to disguise transplanted cells so that they are 'invisible' to this immune defence.

'As a cardiac surgeon, I would love to put myself out of business by being able to implant healthy cardiac cells to repair heart disease', said the study's lead author Professor Tobias Deuse, from the Department of Surgery at University of California, San Francisco. 'And there are tremendous hopes to one day have the ability to implant insulin-producing cells in patients with diabetes or to inject cancer patients with immune cells engineered to seek and destroy tumours. The major obstacle is how to do this in a way that avoids immediate rejection by the immune system'.

Professor Deuse and his colleagues genetically engineered cells to express the protein CD47 and found that these were not attacked by natural killer cells. They discovered that this was because the CD47 protein activates another protein found in the natural killer cells called SIRP.

SIRP was known to be important in other immune cell responses, but scientists had not previously been able to identify it in natural killer cells. 'All the literature said that natural killer cells don't have this checkpoint, but when we looked at cells from human patients in the lab we found SIRP there, clear as day', said corresponding author Professor Sonja Schrepfer.

The team investigated whether this finding could be used to help transplanted stem cells to avoid immune rejection. To do this, they genetically engineered human cells to express rhesus monkey CD47 and transplanted these cells into monkeys. They found that the engineered cells activated the SIRP on natural killer cells, which prevented them from being attacked.

In the future the same procedure could be performed in reverse, expressing human CD47 in pig cardiac cells, for instance, to prevent them from activating natural killer cells when transplanted into human patients.

The research team aims to create a 'hypoimmune' cell line for use in regenerative medicine that will be able to avoid immune rejection.

'Currently engineered cell therapies for cancer and fledgling forms of regenerative medicine all rely on being able to extract cells from the patient, modify them in the lab, and then put them back in the patient. This avoids rejection of foreign cells, but is extremely laborious and expensive', said Professor Schrepfer. 'Our goal in establishing a hypoimmune cell platform is to create off-the shelf products that can be used to treat disease in all patients everywhere'.

The research was recently published in the Journal of Experimental Medicine.

See the original post:
Controlling the immune system with 'invisible stem' cells - BioNews

Posted in California Stem Cells | Comments Off on Controlling the immune system with ‘invisible stem’ cells – BioNews

What Proposition 14 Tells Us About California – The New York Times

Posted: October 20, 2020 at 5:58 pm

Good morning.

Tapping through Instagram stories is not where I expected to find the actor Seth Rogen looking very serious.

And yet, there he has been over the last couple weeks, nodding solemnly as his wife, Lauren Miller Rogen, talks about Alzheimers research. A big block floating near their heads reads, Yes on 14.

Thats Proposition 14, one of the dozen propositions on the statewide ballot this month.

[Read more about whats on this years statewide ballot.]

The measure, which would put $5.5 billion in state bond money toward stem cell and other medical research, is not something most Californians are likely to have spent a lot of time thinking about.

But its a fair illustration of Californias ever-evolving ballot proposition system at work, David McCuan told me.

Mr. McCuan is a political-science professor at Sonoma State University who has studied Californias ballot initiatives for two decades.

Historically, its been hard to get voters to say yes to the questions theyre posed on the statewide ballot, he said, whether theyre being asked to spend more money on something like stem cell research or to change laws made by the Legislature. But thats been shifting.

We see things where the yes side and the coalitions that form under initiative politics are becoming better learners, he said. Donors are strategic, and the ballot measure itself is specific about what it will do.

He said that as the strategy behind Californias propositions the crafting of ballot language, the timing of ad spending has become more sophisticated, the money behind them has become astronomical.

This is the second most expensive political exercise in the free world, he said. Youre looking at around $650 million so far for 12 ballot measures.

Compare that, he said, with $57 million the record-breaking quarterly sum raised by Jaime Harrison, whos challenging Senator Lindsey Graham in South Carolina.

Much of that spending this year has been by proponents of Proposition 22, the complicated ballot initiative that would exempt ride-sharing companies like Uber and Lyft from requirements that they give drivers protections and benefits due to employees under the states new gig-work law.

[Read more from The Los Angeles Times about arguments for and against Proposition 14.]

But millions of dollars have been spent even on something much lower profile, like Proposition 14.

The coalition that put it on the ballot has raised more than $13.4 million in support of the measure, according to the California Fair Political Practices Commission, which lists top donors to each campaign. Most of that money has come from Robert N. Klein, a real estate investor, as well as Dagmar Dolby, the widow of Ray Dolby, the sound magnate.

It would re-up funding for the states stem cell research agency, which was started with the blessing of California voters, who approved the first bonds in a 2004 ballot measure, to fill in gaps left by a federal ban on funding for research using new embryonic stem cells.

[See The Timess full voter guide for Californians, with information about how, when and where to cast your ballot.]

Proponents, who include Gov. Gavin Newsom and the University of California Board of Regents, say its critical, lifesaving work that takes time and resources.

Opponents say that the measure would saddle California taxpayers with even more debt during an economic crisis, and that the money the agency has already spent hasnt yielded worthwhile results.

Further, as the editorial boards of The Los Angeles Times and The San Francisco Chronicle noted, the ban on federal funding, under President George W. Bush, was reversed by President Barack Obama.

But the fight is lopsided: Theres no significant organized campaign against the measure. The Secretary of States office showed that the No on Proposition 14 committee raised just $250.

[Conoces a alguna persona interesada en esta informacin en espaol? Puedes compartirle nuestra gua para los votantes de California.]

Mr. McCuan said bond measures like Proposition 14 have tended to fare better with voters.

And while he suggested opponents of some ballot measures may save up to fight the results in court 70 percent of the ballot measures that go to the ballot through popular petition and are passed are found unconstitutional he doesnt see that happening with Proposition 14.

In essence, the measure shows the system doing what it was intended to do: Give anyone an opportunity to ask voters to weigh in on a question as long as they have the money to get their message out, Mr. McCuan said.

Still, he said, a high stakes general election can sweep up, or lead to some surprises.

(This article is part of the California Today newsletter. Sign up to get it by email.)

Read more about politics and the ballot in California:

Uber and Lyft have been pushing their Proposition 22 message somewhere voters cant escape it: their phones. [The Los Angeles Times]

Proposition 25 would end cash bail. Why are some progressive groups against it? [KQED]

Find information about all the propositions, including whos putting money behind which side. [CalMatters | The Los Angeles Times | SFGate | Official voter information guide]

The campaign manager for Representative T.J. Cox admitted to using Photoshop to make it look like his opponent, David Valadao, retweeted the presidents post saying, California is going to hell. Vote Trump! Mr. Cox is the Central Valley Democrat fighting to keep the job he narrowly won in 2018 from Mr. Valadao, the moderate Republican who last held the seat. [KGET]

A long-running legal battle over the 2020 census took another turn. Heres where things stand. [The New York Times]

When Senator Kamala Harris asked Judge Amy Coney Barrett about climate change on Wednesday, Judge Barrett called it a very contentious matter of public debate. [The New York Times]

Pacific Gas and Electric said more than 50,000 customers across a broad swath of Northern California would lose power as yet another round of hot, dry, dangerous weather descends on the region. The utility said on Wednesday that shut-offs would start that night and could extend until Friday night. [The New York Times]

Heres how to check if your home may lose power. [The Mercury News]

The Bay Area is bracing for dangerous Diablo winds, which pick up in the fall. Heres more about Californias demonized winds, and how they shape fire season. [The New York Times]

Health care workers at Harbor-U.C.L.A. Medical Center protested the shooting of a patient with a mental illness by a sheriffs deputy. Sheriff Alex Villanueva described the incident as like a scene out of The Shining. That comment drew sharp rebuke from the hospitals chief medical officer. [The Daily Breeze]

A man was spotted flying a jetpack near LAX. Again. [The New York Times]

One of the uncountable milestones that have been altered by the pandemic is the very act of giving life.

Midwives have said theyve seen an increase in demand, as hospitals became, well, less hospitable to families who want to experience birth together.

My colleagues in Parenting published a photo essay showing midwives at work in Los Angeles. The images, like the one above, are raw and intimate and cinematic. See them here.

California Today goes live at 6:30 a.m. Pacific time weekdays. Tell us what you want to see: CAtoday@nytimes.com. Were you forwarded this email? Sign up for California Today here and read every edition online here.

Jill Cowan grew up in Orange County, graduated from U.C. Berkeley and has reported all over the state, including the Bay Area, Bakersfield and Los Angeles but she always wants to see more. Follow along here or on Twitter.

California Today is edited by Julie Bloom, who grew up in Los Angeles and graduated from U.C. Berkeley.

More here:
What Proposition 14 Tells Us About California - The New York Times

Posted in California Stem Cells | Comments Off on What Proposition 14 Tells Us About California – The New York Times

California Proposition 14: Funding medical research that uses stem cells – KTLA

Posted: October 20, 2020 at 5:58 pm

Voting yes on Prop 14 means supporting stem cell research through a $5.5 billion state bond. Its a loan that California, through its taxpayer-supported general fund, would have to pay back with interest over 30 years.

Prop 14 would extend funding that has almost run out for the states stem cell research institute, which was created with the approval of California voters in 2004 after President George W. Bush banned federally funding studies that use newly created stem cell lines.

The research supports the development of treatments and cures for cancer, Alzheimers, heart disease and other medical conditions. Prop 14 also comes with new rules on spending the funds, including more access to stem cell treatment for patients.

Voting no on Prop 14 means rejecting a new bond to continue state funding for stem cell research.

Supporters: Cedars-Sinai, City of Hope, the Michael J. Fox Foundation and other research and patient advocacy groups have helped raise more than $6.5 million to promote Prop 14. The coalition says stem cell research has led to significant progress that includes clinical trials, more than 2,900 medical discoveries and benefits for patients with chronic diseases such as cancer, diabetes, HIV/AIDS and ALS.

Critics: No organized effort has raised money to oppose Prop 14, but some newspaper editorial boards such as the L.A. Times argue that the measure isnt the best way to back stem-cell research. The idea was never for California to become the long-term replacement for federal funding, the L.A. Times editorial board said. It was to kick-start an industry that would then operate on its own.

More here:
California Proposition 14: Funding medical research that uses stem cells - KTLA

Posted in California Stem Cells | Comments Off on California Proposition 14: Funding medical research that uses stem cells – KTLA

How a UCSF team is giving Cronutt the sea lion a second chance with neuroscience – University of California

Posted: October 20, 2020 at 5:58 pm

A cellular therapy for epilepsy developed at UC San Francisco has been employed for the first time in a sea lion with intractable seizures caused by ingesting toxins from algal blooms. The procedure is the first-ever attempt to treat naturally occurring epilepsy in any animal using transplanted cells.

The 7-year-old male sea lion, named Cronutt, first beached in San Luis Obispo County in 2017 and was rescued byThe Marine Mammal Center(TMMC), based in Sausalito, Calif. His epilepsy is due to brain damage caused by exposure to domoic acid released bytoxic algal blooms. Each year, domoic acid poisoning affects hundreds of marine mammals, including both sea lions and sea otters, up and down the West Coast, a problem that is on the rise as climate change warms the worlds oceans, making algal blooms more common.

Like many of these animals, Cronutt cannot survive in the wild due to his epilepsy, and he was transferred by TMMC in 2018 to Six Flags Discovery Kingdom in Vallejo, Calif., which has facilities to care for wildlife with special veterinary needs.

In recent months, Cronutts health has declined due to increasingly frequent and severe seizures. With all other options exhausted, his veterinary team sought help from epilepsy researcherScott C. Baraban, Ph.D., in a last-ditch effort to save the sea lions life. For over a decade, Baraban, who holds the William K. Bowes Endowed Chair in Neuroscience Research in UCSFsDepartment of Neurological Surgery, has been developing the cell-based therapy, which has been shown by his research team to be highly effective in experimental lab animals.

This method is incredibly reliable in mice, but this is the first time it has been tried in a large mammal as a therapy, so well just have to wait and see, said Baraban, a member of the UCSF Weill Institute for Neurosciences. Over the years Ive come to learn how many marine mammals cant be released into the wild due to domoic acid poisoning, and its our hope is that if this procedure is successful it will open the door to helping many more animals.

On Tuesday, Oct. 6, a team of 18 specialists, including veterinarians from Six Flags and neurosurgeons and researchers from UCSF, successfully completed a precisely targeted injection of brain cell precursors taken from pig embryos called neural progenitor cells into Cronutts hippocampus, the brain region responsible for seizures. Based on extensive observations in rodents, Baraban said, the injected embryonic cells should migrate through his damaged hippocampus over the course of days and weeks, integrating and repairing the brain circuitry causing his seizures.

It was a remarkable convergence. Every year there are many animals suffering from epilepsy for which there isnt any treatment available, while, just across the bridge from The Marine Mammal Center, we at UCSF are trying to develop this new form of therapy and looking for ways to one day translate it to the clinic, saidMariana Casalia, Ph.D., a postdoctoral researcher who joined Barabans lab in 2015 to work ontranslating the groups successes in rodentsinto therapies, and who has taken the helm of the sea lion epilepsy project. It seemed very natural for us that these animals could be first patients to hopefully benefit from this therapy.

Domoic acid poisoning in marine mammals causes hippocampal damage very similar to that seen in temporal lobe epilepsy, the most common form of epilepsy in humans. In this disease, damage to hippocampal inhibitory interneurons removes the brakes on electrical activity, leading to seizures. In a vicious cycle, seizures can further damage brain circuitry, which is why epilepsy often worsens over time.

Since 2009, theBaraban labhas been developing a way to replace these damaged interneuronsby transplanting embryonic MGE (medial ganglionic eminence) progenitor cells into the hippocampus. As discovered two decades ago by Barabans UCSF colleaguesArturo lvarez-Buylla, Ph.D., andJohn Rubenstein, Ph.D., MGE cells normallymigrate into hippocampus during brain developmentandintegrate themselves into the local circuitry as inhibitory neurons.

Barabans group has shown that its possible to transplant embryonic MGE cells into the brains of adult rodents with temporal lobe epilepsy, wherethey quickly spread through the hippocampus and repair its damaged circuitry. The procedure reliably reduces seizures in these animals by 90 percent, along with other side effects of epilepsy, such as anxiety and memory problems.

Our laboratorys work has been inspired by the desire to find new solutions for the 30 percent of temporal lobe epilepsy patients who dont respond to available drug treatments, and for whom no new medicines have emerged over the past 50 years. Baraban said. For a number of reasons, including regulatory hurdles, cellular therapies for people with epilepsy are probably still a long way off. However, marine mammals with brain damage from domoic acid poisoning are in a very similar boat with no effective treatments that would let them ever be returned to the wild.

Baraban learned about the hundreds of annual domoic acidrelated strandings of marine mammals from long-time colleague Paul Buckmaster, D.V.M., Ph.D., of Stanford University. Buckmasters seminal studies in collaboration with TMMC in Sausalito had found that these animalssuffer from hippocampal damage almost identical to human temporal lobe epilepsy.

As soon as Mariana and I learned about this issue it was clear that our approach could be a perfect solution to help rehabilitate these animals, Baraban said.

Casalia had spent four years developing and testing a pig source of MGE cells pig tissue is often used for transplants into humans in collaboration with colleagues at UC Davis, work the lab intends to publish soon. On learning about the plight of domoic acidpoisoned sea lions, she partnered with TMMC and the California Academy of Sciences to study sea lion skulls to begin planning an eventual transplant surgery. She ultimately worked with UCSF neurosurgery chairEdward Chang, M.D., and collaborators at the medical software firmBrainLabto create a custom targeting system for the sea lion brain.She had even spent months working closely with the Hamilton Company to create a custom needle for delivering the stem cells to the right spot in a sea lions hippocampus.

All that remained was to find the right patient. And then, in September, 2020, they got a call from a veterinarian at Six Flags asking if they could help save the life of a sea lion named Cronutt.

After rescuing Cronutt in 2017, TMMC had attempted three times to rehabilitate him and release him back into the wild. Each time he would beach himself again, emaciated, disoriented, and approaching humans. Then he began to have seizures. Most marine centers dont have facilities for the long-term care of marine mammals with special needs, but Six Flags volunteered to give Cronutt a new home.

We have cared for a lot of special needs animals over the years, said Dianne Cameron, director of animal care at Six Flags. We adore Cronutt and are committed to providing him a forever home. He has his own apartment in our Sea Lion Stadium with a pool and dry resting area. When hes doing well, he comes out and participates in training sessions. Unfortunately, recently it has been hard to get him to come out of his apartment.

Over this spring and summer, Cronutt had begun a serious decline his seizures were increasing, he was losing weight, and he often seemed disoriented. To oversee Cronutts care, Six Flags hiredClaire Simeone, DVM, a founder and CEO of Sea Change Health, who hadstudied the neurological effects of domoic acid poisoningduring her six years working with TMMC. But it soon became clear that no treatment was working for Cronutt.

Despite our best efforts and all the tools that we have, his seizures were becoming more prolonged and more frequent over time, Simeone said. His brain damage and the effects on his body were getting worse. His decline has been gradual, but we reached a point several months ago where we were questioning what quality of life he had. We had run out of options for how we could successfully manage Cronutts disease and knew that we were going to have to make some hard decisions soon.

Then Simeone recalled a talk Baraban had given at TMMC several years ago about the potential of MGE transplants for marine mammals with domoic acid poisoning. In September, she reached out to ask if the lab might be willing to attempt the procedure as a last-ditch effort to save Cronutts life.

Cronutts health was slipping fast, but Casalias years of preparation for this moment allowed her and her colleagues to quickly assemble everything that would be needed in just one month.

In a bit of serendipity that would prove crucial, Cronutts brain had already been imaged in 2018 by Ben Inglis, Ph.D., of UC BerkeleysHenry H. Wheeler Jr. Brain Imaging Centeras part of an ongoing study ofhow domoic acid poisoning affects the sea lion brain. These MRI images provided critical guideposts that made it possible for UCSF neurosurgeons to plan how they would inject stem cells at just the right spot in Cronutts hippocampus.

Cronutts surgery, conducted in accordance with COVID-19 protocols at the SAGE Veterinary Centers in Redwood City, Calif., went smoothly, and he was returned to Six Flags. In the days after the surgery his veterinary team reported that he had been sleeping and eating well.

Based on prior experiments transplanting pig MGE cells into rats, the researchers expect it to take about a month or so for the cells to fully integrate into Cronutts hippocampus. They will be following up to see if his seizures decrease and his health and behavior improves, and whether his antiseizure medications can be reduced.

This first-ever attempt has been made possible by funding from a Javits Award from the National Institutes of Health and from the UCSFProgram in Breakthrough Biomedical Research. Without these funds, this kind of high-risk, high-reward science would never have gotten off the ground, Baraban added. It also depended on Marianas fearlessness and perseverance in pursuing this very uncertain project.

Casalia, who has degrees in applied science and neurobiology from Universidad National de Quilmes and the University of Buenos Aires in Argentina, says the surgery felt like a culmination of everything shed been working on in her career so far. Ive always wanted to apply what we are doing in the lab to the clinical setting, she said. For me the ability to do this in reality to help these animals who are suffering is a dream come true.

See the original post here:
How a UCSF team is giving Cronutt the sea lion a second chance with neuroscience - University of California

Posted in California Stem Cells | Comments Off on How a UCSF team is giving Cronutt the sea lion a second chance with neuroscience – University of California

Technology to natures rescue – The Hindu

Posted: October 20, 2020 at 5:58 pm

Perhaps theres nothing more synthetic than technology among the many products of human creativity. But today this very technology plays a crucial role in preserving the natural world and advancing wildlife conservation. Here are a few ways in which this is being done

One can be forgiven for looking down on the humble camera trap - after all, this automated device has been around for decades. But one would be hard-pressed to find a simpler yet effective device used in wildlife research and conservation.

Though it began life as a device requiring films, today it has grown to be digital, sending real-time images and taking videos too.

Most commonly used to document the presence of elusive wildlife, the potential of camera traps has expanded over the years. Camera traps and videos have been used to study and document several species from arboreal mammals to fast-flying humming birds.

The devices have also helped study the likes of bats hibernating in the dark. The bonus? The images and videos of what is called a bycatch - species that were not the intended targets!

While camera traps help through visuals, acoustic sensors help through sounds. After all, arent birds and animals also vocal? These automated monitoring devices can record sounds for a long time - helping researchers not just ascertain the presence of animals and birds but also analyse the data gathered to learn about the ecosystem, population density, change in wildlife behaviour and even human interference.

It is said that these devices are especially useful for aerial and underwater species. According to Mongabay, a non-profit environmental science and conservation news platform, researchers in Mexico were able to detect the decreasing number of vaquitas (a species of porpoise) through acoustic monitoring of their home in the Gulf of California.

Interestingly, journal Nature reported how acoustic recordings provide detailed information on wildlife behaviour during conservation translocations too - through a study that tested the efficacy of a collar-mounted acoustic recording unit to remotely monitor the behaviour of panda mothers and their dependent young.

In March 2018, the last male of the northern white rhinoceros died. Though the species is on the brink of extinction - there are only two ageing females left on the planet - not all hope is lost. The highly advanced technology of stem cells could still save the species, feel scientists.

Stem cells can become any cell in the body. And this process involves researchers removing cells from frozen rhino tissue, which would be reprogrammed into stem cells that would then become sperm and eggs. And the resulting union has the potential to give rise to an embryo of the northern white rhino. It sounds like a rather simple plan but its execution is not without complexities (such as finding a healthy female to implant the embryo in). So, though realising this dream could be years away, this technology does revive hope for many such species on the brink of extinction.

This illustration of a Vaquita Marina, provided by Greenpeace, shows an image of the highly endangered sea mammal swimming in the sea. Mexicos president, its richest man and actor Leonardo DiCaprio have signed an agreement that aims to protect marine ecosystems in the upper Gulf of California where the vaquita porpoise is critically endangered. (Greenpeace via AP)

After habitat loss, the greatest threat to biodiversity comes in the form of illegal wildlife trade, affecting not just animals but plants too. And at the heart of this illegal trade lie poachers. With many wildlife reserves having to make do with a limited number of rangers, its drones that come in handy to watch out for or thwart poachers.

Fitted with heat-sensitive infra-red optics (which can easily spot warm-blooded mammals - including humans - even at night), these drones become particularly helpful to spot poachers who usually work stealthily under the cover of darkness.

In fact, reports suggest that drones played an invaluable role in forest surveillance during the lockdown in our country. More help in anti-poaching initiatives come in the form of Artificial Intelligence (AI) systems. AI systems combined with cameras are known to help rangers detect and stop poachers before they strike, and even predict where poachers are most likely to strike.

Facial recognition software too have been used to identify injured animals of a group, especially among endangered species, that could fall prey to poaching. Interestingly, sirens are useful too - not just to ward off poachers. A study has shown that sirens were effective in keeping rhinos off problem areas such as perimeter fences where poachers are likely to strike. By establishing such avoidance behaviours in animals, technology can aid in anti-poaching efforts at relatively low costs, the study indicated.

In todays world where hashtags create mass global movements, the role of social media in environment conservation is as huge as it is indispensable. Pictures, videos, content and data shared widely on many social media platforms generate not just curiosity but also awareness and conversations around conservation.

From reports of palm oil-induced habitat destruction to debates on the governments new policies on the environment, information is shared widely at the click of a button. More importantly, reports suggest that the younger generation learns a lot about the natural world and its conservation through the virtual world.

Read the original post:
Technology to natures rescue - The Hindu

Posted in California Stem Cells | Comments Off on Technology to natures rescue – The Hindu

What You Need to Know About Prop 14, The Stem Cell Research Bond (Transcript) – KQED

Posted: October 5, 2020 at 2:56 pm

Olivia Allen-Price [00:01:55] OK, so what exactly does this bond fund?

Danielle Venton [00:01:59] This would fund $5.5 billion in stem cell research and treatments in California. Some of the diseases that stem cell research is seeking to cure or treat include cancer, Alzheimer's disease, diabetes, spinal cord injuries, blindness, and even COVID-19. I spoke recently with a guy named Jake Javier. He supports this bond initiative because he knows firsthand how life changing stem cell research can be.

Jake Javier [00:02:25] I am in my last year at Cal Poly.

Danielle Venton [00:02:28] So, Jake grew up locally in Danville and was just graduating high school when he suffered a life altering injury.

Jake Javier [00:02:35] On the last day of high school, I drove in to a pool and hit my head on the bottom and broke my neck and was immediately paralyzed.

Danielle Venton [00:02:47] He says his injury was complete, with very little hope of recovery. But a doctor at Stanford reached out to Jake and his family and said, you can be part of this clinical trial where we, with a one time surgery, will inject stem cells into the damaged area and you may possibly see some benefits.

Danielle Venton [00:03:07] Now, Jake is still injured.

Jake Javier [00:03:09] I'm a quadriplegic. I use a wheelchair.

Danielle Venton [00:03:11] But he says after the surgery, he noticed more movement in his arms, in his hands.

Jake Javier [00:03:17] So, I mean, with my injury, I'm at a level where I would normally not have any function at all in my hands and very, very little function like in my triceps and things like that. Muscles that are really important for functionality and, you know, being able to get through day to day activities that could help me push myself around more, help me transfer in and out of my chair independently. And then also, I notice, you know, I got some some finger movement. It doesn't seem like much, but even that little movement has helped me so much with picking things up and things like that. So it was really, I was really blessed to see that happen.

Danielle Venton [00:03:51] So he doesn't know how much of his recovery is due to the stem cells. How much is natural, or how much is due to physical therapy. But today he's able to live independently, to go to college and he wants to pursue a career in medicine. And he is a big believer in stem cell research, regenerative medicine, and is really hoping that California voters will support this proposition.

Olivia Allen-Price [00:04:20] Now, what exactly are stem cells and how do they work, I guess?

Danielle Venton [00:04:25] Yeah, stem cells are types of cells that can be turned into any type of specialized cell. Scientists have known about them since the eighteen hundreds, but it wasn't until the late 90s that researchers developed a method to derive them from human embryos and grow them in a laboratory. And then people really began to get excited about their potential for medicine. Now these cells came from unused embryos created for in vitro fertilization, and they were donated with informed consent. But many anti-abortion groups felt that using the cells were tantamount to taking a human life. So in 2001, then President George W. Bush banned federal funding for any research using newly created stem cell lines.

Olivia Allen-Price [00:05:09] OK. And how does that get us now to bonds in California?

Danielle Venton [00:05:13] Well, Californians wanted to circumvent these federal restrictions, and in 2004 voted for a bond that gave the state $3 billion to create a research agency called the California Institute of Regenerative Medicine, or CIRM. There was a lot of public support for it. And it just felt like these wonderful cures could be right around the corner. Celebrities like Michael J. Fox appeared in TV commercials.

Michael J. Fox TV commercial [00:05:36] My most important role lately is as an advocate for patients, and for finding new cures for diseases. That's why I'm asking you to vote yes on Proposition 71, Stem Cell Research Initiative.

Danielle Venton [00:05:48] And the money for that research, that $3 billion, has now run out. And to continue their work, the stem cell advocacy group, Americans for Cures, is asking voters for more money.

Olivia Allen-Price [00:06:00] So we're basically voting on whether we want to refill the stem cell research piggy bank here.

Danielle Venton [00:06:05] Yeah, exactly. Some question if the state can afford this at this time when budgets are going to be so tight. Others have been disappointed by the slow pace of cures coming out of the field. Now, there are people who credit this research, such as Jake, with improving or restoring their health or the health of their loved ones. Or maybe they hope that one day it will, and they would balk at the idea that this is not worthy research. They point to achievements that the agency has funded. That includes effectively a cure for bubble baby disease. This is when someone is born without a functioning immune system. That mutation can now be corrected with genetically modified stem cells. And recently, just within the last year or so, the FDA approved two new treatments for blood cancer, developed with CIRM support. These achievements are what the agency points to when they're criticized for not having accomplished more. And they say the process of scientific discovery is long and unpredictable.

Olivia Allen-Price [00:07:04] Now, wasn't that Bush-era ban on stem cell research that you were talking about earlier wasn't that overturned?

Danielle Venton [00:07:11] Yes, that was overturned by President Obama. However, there are current members of Congress who are lobbying President Trump to ban the research again. And if that happens, then California would be the only major player in stemcell research once again in the United States.

Olivia Allen-Price [00:07:30] All right, so who is supporting Prop 14?

Danielle Venton [00:07:32] Governor Gavin Newsom, for one. Many patient advocacy organizations and medical and research institutions, including the California Board of Regents. These people don't want to see the pace of this research slow. They want it to accelerate. The political action committee supporting this proposition is reporting more than six million dollars in contributions.

Olivia Allen-Price [00:07:53] All right. And what about the opposition? Who's against it?

Danielle Venton [00:07:55] Well, so far, there's no organized, funded opposition. There have been several newspaper editorials coming out against it, including locally, the Mercury News and the Santa Rosa Press Democrat. They basically say state bonds aren't the way to fund research and the situation isn't like it was in 2004 and that the institute should now seek other sources of funding and move forward as a nonprofit.

Olivia Allen-Price [00:08:19] All right, Danielle. Well, thanks, as always for your help.

Danielle Venton [00:08:21] My pleasure. Thanks.

Olivia Allen-Price [00:08:28] In a nutshell, a vote yes on Proposition 14 says you think Californians should give $5.5 billion to the state's stem cell research institute. That money will be raised by selling bonds, which the state would pay back, with interest, out ofthe general fund over the next 30 years. A vote no means you think we shouldn't spend public money on this research.

Olivia Allen-Price [00:08:54] That's it on Proposition 14. We'll be back tomorrow with an episode on Prop 15. And oh, it is a doozy. Commercial property tax! A partial rollback of one of California's most controversial propositions! It's going to be fire. In the meantime, you can find more of KQED election coverage at KQED.org/elections. Two reminders on the way out: October 19th is the last day to register to vote and mail in ballots must be postmarked on or before November 3rd.

Olivia Allen-Price [00:09:28] Bay Curious is made in San Francisco at member supported KQED. I'm Olivia Allen-Price. See you tomorrow.

More:
What You Need to Know About Prop 14, The Stem Cell Research Bond (Transcript) - KQED

Posted in California Stem Cells | Comments Off on What You Need to Know About Prop 14, The Stem Cell Research Bond (Transcript) – KQED

UC Davis Engineers Lead $36M Effort to Improve Recovery From Spinal Cord Injuries – UC Davis

Posted: October 5, 2020 at 2:56 pm

Engineers at the University of California, Davis, will lead a consortium of universities, biomedical startups and nonprofit organizations to develop interventions for spinal cord injuries that can be applied within days of injury to improve long-term outcomes.

Karen Moxon, professor of biomedical engineering at UC Davis, will lead the five-year, $36 million contract as part of the Defense Advanced Research Project Agency, or DARPA, Bridging the Gap Plus Program. A primary goal is to develop technologies to stabilize a patients hemodynamic response, which includes blood flow and blood pressure, within days of injury.

Because large swings in blood pressure are common following spinal cord injuries, stabilizing hemodynamics within days of injury will improve functional recovery. The team will take advantage of stabilized hemodynamics to optimize delivery of neural stem cells using personalized 3D printed scaffolds within two weeks of injury to regenerate lost connections within the injured spinal cord.

Spinal cord injury is a complex condition that causes partial or complete loss of function below the location of injury, Moxon said. We will develop systems for real-time biomarker monitoring and intervention to stabilize and rebuild neural communications pathways between the brain and spinal cord. As a result of our efforts, clinicians will be able to collect previously unavailable diagnostic information for automated or clinician-directed interventions. Our goal is to translate these technologies to humans within the five-year award period.

The international team includes 12 institutions: UC Davis, UC San Diego, UC San Francisco, the University of British Columbia, the University of Calgary and the cole Polytechnique Fdrale de Lausanne (EPFL, Switzerland); biotech startups Pathonix Innovation Inc. of Vancouver, GTX Medical (Lausanne, Switzerland), and Teliatry (Richardson, Texas); nonprofit institutions the Wyss Center for Bio and Neuroengineering (Geneva, Switzerland) and Battelle Memorial Institute (Columbus, Ohio); and a regulatory consultant firm, NetValue BioConsulting Inc., Toronto.

Moxon and her team at UC Davis including Zhaodan Kong, associate professor in the Department of Mechanical and Aerospace Engineering, and Professor Kiarash Shahlaie and Assistant Professor Julius Ebinu, neurosurgeons in the UC Davis School of Medicine will take the lead on assessing the impact of these interventions on the brain to maximize the restoration of both motor and sensory functions. This part of the project will be conducted at the California National Primate Research Center.

We are extremely pleased that the California National Primate Research Center will host the nonhuman primate research arm of this extraordinary effort to restore function following spinal cord injury, said center director John Morrison, professor of neurology at UC Davis.

Part of the effort will also aim to improve functional recovery, using neural stem cell and bioengineering scaffold technology developed by professors Mark Tuszynski, Paul Lu, Ephron Rosenzweig and Jacob Koffler, all faculty in the Department of Neurosciences at UCSD. Their stem cell and scaffold technology will be combined with neural electrical stimulation technology (neuromodulation) developed by Gregoire Courtine at EPFL. The team hopes to successfully combine this cell and engineering technology to promote nerve regeneration that bridges the injury site.

Moxons lab at UC Davis, in collaboration with a teamat the Wyss Center for Bio and Neuroengineering led by Tracy Laabs, will develop cortical stimulation protocols to enhance sensory feedback to the brain and aid in motor control. The team will take advantage of Wysss ABILITYsystem that wirelessly records signals from individual neurons in the brain and will further develop it to include closed-loop cortical stimulation, which employs a sensor to record signals, for improved motor function.

The multi-institution team will focus on advancing three main technologies:

Together, these technologies will integrate into a system-of-systems that monitors the information from sensors and stimulators to allow clinicians to monitor patients progress. At the same time, the team will be able to identify the optimal time to transplant the neural stem cells and 3D scaffold in this critical time period after injury.

It is exciting to lead this talented team of international scientists and to be in a position to effect real change for people who sustain a spinal cord injury, Moxon said. Its this type of team science between academia and industry that makes clinical breakthroughs possible in short time periods.

Development of the proposal for the award was facilitated by the UC Davis Office of Researchs Interdisciplinary Research Support team and Gabriela Lee, project manager. This project is part of a larger effort at UC Davis led by Moxon, Professor Sanjay Joshi in the Department of Mechanical and Aerospace Engineering, and Professor Carolynn Patten in the School of Medicine and College of Biological Sciences to develop a neuroengineering program that aims to restore, augment and extend human capacity to benefit society.

Here is the original post:
UC Davis Engineers Lead $36M Effort to Improve Recovery From Spinal Cord Injuries - UC Davis

Posted in California Stem Cells | Comments Off on UC Davis Engineers Lead $36M Effort to Improve Recovery From Spinal Cord Injuries – UC Davis

Page 7«..6789..20..»