Categories
- Global News Feed
- Uncategorized
- Alabama Stem Cells
- Alaska Stem Cells
- Arkansas Stem Cells
- Arizona Stem Cells
- California Stem Cells
- Colorado Stem Cells
- Connecticut Stem Cells
- Delaware Stem Cells
- Florida Stem Cells
- Georgia Stem Cells
- Hawaii Stem Cells
- Idaho Stem Cells
- Illinois Stem Cells
- Indiana Stem Cells
- Iowa Stem Cells
- Kansas Stem Cells
- Kentucky Stem Cells
- Louisiana Stem Cells
- Maine Stem Cells
- Maryland Stem Cells
- Massachusetts Stem Cells
- Michigan Stem Cells
- Minnesota Stem Cells
- Mississippi Stem Cells
- Missouri Stem Cells
- Montana Stem Cells
- Nebraska Stem Cells
- New Hampshire Stem Cells
- New Jersey Stem Cells
- New Mexico Stem Cells
- New York Stem Cells
- Nevada Stem Cells
- North Carolina Stem Cells
- North Dakota Stem Cells
- Oklahoma Stem Cells
- Ohio Stem Cells
- Oregon Stem Cells
- Pennsylvania Stem Cells
- Rhode Island Stem Cells
- South Carolina Stem Cells
- South Dakota Stem Cells
- Tennessee Stem Cells
- Texas Stem Cells
- Utah Stem Cells
- Vermont Stem Cells
- Virginia Stem Cells
- Washington Stem Cells
- West Virginia Stem Cells
- Wisconsin Stem Cells
- Wyoming Stem Cells
- Biotechnology
- Cell Medicine
- Cell Therapy
- Diabetes
- Epigenetics
- Gene therapy
- Genetics
- Genetic Engineering
- Genetic medicine
- HCG Diet
- Hormone Replacement Therapy
- Human Genetics
- Integrative Medicine
- Molecular Genetics
- Molecular Medicine
- Nano medicine
- Preventative Medicine
- Regenerative Medicine
- Stem Cells
- Stell Cell Genetics
- Stem Cell Research
- Stem Cell Treatments
- Stem Cell Therapy
- Stem Cell Videos
- Testosterone Replacement Therapy
- Testosterone Shots
- Transhumanism
- Transhumanist
Archives
Recommended Sites
Monthly Archives: December 2020
Magenta Therapeutics Announces Commencement of First Phase 2 Clinical Trial of MGTA-145 for Stem Cell Mobilization, Oral Presentation of MGTA-145…
Posted: December 9, 2020 at 1:59 am
CAMBRIDGE, Mass.--(BUSINESS WIRE)--Magenta Therapeutics (NASDAQ: MGTA), a clinical-stage biotechnology company developing novel medicines to bring the curative power of stem cell transplant to more patients, today announced final clinical results from its earlier completed Phase 1 clinical trial as well as development updates for its MGTA-145 stem cell mobilization therapy, including commencement of enrollment in a Phase 2 clinical trial in multiple myeloma, and its plans for a Phase 2 clinical trial in allogeneic stem cell transplant for patients with acute myeloid leukemia (AML), acute lymphocytic leukemia (ALL) and myelodysplastic syndrome (MDS). The company also previously announced a clinical collaboration with bluebird bio to evaluate MGTA-145 for mobilizing and collecting stem cells in adults and adolescents with sickle cell disease (SCD). Additional preclinical results were also presented at the 62nd American Society of Hematology (ASH) Annual Meeting and Exposition, taking place virtually from December 5-8, 2020, on the Magenta conditioning platform, including MGTA-117 program, which is a targeted antibody-drug conjugate (ADC) to prepare patients for stem cell transplant.
MGTA-145 Advancement to Phase 2 Development in Blood Cancers
The company announced that enrollment has started and is ongoing in a Phase 2 clinical trial of MGTA-145, used in combination with plerixafor, to mobilize and collect stem cells for autologous stem cell transplantation of multiple myeloma patients at Stanford University. Magenta expects that this trial will provide patient-level data on stem cell mobilization and collection, characteristics of the mobilized graft and engraftment in patients with multiple myeloma.
Additionally, through a collaboration with the National Marrow Donor Program/Be The Match, a global leader in facilitating allogeneic hematopoietic stem cell transplantation, Magenta plans to initiate a Phase 2 clinical trial in early 2021 using MGTA-145 to mobilize and collect stem cells from allogeneic donors for transplant in patients with AML, ALL and MDS. Allogeneic stem cell transplant provides a potentially curative therapeutic option for patients with these diseases. This clinical trial will evaluate stem cell mobilization, collection, cell quality, engraftment and the potential for reduced Graft-versus-Host Disease (GvHD), which is of particular importance in the allogeneic transplant setting.
MGTA-145 in Sickle Cell Disease
Magenta Therapeutics recently announced an exclusive clinical collaboration with bluebird bio to evaluate the utility of MGTA-145, in combination with plerixafor, for the mobilization and collection of stem cells in adults and adolescents with SCD.
The data from this clinical trial could provide proof-of-concept for MGTA-145, in combination with plerixafor, as the preferred mobilization regimen for patients with SCD. bluebird bios experience with plerixafor as a mobilization agent in SCD aligns with Magentas combination therapy approach, utilizing MGTA-145 plus plerixafor with potential for safe, rapid and reliable mobilization of sufficient quantities of high-quality stem cells to improve outcomes associated with stem cell transplantation.
MGTA-145 Presentations at ASH
Magenta presented final clinical data from its MGTA-145 stem cell mobilization Phase 1 clinical trial in healthy volunteers at the ASH Annual Meeting. All primary and secondary endpoints were met in the study completed earlier this year.
The results demonstrate that a single dose of MGTA-145, in combination with plerixafor, rapidly and reliably mobilized high numbers of stem cells in a single day without the need for G-CSF for potential use in diseases that can benefit from autologous and/or allogeneic stem cell transplantation. The additional data also offer further confirmation that MGTA-145, in combination with plerixafor, was well tolerated and provides a rapid and reliable method to obtain large numbers of hematopoietic stem cells. Transplant of these cells in preclinical models resulted in enhanced, durable engraftment, in addition to highly immunosuppressive properties, leading to reduced GvHD.
Results from this study provide a robust dataset and proof of concept that MGTA-145, in combination with plerixafor, provides rapid and robust mobilization of stem cells and that these cells have better engraftment potential, are able to be gene modified and engraft and reduce GvHD in preclinical models compared to cells mobilized with other available agents. The data reinforce the availability of compelling opportunities for development in both the autologous and allogeneic transplant settings, said John Davis Jr., M.D., M.P.H., M.S., Head of Research & Development and Chief Medical Officer, Magenta Therapeutics.
The data were presented by Steven M. Devine, MD, Chief Medical Officer of the National Marrow Donor Program/Be The Match and Associate Scientific Director of the CIBMTR (Center for International Blood and Marrow Transplant Research).
Conditioning Program (MGTA-117 and CD45-ADC) Presentations at ASH
Magenta also provided updates on its conditioning platform at the ASH Annual Meeting, including MGTA-117 and CD45-ADC programs. Preclinical data from a study of MGTA-117 demonstrate that it is an effective, potent conditioning agent for transplant with anti-leukemic activity, significantly decreasing tumor burdens, leading to delayed tumor growth and increased median survival rates in animal models of AML. Ongoing GLP toxicology and GMP manufacturing progress continue to be supportive of advancing MGTA-117 towards an IND filing in AML and MDS.
Additionally, preclinical data from a study of Magentas CD45-ADC, a CD45-targeted conditioning agent designed to remove the cells that cause autoimmune diseases to enable curative immune reset, demonstrated the ability to achieve successful outcomes as a single agent in the most challenging disease model through fully mismatched allogeneic hematopoietic stem cell transplant, where only radiation or combinations of toxic chemotherapies are available, potentially providing patients the option of a reduced toxicity conditioning regimen. The company continues to evaluate this program preclinically.
About MGTA-145
MGTA-145 is being developed in combination with plerixafor to harness complementary chemokine mechanisms to mobilize hematopoietic stem cells for collection and transplantation. This new combination has the potential to be the preferred mobilization regimen for rapid and reliable mobilization and collection of hematopoietic stem cells to improve outcomes in autologous and allogeneic stem cell transplantation, which can rebuild a healthy immune system for patients with blood cancers, genetic diseases and autoimmune disorders.
MGTA-145 has the potential to replace the current standard of care for patients and allogeneic donors who currently rely on the use of granulocyte-colony stimulating factor (G-CSF) alone or in combination with plerixafor, which can take up to five days or longer to mobilize sufficient numbers of stem cells, often resulting in significant bone pain and other side effects.
About Magenta Therapeutics
Magenta Therapeutics is a clinical-stage biotechnology company developing medicines to bring the curative power of immune system reset through stem cell transplant to more patients with blood cancer, genetic diseases and autoimmune diseases. Magenta is combining leadership in stem cell biology and biotherapeutics development with clinical and regulatory expertise, a unique business model and broad networks in the stem cell transplant world to revolutionize immune reset for more patients.
Magenta is based in Cambridge, Mass. For more information, please visit http://www.magentatx.com.
Follow Magenta on Twitter: @magentatx.
Forward-Looking Statement
This press release may contain forward-looking statements and information within the meaning of The Private Securities Litigation Reform Act of 1995 and other federal securities laws. The use of words such as may, will, could, should, expects, intends, plans, anticipates, believes, estimates, predicts, projects, seeks, endeavor, potential, continue or the negative of such words or other similar expressions can be used to identify forward-looking statements. The express or implied forward-looking statements included in this press release are only predictions and are subject to a number of risks, uncertainties and assumptions, including, without limitation risks set forth under the caption Risk Factors in Magentas Annual Report on Form 10-K filed on March 3, 2020, as updated by Magentas most recent Quarterly Report on Form 10-Q and its other filings with the Securities and Exchange Commission. In light of these risks, uncertainties and assumptions, the forward-looking events and circumstances discussed in this press release may not occur and actual results could differ materially and adversely from those anticipated or implied in the forward-looking statements. You should not rely upon forward-looking statements as predictions of future events. Although Magenta believes that the expectations reflected in the forward-looking statements are reasonable, it cannot guarantee that the future results, levels of activity, performance or events and circumstances reflected in the forward-looking statements will be achieved or occur. Moreover, except as required by law, neither Magenta nor any other person assumes responsibility for the accuracy and completeness of the forward-looking statements included in this press release. Any forward-looking statement included in this press release speaks only as of the date on which it was made. We undertake no obligation to publicly update or revise any forward-looking statement, whether as a result of new information, future events or otherwise, except as required by law.
Posted in Stem Cell Research
Comments Off on Magenta Therapeutics Announces Commencement of First Phase 2 Clinical Trial of MGTA-145 for Stem Cell Mobilization, Oral Presentation of MGTA-145…
ElevateBio’s HighPassBio Presents on Novel T Cell Receptor Cell Therapy for Leukemia Relapse at 62nd Annual ASH Meeting – Business Wire
Posted: December 9, 2020 at 1:59 am
CAMBRIDGE, Mass.--(BUSINESS WIRE)--HighPassBio, an ElevateBio portfolio company dedicated to advancing novel targeted T cell immunotherapies, today discussed the ongoing Phase 1 trial of the companys lead product candidate, an engineered T cell receptor (TCR) T cell therapy targeting HA-1 expressing cancer cells in an oral presentation at the 62nd American Society of Hematology (ASH) Annual Meeting. The Phase 1 clinical trial, which is being conducted by researchers at Fred Hutchinson Cancer Research Center, is designed to assess the feasibility, safety, and efficacy of this novel cell therapy in the treatment of leukemia following hematopoietic stem cell transplant (HSCT).
The prognosis for leukemia patients whove relapsed or who have residual disease following allogeneic hematopoietic stem cell transplantation is often poor, but we believe that by targeting the minor H antigen, HA-1, through a novel T cell immunotherapy, we can potentially treat and prevent subsequent relapse, said Elizabeth Krakow, M.D., MSc., Assistant Professor, Clinical Research Division, Fred Hutchinson Cancer Research Center, principal investigator of the study, and presenting author. We have observed early promising indicators of anti-leukemic activity following treatment in this trial. We are eager to expand the trial to additional patients as we continue to research the feasibility, safety, and efficacy of this approach.
The abstract for the presentation titled Phase 1 Study of Adoptive Immunotherapy with HA-1-Specific CD8+ and CD4+ Memory T Cells for Children and Adults with Relapsed Acute Leukemia after Allogeneic Hematopoietic Stem Cell Transplantation (HCT): Trial in Progress, can be found on the ASH website under the abstract number 137726.
To date, four patients, including one pediatric patient, have received a total of six infusions in the Phase 1 clinical trial. Patient characteristic data was shared in the oral presentation at ASH, including documented HA-1 TCR T cell persistence in blood and bone marrow up to 18 months. In some patients, clear in vivo anti-leukemic activity was observed at the first dose level, including a subject with aggressive, highly refractory T-ALL and early post-HCT relapse. No significant toxicities attributed to the T cells have been observed, including no infusion reactions or evidence of cytokine release syndrome or graft versus host disease.
The Phase 1 clinical trial is currently recruiting adult and pediatric patients who have residual disease or relapsed leukemia or related conditions following HSCT. As part of the trial, transplant patients and prospective donors may be recruited to participate in the genetic screening portion to determine eligibility. More details are available on clinicaltrials.gov under the study ID number NCT03326921.
About TCR-Engineered T Cell Therapy
A key role of the immune system is to detect tumor antigens, engage T cells, and eradicate the tumor. However, the immune response to tumor antigens varies and is often insufficient to prevent tumor growth and relapse. An approach known as adoptive T cell therapy, using T cell receptors, or TCRs, can overcome some of the obstacles to establishing an effective immune response to fight off the target tumor. TCRs are molecules found on surface of T cells that can recognize tumor antigens that are degraded to small protein fragments inside tumor cells. Unlike CAR T cells that recognize only surface antigens, TCRs can recognize small protein fragments derived from intracellular and surface antigens offering a more diverse way to attack tumors. These small protein fragments show up on the tumor cell surface, with another protein called major histocompatibility complex (MHC), that are recognized by the TCRs and consequently signal the bodys immune system to respond to fight off and kill the tumor cells.
Tumor-specific TCRs can be identified and then engineered into T cells that recognize and attack various types of cancers, representing a novel approach to treating and potentially preventing disease.
Adoptive T cell therapy can be applied to tackling relapse of leukemia post hematopoietic stem cell transplant (HSCT) by targeting the antigens expressed only by the patients native cells, and not by the cells from the stem cell transplant donor. HA-1, a known minor histocompatibility antigen, is expressed predominantly or exclusively on hematopoietic cells, including leukemic cells. There is evidence that T cells specific for HA-1 can induce a potent and selective antileukemic effect. HA-1 TCR T cell therapy is a new investigational immunotherapy for the management of post transplantation leukemia relapse.
About Leukemia post HSCT Treatment and the Risk of Relapse
Leukemia, a cancer of the blood or bone marrow characterized by an abnormal proliferation of blood cells, is the tenth most common type of cancer in the U.S. with an estimated 60,140 new cases and 24,400 deaths in 2016. Leukemia arises from uncontrolled proliferation of a specific type of hematopoietic (blood) cell that is critical for a functional immune system. As a result, when patients are given very high doses of chemotherapy to eradicate leukemic cells, most normal cells are killed as well, necessitating a transplant of hematopoietic stem cells from a donor to reconstitute the patients bone marrow and circulating hematopoietic cells. In some cases, the transplanted T cells from the donor can also recognize and eliminate the hematopoietic cells, including leukemia, from the recipient, thus preventing relapse. This can be described as a graft versus leukemia effect. Other hematologic disorders related to leukemia, like myelodysplastic syndrome (MDS), can also be treated in this way.
While HSCT can be curative, it is estimated that 25-50 percent of HSCT recipients relapse; leukemia relapse remains the major cause of allogeneic HSCT failure, and the prognosis for patients with post-HCT relapse is poor. Relapse occurs following allogeneic HSCT in approximately one-third of patients with acute leukemia who undergo the procedure, and most patients subsequently die of their disease.
About HighPassBio
HighPassBio, an ElevateBio portfolio company, is working to advance a novel approach to treating hematological malignancies by leveraging T cell receptor (TCR)-engineered T cells, known as TCR T cells. The companys lead program is designed to treat or potentially prevent relapse of leukemia in patients who have undergone hematopoietic stem cell transplant (HSCT). The technology was born out of research conducted at Fred Hutchinson Cancer Research Center by world renowned expert, Dr. Marie Bleakley.
About ElevateBio
ElevateBio, LLC, is a Cambridge-based creator and operator of a portfolio of innovative cell and gene therapy companies. It begins with an environment where scientific inventors can transform their visions for cell and gene therapies into reality for patients with devastating and life-threatening diseases. Working with leading academic researchers, medical centers, and corporate partners, ElevateBios team of scientists, drug developers, and company builders are creating a portfolio of therapeutics companies that are changing the face of cell and gene therapy and regenerative medicine. Core to ElevateBios vision is BaseCamp, a centralized state-of-the-art innovation and manufacturing center, providing fully integrated capabilities, including basic and translational research, process development, clinical development, cGMP manufacturing, and regulatory affairs across multiple cell and gene therapy and regenerative medicine technology platforms. ElevateBio portfolio companies, as well as select strategic partners, are supported by ElevateBio BaseCamp in the advancement of novel cell and gene therapies.
ElevateBios investors include F2 Ventures, MPM Capital, EcoR1 Capital, Redmile Group, Samsara BioCapital, The Invus Group, Surveyor Capital (A Citadel company), EDBI, and Vertex Ventures.
ElevateBio is headquartered in Cambridge, Mass, with ElevateBio BaseCamp located in Waltham, Mass. For more information, please visit http://www.elevate.bio.
Original post:
ElevateBio's HighPassBio Presents on Novel T Cell Receptor Cell Therapy for Leukemia Relapse at 62nd Annual ASH Meeting - Business Wire
Posted in Stem Cell Research
Comments Off on ElevateBio’s HighPassBio Presents on Novel T Cell Receptor Cell Therapy for Leukemia Relapse at 62nd Annual ASH Meeting – Business Wire
Insights on the Global Stem Cell Therapy Market 2020-2024: COVID-19 Analysis, Drivers, Restraints, Opportunities, and Threats – Technavio – Business…
Posted: December 9, 2020 at 1:59 am
LONDON--(BUSINESS WIRE)--The stem cell therapy market is expected to grow by USD 588.22 mn, progressing at a CAGR of almost 7% during the forecast period.
Click & Get Free Sample Report in Minutes
The increase in awareness of stem cell therapy is one of the major factors propelling market growth. However, factors such as the high cost of clinical trials will hamper the market growth.
More details: https://www.technavio.com/report/stem-cell-therapy-market-industry-analysis
Stem Cell Therapy Market: Type Landscape
Based on the type, the allogeneic transplants segment is expected to witness lucrative growth during the forecast period.
Stem Cell Therapy Market: Geographic Landscape
By geography, North America is going to have a lucrative growth during the forecast period. About 51% of the markets overall growth is expected to originate from North America. The US and Canada are the key markets for the stem cell therapy market in North America.
Buy 1 Technavio report and get the second for 50% off. Buy 2 Technavio reports and get the third for free.
View market snapshot before purchasing
Related Reports on Health Care Include:
Companies Covered:
What our reports offer:
Technavio suggests three forecast scenarios (optimistic, probable, and pessimistic) considering the impact of COVID-19. Technavios in-depth research has direct and indirect COVID-19 impacted market research reports.
Register for a free trial today and gain instant access to 17,000+ market research reports.
Technavio's SUBSCRIPTION platform
Key Topics Covered:
Executive Summary
Market Landscape
Market Sizing
Five Forces Analysis
Market Segmentation by Type
Customer landscape
Geographic Landscape
Vendor Landscape
Vendor Analysis
Appendix
About Us
Technavio is a leading global technology research and advisory company. Their research and analysis focuses on emerging market trends and provides actionable insights to help businesses identify market opportunities and develop effective strategies to optimize their market positions. With over 500 specialized analysts, Technavios report library consists of more than 17,000 reports and counting, covering 800 technologies, spanning across 50 countries. Their client base consists of enterprises of all sizes, including more than 100 Fortune 500 companies. This growing client base relies on Technavios comprehensive coverage, extensive research, and actionable market insights to identify opportunities in existing and potential markets and assess their competitive positions within changing market scenarios.
Read the original post:
Insights on the Global Stem Cell Therapy Market 2020-2024: COVID-19 Analysis, Drivers, Restraints, Opportunities, and Threats - Technavio - Business...
Posted in Stem Cell Research
Comments Off on Insights on the Global Stem Cell Therapy Market 2020-2024: COVID-19 Analysis, Drivers, Restraints, Opportunities, and Threats – Technavio – Business…
Multiple gene edits and computer simulations could help treat rare genetic diseases – University of Wisconsin-Madison
Posted: December 9, 2020 at 1:59 am
The lab of KrisSaha at the University of WisconsinMadison has developed an innovative combination of gene-editing tools and computational simulations that can be used to develop new strategies for editing genes associated with genetic disorders.
In proof-of-concept experiments, the labs researchers efficiently corrected multiple mutations responsible for a rare metabolic disorder, known as Pompe disease, in cells containing the disease-causing errors. They also used computer simulations to design the ideal gene-editing approach for treating human patients, a boon for rare disorders like Pompe disease that lack useful animal models.
Their promising platform advances the CRISPR genome-editing field and could lead to effective treatments for many diseases, not just Pompe disease.
The exact mutations seen in the Pompe patients are not in an existing animal model, so we cannot do all of the preclinical studies that we would like to do in order to evaluate the safety and efficacy of different genome editing strategies, says Saha, a professor of biomedical engineering at UWMadisons Wisconsin Institute for Discovery. We need a way to think about how we go from patient material to a therapy without having to build an animal model, a process that takes months to years and hundreds of thousands of dollars.
The lab of Kris Saha (standing) has developed an innovative combination of gene-editing tools and computational simulations that can be used to develop new strategies for editing genes associated with genetic disorders. Photo: Stephanie Precourt
Sahas team published its findings Dec. 8 in the journal Nature Communications.
In the first few months of life, an infant with Pompe disease becomes weaker and weaker as glycogen builds up in their muscles, their cells unable to break the complex sugar down. Multiple mutations in a gene calledGAAprevent their cells from correctly producing the proteins needed to make lysosomes, which turn glycogen into glucose, the fuel that powers cells. Left untreated, most patients with Pompe die within a year.
Developing effective therapies for such diseases can be difficult for a number of reasons. First, diseases like Pompe have no animal models in which to test treatments, a typical step in therapy development. And diseases like Pompe and many other inherited diseases are autosomal recessive, which means that mutations are present on both copies of a chromosome. Two sets of mutations require two successful gene-repair events for maximum effect. Further complicating the matter is the fact that many diseases are polygenic, resulting from mutations in two or more genes or multiple mutations spread across a single gene, as is the case for Pompe disease.
The Saha labs new approach uses precise gene-editing tools to edit both faulty alleles simultaneously within individual cells to restore function. In its new report, the research team used induced pluripotent stem cells derived from Pompe patients to reproduce the exactGAAmutations that cause the disease and to approximate the resulting tissue pathology.
To fix these Pompe mutations, the lab turned to a specially designed, ultra-precise genome-editing system described in aprevious studyled by Jared Carlson-Stevermer, who was at the time a graduate student in Sahas group. That report established an up to 18-fold increase in precision of gene edits by combining a DNA repair template with the cutting machinery of CRISPR in one particle.
In the current study, the researchers used the method to fix two mutations at once in Pompe-derived cells. By doing so, the researchers improved cell function dramatically, bringing lysosome protein production up to the level of healthy cells without any major adverse effects, which sometimes emerge from gene editing.
The research advances the CRISPR genome-editing field and could lead to effective treatments for many diseases.
But treating cells in the laboratory, while providing crucial insight, is not the same as creating a therapy for patients. A critical step in developing treatments usually involves testing on animal models to evaluate efficacy and safety, a major obstacle for Pompe disease and other genetic conditions that lack viable animal models.
To determine the best therapeutic strategy for polygenic diseases evaluating different doses, delivery mechanisms and timing, risks and other factors the research team instead built a computational model that allows it to predict the outcomes of various conditions.
This allows us to survey a wider scope of many different gene therapies during the design of a strategy, says coauthor Amritava Das, a postdoctoral associate at the Morgridge Institute for Research. The computational approach is critical when you dont have an animal model that resembles the human disease.
After pumping close to a million simulation conditions through the computational model, Das, Carlson-Stevermer and Saha have gained key insights about the delivery of gene editors into the livers of human infants with Pompe disease without having to subject a single patient to experimental treatments. And those insights establish that the multiple-correction genome-editing approach tested in stem cells may be an effective treatment for Pompe and other polygenic recessive disorders.
The computational model, which can be easily adapted for other polygenic conditions, is a big step for the development of therapies for diseases like Pompe and lays the groundwork for a bridge from laboratory studies to the clinic. And as more measurements are added to the model, it will gain more predictive power.
Its a very broad, adaptable platform, Das says about the combined stem cell model and computational tool, and a very different way of thinking about gene therapy.
This work was supported by the National Science Foundation (CBET-1350178, CBET-1645123), the National Institutes of Health (1R35GM119644-01), the Environmental Protection Agency (EPA-G2013 STAR-L1), the University of Wisconsin Carbone Cancer Center (P30 CA014520), the Wisconsin Alumni Research Foundation, and the Wisconsin Institute for Discovery.
Follow this link:
Multiple gene edits and computer simulations could help treat rare genetic diseases - University of Wisconsin-Madison
Posted in Stem Cell Research
Comments Off on Multiple gene edits and computer simulations could help treat rare genetic diseases – University of Wisconsin-Madison
Five Johns Hopkins faculty named to National Academy of Inventors – The Hub at Johns Hopkins
Posted: December 9, 2020 at 1:59 am
ByHub staff report
Five Johns Hopkins faculty members have been elected as fellows of the National Academy of Inventors, a prestigious distinction that recognizes and honors the creators or co-developers of outstanding inventions that have made a difference in society. These professors join the more than 4,000 current fellows of the academy, which features members of more than 250 institutions worldwide.
The honorees from Johns Hopkins are:
Ramalingam Chellappa, who joined the Hopkins Department of Biomedical Engineering and the Department of Electrical and Computer Engineering as a Bloomberg Distinguished Professor earlier this year. Chellappa's work has shaped the field of facial recognition technology, and he is known as an expert in machine learning. At Hopkins he contributes to the Mathematical Institute for Data Science and the Center for Imaging Science.
Valina Dawson, a professor of neurology, neuroscience, and physiology in the School of Medicine, and co-director of the Neuroregeneration and Stem Cell Programs in the Institute for Cell Engineering. The lab aims to discover and describe the cell signaling pathways that contribute to neuron survival and death in Parkinson's disease and strokes. In her work, Dawson has discovered new therapies to treat neurological disorders, and established new neurological targets for patients' recovery processes.
Sharon Gerecht, professor of chemical and biomolecular engineering, and director of the Johns Hopkins Institute for NanoBioTechnology. Gerecht is an internationally recognized expert in vascular and stem cell biology and a member of the National Academy of Medicine. Together with her research group, she studies the interactions between stem cells and their microenvironments with the long-term goal of engineering artificial cell microenvironments.
Carol Greider, a professor in the Department of Molecular Biology and Genetics. In 2009, Grieder shared the Nobel Prize in Physiology or Medicine with Elizabeth Blackburn and Jack Szostak for their work on telomeres and telomerase, an enzyme that maintains protective "caps" on the ends of chromosomes. She studies the roles these enzymes play in cancer and age-related degenerative disease.
Nitish Thakor, a professor in the Department of Biomedical Engineering. Thakor conducts research on neurological instrumentation, biomedical signal processing, micro and nanotechnologies, neural prosthesis, and neural and rehabilitation techniques. Director of the Laboratory for Neuroengineering, Thakor also serves as director of the NIH Training Grant on Neuroengineering. Currently, he is developing a next-generation neurally controlled upper limb prosthesis alongside a multi-university consortium funded by DARPA.
Read the rest here:
Five Johns Hopkins faculty named to National Academy of Inventors - The Hub at Johns Hopkins
Posted in Stem Cell Research
Comments Off on Five Johns Hopkins faculty named to National Academy of Inventors – The Hub at Johns Hopkins
Europe Tissue Engineering Market Forecast to 2027 – COVID-19 Impact and Regional Analysis by Material Type, Applications, and Country -…
Posted: December 9, 2020 at 1:59 am
DUBLIN--(BUSINESS WIRE)--The "Europe Tissue Engineering Market Forecast to 2027 - COVID-19 Impact and Regional Analysis by Material Type, Applications, and Country" report has been added to ResearchAndMarkets.com's offering.
The Europe tissue engineering market is expected to reach US$ 7,368.93 million by 2027 from US$ 2,798.86 million in 2019; it is estimated to grow at a CAGR of 13.2% during 2020-2027.
The market growth is primarily attributed to the increasing incidences of chronic diseases, road accidents, and trauma injuries, and technological advancements in 3D tissue engineering techniques. High cost associated to the tissue engineering process is one of the major factors restraining the growth of the market. Additionally, increasing financial contributions by government and private sector are likely to fuel the growth of the Europe tissue engineering market during the forecast period.
Tissue engineering is a blend of material methods and cellular activities. This approach involves the use of physicochemical and biochemical attributes of humans to replace the biological tissues and strengthen them. It is an innovative technology that works either separately or in conjunction with scaffolds, stem cells, regenerative medicine, and growth factors or negotiators. The process utilizes molecular and cellular processes in combination with the principles of material engineering to surgically repair and restore tissue.
The tissue engineering market in Europe is estimated to grow at a significant CAGR during the forecast period, and the growth is driven by the increase in research activities, growing demand for organ transplants, escalating number of initiatives by market players for expanding their presence in the region, and higher adoption of stem cell research in several European countries.
In the Europe, due to an increasing number of COVID-19 patients, healthcare professionals and leading organizations are rechanneling the flow of healthcare resources from R&D to primary care, which is slowing down the process of innovation. Further, the pandemic is also hindering the conduct of clinical trials and drug development, and the operations of diagnostic industry in Europe.
For instance, Stryker Corporation, a well-known player in the tissue engineering industry, has diverted operations to manufacture COVID-19 diagnostics and PPE kits. Moreover, according to a recent survey published by Medscape in July 2020, substantial disruption has been witnessed in routine research activities that include tissue engineering and regenerative medicines as a result of the COVID-19 pandemic. The rapid increase in the number of the infected patients in the Italy and Spain is likely to result in the slowdown of the market growth in the near future.
In 2019, the biologically derived material segment accounted for the largest share of the Europe tissue engineering market. The growth of the market for this segment is attributed to the rising adoption of biomaterials due to their natural regenerative potential to restore tissue functioning and ability to facilitate the on demand release of chemokines with the procedure. Further, the synthetic material segment is likely to register the highest CAGR in the market during the forecast period.
Key Topics Covered:
1. Introduction
1.1 Scope of the Study
1.2 Report Guidance
1.3 Market Segmentation
2. Europe Tissue engineering Market - Key Takeaways
3. Research Methodology
4. Europe Tissue engineering Market - Market Landscape
4.1 Overview
4.2 PEST Analysis
4.3 Expert Opinion
5. Europe Tissue engineering Market - Key Market Dynamics
5.1 Key Market Drivers
5.1.1 Increasing Number of Road Accidents and Trauma Injuries, and Elevating Incidence of Chronic Diseases
5.1.2 Technological Advancements in the Field of 3D Tissue engineering
5.1.3 Government and Private sector funding
5.2 Key Market Restraints
5.2.1 High Cost associated with tissue engineering
5.3 Impact Analysis
6. Tissue engineering Market - Europe Analysis
6.1 Europe Tissue engineering Market Revenue Forecasts and Analysis
7. Europe Tissue engineering Market Analysis - By Material Type
7.1 Overview
7.2 Europe Tissue engineering Market, By Material Type 2019-2027 (%)
7.2.1 Europe Tissue engineering Market Material Type Segment Revenue and Forecasts to 2027, By Material Type (US$ Mn)
7.3 Biologically Derived Material
7.4 Synthetic Material
7.5 Other
8. Europe Tissue engineering Market Analysis - By Application
8.1 Overview
8.2 Europe Tissue engineering Market, By Application 2019-2027 (%)
8.2.1 Europe Tissue engineering Market Revenue and Forecasts to 2027, By Application (US$ Mn)
8.3 Orthopedic, Musculoskeletal and Spine
8.3.1 Overview
8.3.2 Europe Orthopedic, Musculoskeletal and Spine Market Revenue and Forecasts to 2027 (US$ Mn)
8.4 Skin
8.5 Cardiology and Vascular
8.6 Neurology
8.7 Others
9. Europe Tissue engineering Market Revenue and Forecasts To 2027 - Regional Analysis
10. Impact of COVID-19 Pandemic on Europe Tissue Engineering Market
10.1 Europe: Impact Assessment of COVID-19 Pandemic
11. Company Profiles
For more information about this report visit https://www.researchandmarkets.com/r/ppygkp
Read the original post:
Europe Tissue Engineering Market Forecast to 2027 - COVID-19 Impact and Regional Analysis by Material Type, Applications, and Country -...
Posted in Stem Cell Research
Comments Off on Europe Tissue Engineering Market Forecast to 2027 – COVID-19 Impact and Regional Analysis by Material Type, Applications, and Country -…
Anatomy of a vaccine: What it takes to create a safe, effective COVID shot – University of California
Posted: December 9, 2020 at 1:58 am
Shawn stepped into the UCLA Vine Street Clinic in Hollywood with confidence. He offered up his arm. The UCLA doctor injected him. It took seconds; there was barely a sting.
Twenty-four hours after the first of two shots, given 28 days apart, he suffered the headaches and fatigue associated with a milder case of COVID-19. But Shawn remained calm, resolved to honor the memory of his mother, a nurse who had died in May 2020 from an unrelated cause.
The 57-year-old nonprofit worker had been thinking about the challenges of COVID-19 for a long time, and he decided to go through the lengthy consent process for the medical trial. It gave me something to do with my anger that was so much better than yelling at someone for not wearing a mask, he says. And [at UCLA] I felt I was in good hands.
Shawn is one of many volunteers who have stepped up to participate in medical trials at UCLA, which is part of a global network thats determined to help find a vaccine against the novel coronavirus.
The stakes are huge. More than 250,000 Americans have already died, and there have been more than 1 million deaths around the world. Economies have been brought to their knees, social tensions have disrupted communities and emotional maladies are on the rise.
In response, doctors and scientists have been challenged to be resilient and ingenious. Theyre taking an array of different approaches, knowing that public confidence in vaccines hangs in the balance.
In addition, it has been a challenge to create a vaccine in such a short amount of time similar efforts have taken five to 10 years. Pharmaceutical giant Pfizer and biotech firm Moderna have both reported remarkable progress, announcing in November that their vaccine candidates were more than 90% effective. All of which has raised questions about the next steps, such as how the vaccines will be distributed.
I dont want to make a vaccine to protect against mild disease, says Dr. Marcus Horwitz, distinguished professor of medicine and microbiology, immunology and molecular genetics at the David Geffen School of Medicine at UCLA. I want to protect people who are going to get severe disease.
Horwitz has already developed vaccines against the bacteria behind tuberculosis, anthrax and the tick-borne disease tularemia, but he has never tried to create a vaccine against a virus. When faced with a worldwide pandemic, we thought we might be able to make a contribution, he says.
Vaccines work by training the immune system to recognize and fight disease-causing pathogens, such as viruses or bacteria. Doctors introduce the bodys immune system to antigens, which are molecules from the virus or bacteria, and the immune system responds by making proteins called antibodies and immunity-building T cells, which both neutralize the pathogen.
The delivery of these antigens requires a delicate calculus: It must provoke the immune system, but not go so far as to make the patient ill. You need a vector that will wake up the immune system of the host, but not cause any further harm, Horwitz says.
The vaccine approach by Horwitz and his team, including lead investigator Qingmei Jia, is a medical outlier: They adapted an existing antibacterial platform to build protection against SARS-CoV-2, the virus that causes COVID-19. The team has shown that their vaccine candidate protects hamsters, which develop severe disease in a way similar to humans.
Some of the potential vaccines for SARS-CoV-2 use a weakened form of an adenovirus, which causes the common cold, to deliver the S protein that is found on the surface of the SARS-CoV-2 virus. Horwitzs vaccine stands out from the pack because it uses a weakened bacterium to deliver two SARS-CoV-2 proteins, the M and N proteins.
That difference could have a tremendous impact. Billions of COVID-19 vaccine doses are needed, and bacteria, unlike viruses, are easy and cheap to produce and transportable.
The success of a COVID-19 vaccine also depends on the immune system, which can be less robust in older people.
This is a problem that has driven Song Li, chair of the bioengineering department at the UCLA Samueli School of Engineering, who has focused his career on cell and tissue engineering. Adapting a concept from cancer immunotherapy, Li is developing a biomaterial vaccine booster using artificial cells that could improve the immune systems ability to generate long-term protection.
When the immune system encounters a destructive pathogen, it produces cells that are designed to attack the invader. A small number of those cells, called T memory stem cells, can stay in the system for years ready for a future invasion. Unfortunately, our ability to produce T memory stem cells declines as we get older. Li hopes his booster, in combination with a vaccine, can help fragile immune systems effectively fight against the SARS-CoV-2 virus.
My goal at the outset was to help the elderly population, Li says. But it could be useful for any person whose immune system needs help generating protection from the virus.
Another UCLA team led by Bogdan Pasaniuc, Dr. Manish Butte and Dr. Daniel Geschwind, the Gordon and Virginia MacDonald Distinguished Professor of Human Genetics at the Geffen School of Medicine is trying to find out why the virus significantly impacts some, but leaves others relatively unscathed.
We know age is a major factor, but we see older people who get infected and do quite well, Geschwind says. We have a limited ability to predict how sick someone will get. His team hopes that studying whole-genome sequences from thousands of COVID-19 patients will reveal hidden factors that make some more vulnerable than others. The research could help identify people who are at higher risk for infection as well as develop new treatment and prevention strategies.
Dr. Brigitte Gomperts, professor of pediatrics and pulmonary medicine and a member of the UCLA Broad Stem Cell Research Center, is studying how COVID-19 affects lung tissue. By using stem cellderived clusters of lung cells, known as organoids, she can rapidly screen thousands of prospective treatments. Because the organoids are grown from human cells and reflect the cell types and architecture of the lungs, they can offer insights into how the virus infects and damages the organ.
At UCLA medical centers around Los Angeles County, physicians are ensuring that their medical trials include diverse groups of people and women of all ages.
COVID-19 has hit the African American and Latino communities particularly hard, says Dr. Jesse Clark, associate professor-in-residence in the department of medicine at the Geffen School of Medicine. We have to make sure that any vaccine has been determined to be safe and effective in all populations that will receive it.
COVID-19 has hit the African American and Latino communities particularly hard. We have to make sure that any vaccine has been determined to be safe and effective in all populations that will receive it.
Dr. Jesse Clark, associate professor-in-residence in the department of medicine at the David Geffen School of Medicine at UCLA
Clark is medical director of the UCLA Vine Street Clinic, which is involved in the Moderna clinical trial. Notably, Modernas vaccine works differently from a typical vaccine, because it doesnt contain the virus at all. Instead, it uses messenger RNA, or mRNA, which uses the bodys genetic code to produce antibodies against the virus.
CNN mentioned that the vaccine trials were having trouble finding minorities to participate, says Roderick, a 37-year-old IT manager and father of two, who is participating in the Moderna trial. Being Black and Mexican, and knowing how hard my demographic has been hit, I just went ahead and signed up online. Its worth doing to help out.
Meanwhile, Dr. Katya Corado, an infectious disease specialist at Harbor-UCLA Medical Center in Torrance, has been enrolling patients in a phase 3 clinical trial of an adenovirus vector vaccine thats under development by the University of Oxford and the biopharmaceutical company AstraZeneca.
All vaccines undergo three phases of clinical trials, according to rules set by the Food and Drug Administration. Phase 1, which involves 20 to 100 volunteers, tests the safety and dosage of the vaccine. Phase 2 tests the drugs efficacy and side effects among several hundred participants, and phase 3 gathers more information about a vaccines safety and effectiveness by studying thousands of volunteers.
In the phase 3 trial, we focus on studying how effective the vaccine is in populations that need it most, Corado says.
Clark and Corado are both hopeful that their work can protect the most vulnerable, which includes people over 65, patients with chronic conditions, those facing economic disadvantages and essential workers.
Inoculations have eradicated past epidemics, such as smallpox. But public faith in vaccines has wavered, especially when a now-disproven report in 1998 suggested that the measles, mumps and rubella vaccine was linked to autism spectrum disorder. That has led to U.S. outbreaks of measles, which had been previously eliminated. So scientists recognize the importance of getting the COVID-19 vaccine right.
There are other factors to consider as well. Vaccine distribution will be high on the agenda of the incoming White House administration, but if supply is limited, the Centers for Disease Control and Prevention recommends prioritizing certain groups, such as medical workers.
Also, some vaccines currently in development need to be stored in ultra-cold conditions. For example, Pfizers vaccine must be stored at minus 70 degrees Celsius, while Modernas vaccine must be kept at minus 20 degrees Celsius the temperature of a regular freezer. These factors will affect how the vaccines are distributed.
Some lawmakers have advocated letting the virus run its course in the hopes of achieving herd immunity, which is when enough people have become immune to an infectious disease, either through being infected or vaccination. Since the COVID-19 vaccine is still pending, a majority of people will need to be infected in order to achieve herd immunity and that comes at a terrible cost.
According to Dr. Robert Kim-Farley, professor-in-residence of epidemiology at the UCLA Fielding School of Public Health, up to 2 million Americans would have to die before the country reached herd immunity.
He argues that vaccines work, even if they are not perfectly safe or perfectly effective, as proven by the near-eradication of polio. But approving vaccines prematurely to buckle under the pressure of politics or profit could cause a terrible backlash against being vaccinated, which could lead to future outbreaks.
We want to make sure we are not cutting corners, Kim-Farley says, that we are getting the best vaccine that has the highest efficacy, the longest duration, the fewest number of side effects [with] the fewest number of doses.
This is a very high-stakes game, and its important to get it right, without recalls or playing into the [anti-vaccination] narrative. What still concerns me is the equitable distribution of vaccines to make sure that countries that are not as wealthy as us have access to these life-saving vaccines. We are all members of one global community.
Go here to read the rest:
Anatomy of a vaccine: What it takes to create a safe, effective COVID shot - University of California
Posted in Virginia Stem Cells
Comments Off on Anatomy of a vaccine: What it takes to create a safe, effective COVID shot – University of California
SC Stem Cell: Regenerative Medicine: Columbia, SC
Posted: December 9, 2020 at 1:56 am
About Us
SC Stem Cell provides innovative regenerative medicine therapies and nonsurgical treatments for pain to patients throughout Columbia, South Carolina. With a passion for safe, effective pain care, SC Stem Cell can treat damaged tissues, injuries, arthritis, and slow-healing wounds with a variety of minimally invasive, nonsurgical treatments. We use a Doctor of Anesthesiology whose licenses and experience cover far more direct precise procedures. With an actual treating physician's license, we can cover hips, spines, discs, etc.
As a practice focusing on regenerative medicine and nonsurgical techniques, SC Stem Cell proudly offers its patients stem cell therapy. This groundbreaking treatment taking stem cells and injectingthem directly into an injury site, such as arthritic knees, torn rotator cuff or herniated disc, to stimulate the bodys natural healing response. Over time, the body begins to heal injuries at the source for lasting pain relief without surgery.
Along with stem cell therapy, SC Stem Cell uses hyperbaric oxygen therapy to speed up healing. While oxygen-rich blood in the body helps heal damaged tissues, it often isnt enough if an injury isnt healing properly. During hyperbaric chamber therapy, patients breathe in pure oxygen inside a pressurized chamber to promote faster recovery.
SC Stem Cell also has board-certified chiropractors on staff to relieve back pain, improve flexibility and mobility, and restore function to damaged tissues with massage therapy. To meet every patients unique needs and health goals, the practice provides Swedish, lymphatic, and deep tissue massages at their office.
Call SC Stem Cell or book an appointment online today to learn more about your regenerative medicine options.
Read the rest here:
SC Stem Cell: Regenerative Medicine: Columbia, SC
Posted in South Carolina Stem Cells
Comments Off on SC Stem Cell: Regenerative Medicine: Columbia, SC
Sirnaomics to Initiate Phase I Study of STP705 in Treatment of Primary and Metastatic Liver Cancer | DNA RNA and Cells | News Channels -…
Posted: December 7, 2020 at 5:00 pm
DetailsCategory: DNA RNA and CellsPublished on Friday, 04 December 2020 14:55Hits: 1020
GAITHERSBURG, MD, USA and SUZHOU BIOBAY, China I December 3, 2020 I Sirnaomics, Inc., a biopharmaceutical company engaged in the discovery and development of RNAi therapeutics against cancer and fibrotic diseases, announced today that the company has received feedback from the U.S. Food and Drug Administration (FDA) and may now proceed with a planned Phase I clinical study of its leading drug candidate, STP705, for treatment of multiple types of liver cancer.
The FDA has provided valuable feedback on the company's proposed trial design for a "Phase 1 Multicenter, Open-Label, Dose Escalation Study and Dose Expansion Study to Evaluate the Safety, Tolerability, Pharmacokinetics, and Anti-Tumor Activity of STP705 Administered Intratumorally in Cholangiocarcinoma, Hepatocellular Carcinoma or Liver Metastases in Subjects With Advanced / Metastatic or Surgically Unresectable Solid Tumors Who Are Refractory to Standard Therapy." The first patient is expected to be enrolled in the study in the first quarter of 2021. STP705 is a small interfering RNA (siRNA) therapeutic that utilizes a proprietary polypeptide nanoparticle (PNP)-enhanced delivery system to inhibit expression of TGF-1 and COX-2 in targeted tissue and cells. Preclinical animal models have demonstrated its effective anti-tumor activity for treatments of cholangiocarcinoma and hepatocellular carcinoma.
"Receiving the required feedback from the FDA now permits us to proceed with this Phase Istudy that represents an important step forward in demonstrating the broader clinical utility of our siRNA therapeutic candidates," said Patrick Y. Lu, PhD, Sirnaomics' Founder and CEO. "Liver cancer treatment remainsacritical unmet need globally and especially in Asian countries. Ourclinical strategy leveraging STP705's FDA Orphan Drug designation for the treatment of cholangiocarcinoma and hepatocellular carcinoma will potentially be highly beneficial to patients suffering these life threatening diseases in both the US and Asia. We are anticipating that this clinical study will contribute to the expanding clinical evidence supportingextensivetherapeutic potential of STP705 against various cancers."
"Liver cancer continues to be a devastating disease for patients with high mortality and high unmet medical need," stated Michael Molyneaux, MD, Sirnaomics' Chief Medical Officer. "This disease fits with Sirnaomics mission to bring lifesaving drugs to patients with severe debilitating medical illness. We hope to gain important insight into the potential safety and efficacy of STP705 in this Phase I trialand we expect to build on the data from this study to expand into other oncology indications."
About Liver Cancer
Liver cancer is a global health problem, with liver neoplasms representing the second-most frequent cause of cancer-related death. There are many different types of liver cancers including hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), liver angiosarcoma, hepatoblastoma and others. Additionally, liver is a highly metastasis-permissive organ. It is the most frequently afflicted organ by metastasis and liver metastases are much more common than primary hepatic tumors. The distinctive biology of the liver renders it intrinsically susceptible to metastases. The true prevalence of liver metastasis is unknown, but between 30% and 70% of patients dying of cancer have liver metastases and most patients with liver metastases will die of their disease.
STP705 and Liver Cancer
Over expressions of TGF-1 and COX-2 have been well-characterized as playing key regulatory roles in tumorigenesis. TGF- is produced by different liver cells and is demonstrated to induce tumor cell migration and survival. TGF- has been found to be overexpressed in metastatic HCC tissues. Overexpression of TGF- is generally accepted to be associated with metastasis and poor prognosis. COX-2 is reported to be highly expressed in cancer stem cells and promotes cell migration in HCC cell lines. Additionally, inhibition of COX-2 suppresses cell migration and induces apoptosis. As such TGF-1 and COX-2 are excellent therapeutic targets for treatment of liver cancer.
STP705 is composed of two siRNA oligonucleotides targeting TGF-1 and COX-2 mRNA respectively and formulated in nanoparticles with a proprietary Histidine-Lysine Co-Polymer (HKP) peptide. Each individual siRNA has demonstrated the ability to inhibit the expression of their target mRNA and combining the two siRNAs produces a synergistic effect that diminishes pro-fibrogenic, pro-inflammatory, and pro-tumorigenic factors. Sirnaomics has completed numerous pre-clinical studies that demonstrate that inhibition of TGF-1 and COX-2 is expected to result in the inhibition of tumor growth and provide an alternative approach for the treatment of various liver cancers. Molecular analyses of the effects of administering the combination demonstrated that the inhibition of these targets had effects on downstream gene products associated with numerous oncology targets. Additional immunohistochemistry and image analyses of the liver and tumor tissues demonstrated that animals treated with STP705 resulted in increased CD4+ and CD8+ T cell infiltration within the tumor microenvironment. Using STP705 for treatments of hepatocellular carcinoma and cholangiocarcinoma have been designated as Orphan Drug indications by U.S. FDA. STP705 has also been evaluated in a Phase IIa clinical trial for treatment of Non-melanoma skin cancer.
About Sirnaomics, Inc.
Sirnaomics, Inc., a leading privately held biopharmaceutical company for discovery and development of RNAi therapeutics, is a Delaware corporation headquartered in Gaithersburg, Maryland, USA, with subsidiaries in Suzhou and Guangzhou, China. The Company's mission is to develop novel therapeutics to alleviate human suffering and advance patient care in areas of high unmet medical need. The guiding principles of the company are: Innovation, Global Vision with a Patient Centered focus. Members of the senior management team have a combined experience in the biopharmaceutical industry, spanning clinical development, regulatory, financial and business management in both the USA and China. The company is supported by funding from institutional investors, corporate partnerships and government grants. Sirnaomics has developed a strong portfolio of intellectual property with an enriched product pipeline. The therapeutic areas of focus include oncology, anti-fibrotic, anti-viral and metabolic therapeutics. Learn more at http://www.sirnaomics.com.
SOURCE: Sirnaomics
Read this article:
Sirnaomics to Initiate Phase I Study of STP705 in Treatment of Primary and Metastatic Liver Cancer | DNA RNA and Cells | News Channels -...
Posted in Maryland Stem Cells
Comments Off on Sirnaomics to Initiate Phase I Study of STP705 in Treatment of Primary and Metastatic Liver Cancer | DNA RNA and Cells | News Channels -…
Kymera Therapeutics Presents Preclinical Data on IRAKIMiD and STAT3 Programs at Virtual 62nd American Society of Hematology (ASH) Annual Meeting
Posted: December 7, 2020 at 4:58 pm
WATERTOWN, Mass., Dec. 07, 2020 (GLOBE NEWSWIRE) -- Kymera Therapeutics, Inc. (NASDAQ: KYMR), a biopharmaceutical company advancing targeted protein degradation to deliver novel, small molecule protein degrader therapeutics, today announced the company presented preclinical data that further support development of its highly selective and potent IRAKIMiD and STAT3 protein degraders scheduled to enter the clinic in 2021. Data were presented at the virtual 62nd American Society of Hematology (ASH) Annual Meeting, Dec. 5-8, 2020 in three separate poster presentations.
Originally posted here:
Kymera Therapeutics Presents Preclinical Data on IRAKIMiD and STAT3 Programs at Virtual 62nd American Society of Hematology (ASH) Annual Meeting
Posted in Global News Feed
Comments Off on Kymera Therapeutics Presents Preclinical Data on IRAKIMiD and STAT3 Programs at Virtual 62nd American Society of Hematology (ASH) Annual Meeting