Monthly Archives: October 2019

Three UCLA scientists receive grants totaling more than $18 million – Newswise

Posted: October 31, 2019 at 6:45 pm

MEDIA CONTACT

Available for logged-in reporters only

Newswise Three researchers at theEli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLAhave received awards totaling more than $18 million from the California Institute for Regenerative Medicine, the states stem cell agency.

The recipients are Dr. Sophie Deng, professor of ophthalmology at the UCLA Stein Eye Institute;Yvonne Chen, a UCLA associate professor of microbiology, immunology and molecular genetics; and Dr. Caroline Kuo, a UCLA assistant clinical professor of pediatrics. The awards were announced at a CIRM meeting today.

Dengs four-year, $10.3 million award will fund a clinical trial for a blinding eye condition called limbal stem cell deficiency. Limbal stem cells are specialized stem cells in eye tissue that help maintain the health of the cornea. Because of genetic defects or injuries caused by infections, burns, surgeries or other factors, some people do not have enough limbal stem cells, which results in pain, corneal scarring and blindness.

The approach she is testing involves extracting a small number of limbal stem cells from a persons eye, multiplying them in a lab, and then transplanting them back into the eye, where they could regenerate the cornea and restore vision. The research will be conducted in collaboration with theUCLAUCI Alpha Stem Cell Clinic, a partnership between UCLA and UC Irvine.

The grants awarded to Chen and Kuo are for projects that are heading toward the FDAs investigational new drug application process, which is required by the agency before a phase 1 clinical trial the stage of testing that focuses on a treatments safety.

Chens two-year, $3.2 million award will fund efforts to create a more effectiveCAR T cell therapyfor multiple myeloma, a blood cancer that affects white blood cells. The research will evaluate a specialized form of CAR T therapy that simultaneously targets two markers, BCMA and CS1, commonly found on multiple myeloma cells. CAR T therapies that target BCMA alone have been effective in clinical trials, but the presence of BCMA on multiple myeloma cells is not uniform.

Previous research has shown that the marker CS1 is present in around 90% of multiple myeloma cells. A CAR T therapy that targets both markers could potentially help more patients and reduce the likelihood of a cancer relapse.

Kuos 2 1/2-year, $4.9 million award, will support the development of a stem cell gene therapy for a deadly immunodeficiency called X-linked hyper IgM syndrome, or XHIM.

The syndrome, which is caused by a mutation in the CD40LG gene, results in invasive infections of the liver, gastrointestinal tract and lungs. Currently, the only potential cure is a bone marrow transplant from a matched donor, which carries life-threatening risks and is often less effective for XHIM patients than patients with other forms of immune deficiency. Even with current treatments, only 30% of people with the syndrome live to age 30.

Kuo will evaluate a stem cell gene therapy that corrects the genetic mutation that causes XHIM. After removing blood-forming stem cells from a person with the syndrome, the therapy would use a genetic engineering technique called CRISPR to insert a correct copy of the affected gene into the DNA of the stem cells. The corrected blood-forming stem cells would be infused back into the patient, where they could regenerate a healthy immune system.

She will collaborate with Dr. Donald Kohn, a UCLA distinguished professor of microbiology, immunology and molecular genetics who has successfully treated two other immune deficiencies bubble baby disease and X-linked chronic granulomatous disease with a similar therapy.

Read more:
Three UCLA scientists receive grants totaling more than $18 million - Newswise

Posted in Stem Cells | Comments Off on Three UCLA scientists receive grants totaling more than $18 million – Newswise

Stem Cell Research and Hair Transplants How Far Have We Come? – Science Times

Posted: October 31, 2019 at 6:45 pm

(Photo : Stem cell research and hair transplants how far have we come?)

We all know that hair loss is a major problem, particularly for men around the world. While men who have enough hair left can have hair transplant procedures such as the FUT, FUE or DHI, done, this is not always possible.

It is always a smart move to consult with a hair loss specialist regardless of your situation because they may still be able to suggest something if you still have some hair. Only the specialist can tell assess what your situation is and what options are available. You can, for example, always contact a specialist at the Vera Clinic in Turkey to get evaluated.

In fact, men who are already very bald and have lost most of the hair found in the donor areas such as the back of the head may be out of luck when it comes to being able to have transplant surgery. This is a reason that scientists have been conducting experiments using stem cells. Some types of stem cells can be used to regenerate other types of cells and tissues in the body, so it is only natural that the idea came about to use stem cells to grow new hair follicles.

Stem cell research

There is often a lot of controversy regarding stem cell research because many people, including politicians, think that only human fetuses have stem cells and thus they argue that it is an unethical area of research. However, everybody has stem cells, not just fetuses, and it is a person's own stem cells that hold the potential to make new tissues. This is also partly why PRP therapy has been so successful, because the plasma actually contains many stem cells which trigger growth and repair of tissues.

Researchers have been able to grow some human hair follicles in the laboratory using stem cells. These same hairs were then transplanted into a mouse. Human testing cannot begin until animal testing is completed and many countries have rigorous processes in place when it comes to scientific investigations in humans.

This means that we can expect it to be some time yet before any human trials can take place using stem cells and hair transplants from follicles that are grown in the lab. The other problem which the scientists have noted is that it is more complicated than it seems since even though hair was transplanted into the mice, the outcome was not good and the hair was found to grow at odd angles. This could have been because it was a transplant between different species, but the reality is that hair transplantation is not as simple as it seem.

Stem cells may, however, be the last chance for people who have lost most of their hair. Scientists think that autologous hair transplants based on growing hair from a person's own stem cells may be something that becomes a reality in the future. At the moment, more studies need to be undertaken and the best advice is to seek treatment for hair loss before it reaches a point where nothing can be done.

Continued here:
Stem Cell Research and Hair Transplants How Far Have We Come? - Science Times

Posted in Stem Cells | Comments Off on Stem Cell Research and Hair Transplants How Far Have We Come? – Science Times

Exosome Procedures Now Being Included With the R3 Stem Cell Regenerative Aesthetics Training Course – Yahoo Finance

Posted: October 31, 2019 at 6:45 pm

R3 Stem Cell, the nation's leader in regenerative medicine training, is now including exosome procedures in its regenerative aesthetics courses. There are still spots remaining for the November 15-16th, 2019 course in Scottsdale, Arizona.

SCOTTSDALE, Ariz., Oct. 31, 2019 /PRNewswire-PRWeb/ --R3 Stem Cell, the nation's leader in regenerative medicine training, is now including exosome procedures in its regenerative aesthetics courses. There are still spots remaining for the November 15-16th, 2019 course in Scottsdale, Arizona. Visit https://stemcelltrainingcourse.org/aesthetics or call (844) GET-STEM to register.

Exosomes are a huge buzzword in regenerative medicine and with good reason. Scientists and clinicians have found them to be extremely powerful at harnessing the body's repair processes.

At the R3 Stem Cell Regenerative Aesthetics Course, providers learn leading techniques for hair restoration, facial rejuvenation and ED. The training is hands on, including real patients and real biologics such as PRP therapy, stem cells and exosomes as well.

According to R3 CEO David Greene, MD, MBA, "Exosome therapy has been a very exciting addition to regenerative medicine. At our courses providers get hands on experience using them and also having procedures performed on them. That's the key in becoming the local leader in regenerative aesthetics!"

R3 Stem Cell has first rate trainers who have performed thousands of regenerative cases for hair restoration, facial rejuvenation and sexual health. In conjunction with fillers and PDO Threadlifts, the procedures have been amazing for patients looking and feeling younger.

Added Dr. Greene, "Compared with a surgery such as tummy tuck, facelift or hair grafting, these procedures involve no downtime, minimal risk and are much more cost effective. But they do require hands on training, and our courses provide a first rate experience!"

For the past eight years, R3's network of practices nationally have performed over 12,000 stem cell procedures and over 50,000 PRP therapies. The training courses have incorporated the best practice protocols and first rate biologics so providers receive training that immediately translates into practice.

There are presentations on sales and marketing along with "need to know" information on stem cells, exosomes and PRP biologics and how they work. Everything necessary to acquire patients, convert them to procedures and perform them is taught.

Spots are limited at the regenerative aesthetics training courses. Providers that will benefit from the training include MD, DO, RN, PA, NP and aesthetician injectors. Call (844) GET-STEM for registration, which is currently $1000 off.

See the original post:
Exosome Procedures Now Being Included With the R3 Stem Cell Regenerative Aesthetics Training Course - Yahoo Finance

Posted in Stem Cells | Comments Off on Exosome Procedures Now Being Included With the R3 Stem Cell Regenerative Aesthetics Training Course – Yahoo Finance

Stem cell therapy approved for MS patients in Scotland – HeraldScotland

Posted: October 31, 2019 at 6:45 pm

MULTIPLE sclerosis campaigners have hailed a huge step forward for patients in Scotland after a stem cell therapy was recommended for use on the NHS for the first time.

Haematopoietic stem cell transplantation (HSCT) has been described as a game-changer for MS after an international clinical trial showed that it could reboot patients immune systems and halt the progress of the disease.

Some patients who had been in wheelchairs prior to treatment said their condition improved so dramatically it was like they had never been diagnosed with MS.

READ MORE: Scots MS patients 'missing out' on pioneering stem cell treatment available in England

The Scottish Health Technologies Group (SHTG) said there is now sufficient evidence for it to recommend making HSCT available on the NHS in Scotland to MS patients who have the relapsing-remitting form of the disease, and who were not responding to drug treatments.

Iain Robertson, chairman of the SHTG, said: Our committee members were able to advise that this treatment should be considered for those with this particular type of MS who have not responded to treatment with disease-modifying therapies.

We hope that our advice will be of use in helping decide the best course of treatment for these patients.

The SHTG also stressed that patients must be made aware of the demands, risks and uncertainties of the treatment, which uses chemotherapy to wipe out patients' 'faulty' immune systems before replenishing it with a transplant of stem cells harvested from their own bone marrow.

It puts patients at high risk from infections, which can be fatal, but the theory is that the treatment works by enabling patients to 'reset' their immune system to stop it attacking the central nervous system as is the case in MS.

READ MORE: Anger of Scots MS patients travelling abroad for stem cell therapy available to some on NHS England

HSCT is not considered an effective treatment for patients with the progressive form of MS, however, as stem cells cannot regrow nerves or repair damaged myelin - the protective sheath which coats nerves.

It will also be unavailable to patients with relapsing-remitting MS who no longer show signs of inflammation on an MRI brain scan.

Scotland has one of the highest rates of MS in the world, but until now Scottish patients seeking HSCT have had to travel overseas to Mexico, Russia and Israel and bankroll their own private treatment at a cost of around 40-60,000.

It has also been available privately in London since 2017, but with a 100,000 price tag.

A small number of MS patients in England have been able to access the treatment on the NHS, however, because there are clinical trials into HSCT taking place at NHS hospitals in Sheffield and London.

Morna Simpkins, director of MS Society Scotland, said: The decision from SHTG to approve HSCT for the treatment of MS is good news and could help in the development of a clear pathway, for people who could potentially benefit, to access it.

We will push to ensure that this decision leads to real change for people with MS by continuing to engage with other groups to offer the treatments, including HSCT, which are right for them.

READ MORE: Stem cells help mother with MS make 'remarkable' recovery

The SHTG said eligible patients must have equal access to the procedures regardless of where they live, but it is unlikely all health boards will be able to provide it.

The MS Society wants a centre, or centres, of excellence set up where patients from across Scotland can be referred.

Lucy Clarke from the Scottish HSCT Network said the recommendation was "a huge step forward" for people in Scotland living with MS.

Ms Clarke underwent HSCT in Russia and credits it with substantially reversing her disability.

She added: This important decision supports HSCT as a treatment option where other treatments have failed. We will continue to push so that this treatment is available to people in Scotland who need it.

A Scottish Government spokeswoman said: We are grateful to the Scottish Health Technologies Group for this important work.

"NHS Boards are expected to consider their advice on technologies in the planning and provision of its services and clinicians are expected to follow their professional judgement, working within the management structure of their Board.

We will work closely with MS Society Scotland, other third sector bodies and the clinical community to consider what the Technologies Groups findings means for provision in Scotland, including the information that needs to be available to people about eligibility and risks.

Read the original:
Stem cell therapy approved for MS patients in Scotland - HeraldScotland

Posted in Stem Cells | Comments Off on Stem cell therapy approved for MS patients in Scotland – HeraldScotland

Can organoids, derived from stem cells, be used in disease treatments? – The Hindu

Posted: October 31, 2019 at 6:45 pm

The story so far: On Monday, October 21, at Neuroscience 2019, the Society for Neurosciences 49th annual meeting, held in Chicago, U.S., two neuroscientists warned the gathering that fellow scientists are perilously close to crossing the ethical red line of growing mini-brains or organoids in the laboratory that can perceive or feel things. In some cases, scientists have already transplanted such lab-grown brain organoid to adult animals. The transplanted organoid had integrated with the animal brain, grown new neuronal connections and responded to light. Similarly, lung organoid transplanted into mice was able to form branching airways and early alveolar structures. These are seen as a step towards potential humanisation of host animals.

Organoids are a group of cells grown in laboratories into three-dimensional, miniature structures that mimic the cell arrangement of a fully-grown organ. They are tiny (typically the size of a pea) organ-like structures that do not achieve all the functional maturity of human organs but often resemble the early stages of a developing tissue. Most organoids contain only a subset of all the cells seen in a real organ, but lack blood vessels to make them fully functional. In the case of brain organoids, scientists have been able to develop neurons and even make specific brain regions such as the cerebral cortex that closely resemble the human brain. The largest brain organoids that have been grown in the laboratory are about 4 mm in diameter.

Organoids are grown in the lab using stem cells that can become any of the specialised cells seen in the human body, or stem cells taken from the organ or adults cells that have been induced to behave like stem cells, scientifically called induced pluripotent stem cells (iPSC). Stem cells are provided with nutrients and other specific molecules to grow and become cells resembling a specific organ. The growing cells are capable of self-organising into cellular structures of a specific organ and can partly replicate complex functions of mature organs physiological processes to regeneration and being in a diseased state.

Organoids of the brain, small intestine, kidney, heart, stomach, eyes, liver, pancreas, prostate, salivary glands, and inner ear to name a few have already been developed in the laboratory.

Since the use of embryonic stem cells to grow organs of interest has been mired in controversy leading to a ban on such research, researchers have turned to generating organoids using stem cells. Researchers have been successful in generating organoids of increasing complexity and diversity. Since the organoids closely resemble mature tissues, it opens up new vistas. These include studying the complex arrangements of cells in three-dimension and their function in detail, and understanding how cells assemble into organs.

Organoids can be used to study the safety and efficacy of new drugs and also test the response of tissues to existing medicines. Organoids will bring precision medicine closer to reality by developing patient-specific treatment strategies by studying which drugs the patient is most sensitive to. Since the use of animals during drug development studies is becoming increasingly difficult, the focus has been on refining, reducing and replacing them. While scientists have been increasingly using human cell lines and other methods, such alternatives have some inherent limitations they cannot mimic the whole organ system. Organoids are a far superior alternative to cell lines.

Organoids offer new opportunities to studying proteins and genes that are critical for the development of an organ. This helps in knowing how a mutation in a specific gene causes a disease or disorder. In a study in Europe using intestinal organoids from six patients with an intestine disorder, it became possible to identify the mutation in a gene that prevented the formation of a healthy intestine. Researchers have used brain organoids to study how the Zika virus affects brain development in the embryo.

Scientists are already using stem cells taken from tumours to grow organoids that are poised to develop cancer. The ability to grow organoids using cancer stem cells allows researchers to study the genes, proteins and signalling pathways that cancer cells use to develop and grow. They are also using healthy organoids to identify and verify the gene mutations that cause cancer.

In an opinion piece in Nature, scientists argued that the largest brain that has been grown in the laboratory is only 4 mm in diameter and contains only 2-3 million cells. In comparison, an adult human brain measures 1,350 cubic centimetres, and has 86 billion neurons and another 86 billion non-neuronal cells and a similar number of non-neuronal cells. The authors argue that organoids do not have sensory inputs and sensory connections from the brain are limited. Isolated regions of the brain cannot communicate with other brain regions or generate motor signals. They wrote: Thus, the possibility of consciousness or other higher-order perceptive properties [such as the ability to feel distress] emerging seems extremely remote.

Read the original:
Can organoids, derived from stem cells, be used in disease treatments? - The Hindu

Posted in Stem Cells | Comments Off on Can organoids, derived from stem cells, be used in disease treatments? – The Hindu

Ezer Mizion’s Evening of Heroes is November 9 in Teaneck – The Jewish Standard

Posted: October 31, 2019 at 6:45 pm

Ezer Mizion, the worlds largest Jewish bone marrow registry, will host its Evening of Heroes for the Teaneck, Bergenfield, and New Milford communities on Saturday, November 9, at Congregation Keter Torah in Teaneck.

The evening begins with a musical Havdalah and mini-concert by the chasidic superstar Shulem Lemmer, the first chasidic singer to sign with Universal Records. Then Ezer Mizion will introduce IDF heroes who defend the State of Israel and have saved lives with their stem cells.

A stem cell recipient will recount the day he received a call letting him know that Ezer Mizion had identified a stem cell match for him a match that saved his life. Bret Stephens, a New York Times Pulitzer Prize-winning columnist, and Nachum Segal will give a fireside chat about innovations from Israel, including the export of more than 60 percent of Ezer Mizions stem cell transplants.

Get The Jewish Standard Newsletter by email and never miss our top storiesFree Sign Up

There will be a swabbing station for people who meet the basic criteria for donations. Israeli wines and shuk foods will be served.

The program aims to bring awareness of the organizations role in saving hundreds of lives around the world every year with its growing bone marrow registry. It has more than 1 million potential stem cell donors, and more than 550,000 of these donors are from the IDF. There is no cost to attend the adults-only evening; RSVPs are requested. For more information, go to eveningofheroes.com; email Ezer Mizions national director of development, Ryan Hyman, at ryan@ezermizionusa.org or call him at (718) 853-8400, ext. 109.

Read the rest here:
Ezer Mizion's Evening of Heroes is November 9 in Teaneck - The Jewish Standard

Posted in Stem Cells | Comments Off on Ezer Mizion’s Evening of Heroes is November 9 in Teaneck – The Jewish Standard

Charley Webb reveals she’s storing her baby son Ace’s stem cells in emotional post – Heart

Posted: October 31, 2019 at 6:45 pm

28 October 2019, 12:40 | Updated: 28 October 2019, 16:46

The Emmerdale actress welcomed baby Ace into the world in July of this year

Charley Webb has revealed that she's storing her baby son Ace's stem cells in an emotional Instagram post.

Read more: Strictly judge Craig Revel-Horwood blames viewers for shock Catherine exit after fierce backlash

Sharing an adorable photo of the tot, who she shares with her husband Matthew Wolfenden, she wrote: "We decided to store Aces stem cells. As parents every single one of us wants to do whats best for our children. When I was pregnant, I heard about the possibility of collecting and storing my baby's umbilical cord stem cells, which could then be used in the future should they be needed for treatment (I hope with every part of me we never need it).

"After researching, we learned that the baby's umbilical cord is a valuable source of stem cells, and these cells can be collected at birth and stored.

Read more: Coronation Streets Sally Dynevor couldn't watch Sinead's devastating death after her own cancer battle

"These could then be used as a crucial part of treating or curing an illness. Currently, there are over 80 diseases cord blood stem cells can treat. I decided to use Smart Cells to store the stem cells: the process was easy (genuinely) and they organised everything.

"Like I said, we hope we never need to use them, but it's comforting to know that we have them stored if we ever do. This is a once in a lifetime opportunity, and Im so grateful we were able to do this. Xx".

Many parents rushed to voice their approval, with one commenting: "Amazing! Such an important thing and I think every parent should consider doing this as it may save a life so respect for you. And Ace is so cute."

NOW READ:

Primary school bans all drinks except water from pupils' packed lunches

Read more here:
Charley Webb reveals she's storing her baby son Ace's stem cells in emotional post - Heart

Posted in Stem Cells | Comments Off on Charley Webb reveals she’s storing her baby son Ace’s stem cells in emotional post – Heart

SCD, HIV Gene Therapy Efforts Get $200M from NIH, Gates Foundation – Sickle Cell Anemia News

Posted: October 31, 2019 at 6:45 pm

The National Institutes of Health (NIH) and the Bill & Melinda Gates Foundation will each invest $100 million over the next four years to speed the development of affordable gene therapies for sickle cell disease (SCD) and the human immunodeficiency virus (HIV) on a global scale.

This unprecedented collaboration focuses from the get-go on access, scalability and affordability of advanced gene-based strategies for sickle cell disease and HIV to make sure everybody, everywhere has the opportunity to be cured, not just those in high-income countries, said NIH Director Francis S. Collins, MD, PhD.

Seventy-five percent of babies born with SCD live in sub-Saharan Africa. It is hoped that experimental gene therapies would advance to clinical trials in the United States and relevant African countries within the next seven to 10 years, and that safe, effective, and inexpensive gene therapies be made available globally, including in low-resource settings where the cost and complexity of these therapies make them inaccessible to many.

In recent years, gene-based treatments have been groundbreaking for rare genetic disorders and infectious diseases, Trevor Mundel, MD, PhD, president of the global health program at the Bill & Melinda Gates Foundation said in a news release.

While these treatments are exciting, people in low- and middle-income countries do not have access to these breakthroughs. By working with the NIH and scientists across Africa, we aim to ensure these approaches will improve the lives of those most in need and bring the incredible promise of gene-based treatments to the world of public health, he added.

Hemoglobin is the protein in red blood cells that binds oxygen, allowing oxygen to be transported around the body. Mutations in the HBBgene, which encodes a component of hemoglobin, result in the formation of sickle hemoglobin that causes sickle cell anemia.

Currently, gene therapies for SCD involves altering the patients own hematopoietic stem cells (bone marrow cells that divide and specialize to produce blood cells including red blood cells). Genes are introduced into the cells using a modified, harmless virus (known as a viral vector). The cells are then transplanted back into the patient where they will produce healthy red blood cells. Gene therapy has an advantage over a bone marrow transplant, as it circumvents the complications associated with a bone marrow donation.

The first goal of the collaboration between the NIH and the Gates Foundation is to develop an easy-to-administer gene-based intervention to correct the mutations in the HBBgene or deliver a functional gene that will promote the production of normal levels of hemoglobin without the need to extract cells from patients and modify them in the lab before introducing the cells back. However, this strategy, known as in vivotreatment, requires the advancement of more efficient delivery systems that can deliver the gene therapy specifically to hematopoietic stem cells.

A second goal of the collaboration will be to work together with African partners and bring potential therapies to clinical trials.

Further research is required to understand the burden of SCD in sub-Saharan Africa and to screen newborns at high risk for the disease, a task that the National Heart, Lung and Blood Institute (NHLBI) has started to tackle by building the necessary infrastructure for clinical research.

The NIH and the Gates Foundation will help boost this infrastructure to allow point-of-care screening (for example, when infants receive vaccinations), and to initiate a standard of care. This will occur outside of the official collaboration.

Our excitement around this partnership rests not only in its ability to leverage the expertise in two organizations to reduce childhood mortality rates in low-resource countries, but to bring curative therapies for sickle cell disease and HIV to communities that have been severely burdened by these diseases for generations, said Gary H. Gibbons, MD, director of the NHLBI.

A persons health should not be limited by their geographic location, whether rural America or sub-Saharan Africa; harnessing the power of science is needed to transcend borders to improve health for all, he added.

Matshidiso Rebecca Moeti, the regional director for Africa at the World Health Organization said, We are losing too much of Africas future to sickle cell disease and HIV.

Beating these diseases will take new thinking and long-term commitment. Im very pleased to see the innovative collaboration announced today, which has a chance to help tackle two of Africas greatest public health challenges, Moeti added.

Patricia holds her Ph.D. in Cell Biology from University Nova de Lisboa, and has served as an author on several research projects and fellowships, as well as major grant applications for European Agencies. She also served as a PhD student research assistant in the Laboratory of Doctor David A. Fidock, Department of Microbiology & Immunology, Columbia University, New York.

Total Posts: 94

Margarida graduated with a BS in Health Sciences from the University of Lisbon and a MSc in Biotechnology from Instituto Superior Tcnico (IST-UL). She worked as a molecular biologist research associate at a Cambridge UK-based biotech company that discovers and develops therapeutic, fully human monoclonal antibodies.

See the article here:
SCD, HIV Gene Therapy Efforts Get $200M from NIH, Gates Foundation - Sickle Cell Anemia News

Posted in Stem Cells | Comments Off on SCD, HIV Gene Therapy Efforts Get $200M from NIH, Gates Foundation – Sickle Cell Anemia News

What health care will look like in 10 years, according to TIME – The Daily Briefing

Posted: October 31, 2019 at 6:45 pm

In a recent issue, TIME rounded up 12 medical innovations that will transform "medicine at a remarkable pace" over the next decade.

Innovator: United Parcel Service CEO David Abney

Several operations have recently set their sights on delivering medical supplies via drone, and a big name in the effort is United Parcel Service (UPS), led by CEO David Abney. Earlier this month, the Federal Aviation Administration (FAA) granted UPS approval to expand its Flight Forward program, which uses drones to deliver medical samples and medications between hospitals. But UPS isn't the only name in the game. Wing, a division of Google's parent company Alphabet, also received FAA approval to make drone deliveries for Walgreens and FedEx. In Africa, the startup Zipline already delivers medical supplies to villages in Ghana and Rwanda.

Innovator: Christine Lemke, co-founder and president of Evidation

Tens of millions of people use wearables that track their health data. Now, data firms are looking into creating anonymous, searchable databases that aggregate data from wearables that researchers can use for studies. For instance, the data firm Evidation, co-founded by Christine Lemke, has developed a tool that aggregates the health information of three million volunteers for use in peer-reviewed medical studies.

Innovator: Doug Melton, co-founder of Semma Therapeutics

Ten years ago Doug Melton, a Harvard biologist, started researching how stem cells could be used to cure diabetes. In his research, Melton found that stem cells can create replacement beta cells that produce insulin. In 2014, he co-founded Semma Therapeutics and developed a small implant that holds millions of the replacement beta cells and blocks immune cells. "If it works in people as well as it does in animals, it's possible that people will not be diabetic" when treated with the implant, Melton said.

Innovator: Abasi Ene-Obong, founder of 54gene

While white people are in the minority globally, they make up almost 80% of subjects in human-genome research. To address the discrepancy, Abasi Ene-Obong founded a startup called 54gene that collects genetic data from volunteers across Africa to diversify drug research and development. "If [African people] are part of the pathway for drug creation, then maybe we can also become part of the pathway to get these drugs into Africa," Ene-Obong said.

Innovator: Sean Parker, founder of the Parker Institute for Cancer Immunotherapy

The Parker Institute for Cancer Immunotherapy, which is a network of top research institutions including the MD Anderson Cancer Center and Memorial Sloan Kettering, aims to identify and break down obstacles to innovation in cancer research. To help accelerate the research process, the network will accept approvals from the Institutional Review Board of any of the participating institutions in order to "get major clinical trials off the ground in weeks rather than years," according to Sean Parker, founder of the institute and former president of Facebook. The institute has brought 11 projects to clinical trials since it was founded in 2016.

Innovator: Thomas Reardon, CEO and co-founder of CTRL-Labs

CTRL-Labs has developed a wearable device, called the CTRL-kit, which wearers can control with their minds. When the person wearing the device thinks about a movement, the device detects the electrical impulses that travel from their brain to their hand. The device holds the potential to allow patients recovering from debilitating conditions to access new forms of rehabilitation, according to Thomas Reardon, CEO and co-founder of CTRL-Labs.

Innovator: Jonathan Rothberg, founder and CEO of Butterfly Network

To close the gap in access to medical imaging, Butterfly iQ developed a handheld ultrasound device. The device costs $2,000 compared to the $100,000 cost of a machine in a hospital. While the device isn't as precise as hospital machines, Jonathan Rothberg, founder and CEO of Butterfly Network, said the goal is that the devices will make scanning more routine.

Innovator: Shravya Shetty, senior staff software engineer at Google

Lung cancer is usually diagnosed in its later stages, TIME reports, and early screening can lead to bad results, such as misdiagnosis. Shravya Shetty, senior staff software engineer at Google, and her team at Google Health built an artificial intelligence (AI) system that detected 5% more lung cancer cases and had 11% fewer false positives than a group of radiologists. While the technology isn't yet where it should be, Shetty said it could have a big impact in the future.

Innovator: Joanna Shields, CEO of BenevolentAI

More than two million peer-reviewed research papers are published each year, which is too many for scientists to read themselves, TIME reports. To help science keep up, BenevolentAI created an algorithm that can read through the research papers to detect previously overlooked discoveries related to disease, drugs, and genes.

Innovator: Sean Slovenski, SVP & president, Walmart Health & Wellness

More retailers are entering the health care market, and a company at the forefront of this movement is Walmart, according to TIME. Leading Walmart's push into health care is Sean Slovenski, a former Humana executive who now heads Walmart Health & Wellness. Tn September, Walmart opened its first Health Center, where customers can get primary care, vision tests, and lab work, according to TIME. The potential is "huge," TIME reports, but so are the possible repercussions. For instance, health care providers might struggle to adjust to retailers' lower prices, according to TIME.

Innovator: Charles Taylor, founder of HeartFlow

A lot of patients with suspected heart problems have to undergo invasive procedures to diagnose blocked arteries. To make the process less invasive, Charles Taylor founded HeartFlow to create personalized 3-D heart models that doctors can use to diagnose patients, allowing patients to avoid invasive procedures during the diagnosis process.

Innovator: Isabel Van de Keere, founder of Immersive Rehab

In 2010, Isabel Van de Keere was left with a cervical spine injury and severe vertigo after a work accident. After years of neurological rehab, de Keere founded Immersive Rehab, a startup that aims to incorporate virtual reality into neurological rehab. Virtual reality gives patients access to a variety of exercises, making rehab less monotonous and frustrating for patients (Park, Becker's Health IT & CIO Report, 10/29; TIME, 10/25).

Visit link:
What health care will look like in 10 years, according to TIME - The Daily Briefing

Posted in Stem Cells | Comments Off on What health care will look like in 10 years, according to TIME – The Daily Briefing

BioLineRx to Present Two Posters at the Society for Immunotherapy of Cancer (SITC) 2019 – P&T Community

Posted: October 31, 2019 at 6:45 pm

TEL AVIV, Israel, Oct. 31, 2019 /PRNewswire/ -- BioLineRx Ltd. (NASDAQ: BLRX) (TASE: BLRX), a clinical-stage biopharmaceutical company focused on oncology, announced today that it will deliver the following poster presentations at the Society for Immunotherapy of Cancer(SITC) 34th Annual Meeting to take place November 6-10, 2019 at the Gaylord National Hotel & Convention Center in Baltimore, Maryland:

About BL-8040

BL-8040 is a short synthetic peptide that functions as a high-affinity best-in-class antagonist for CXCR4, a chemokine receptor over-expressed in many human cancers, where it has been shown to be correlated with poor prognosis, and plays a key role in tumor growth, invasion, angiogenesis, metastasis and therapeutic resistance. CXCR4 is also directly involved in the homing and retention of hematopoietic stem cells (HSCs) and various hematological malignant cells in the bone marrow.

In a number of clinical and pre-clinical studies, BL-8040 has shown a critical role in immune cell trafficking, tumor infiltration by immune effector T cells and reduction in immunosuppressive cells within the tumor niche, turning "cold" tumors, such as pancreatic cancer, into "hot" tumors (i.e., sensitizing them to immune check point inhibitors). BL-8040-mediated inhibition of the CXCR4-CXCL12 (SDF-1) axis has also shown robust mobilization of HSCs for transplantation in hematological malignancies.

BL-8040 was licensed by BioLineRx from Biokine Therapeutics and was previously developed under the name BKT-140.

About BioLineRx

BioLineRx is a clinical-stage biopharmaceutical company focused on multiple oncology indications. The Company'slead program, BL-8040, is a cancer therapy platform currently being evaluated in a Phase 2a study in pancreatic cancer in combination with KEYTRUDA and chemotherapy under a collaboration agreement with MSD. BL-8040 is also being evaluated in a Phase 2b study in consolidation AML and a Phase 3 study in stem cell mobilization for autologous bone-marrow transplantation. In addition, the Company has an ongoing collaboration agreement with Genentech, a member of the Roche Group, evaluating BL-8040 in combination with Genentech's atezolizumab in two Phase 1b/2 solid tumor studies.

BioLineRx is developing a second oncology program, AGI-134, an immunotherapy treatment for multiple solid tumors that is currently being evaluated in a Phase 1/2a study.

For additional information on BioLineRx, please visit the Company's website at http://www.biolinerx.com, where you can review the Company's SEC filings, press releases, announcements and events. BioLineRx industry updates are also regularly updated on Facebook,Twitter, and LinkedIn.

Various statements in this release concerning BioLineRx's future expectations constitute "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995. These statements include words such as "may," "expects," "anticipates," "believes," and "intends," and describe opinions about future events. These forward-looking statements involve known and unknown risks and uncertainties that may cause the actual results, performance or achievements of BioLineRx to be materially different from any future results, performance or achievements expressed or implied by such forward-looking statements. Some of these risks are: changes in relationships with collaborators; the impact of competitive products and technological changes; risks relating to the development of new products; and the ability to implement technological improvements. These and other factors are more fully discussed in the "Risk Factors" section of BioLineRx's most recent annual report on Form 20-F filed with the Securities and Exchange Commission on March 28, 2019. In addition, any forward-looking statements represent BioLineRx's views only as of the date of this release and should not be relied upon as representing its views as of any subsequent date. BioLineRx does not assume any obligation to update any forward-looking statements unless required by law.

Contact:Tim McCarthyLifeSci Advisors, LLC+1-212-915-2564tim@lifesciadvisors.com

or

Tsipi HaitovskyPublic Relations+972-52-598-9892tsipihai5@gmail.com

View original content:http://www.prnewswire.com/news-releases/biolinerx-to-present-two-posters-at-the-society-for-immunotherapy-of-cancer-sitc-2019-300948943.html

SOURCE BioLineRx Ltd.

Visit link:
BioLineRx to Present Two Posters at the Society for Immunotherapy of Cancer (SITC) 2019 - P&T Community

Posted in Stem Cells | Comments Off on BioLineRx to Present Two Posters at the Society for Immunotherapy of Cancer (SITC) 2019 – P&T Community