Monthly Archives: October 2017

Society of Nuclear Medicine and Molecular Imaging (SNMMI)

Posted: October 1, 2017 at 10:55 pm

New!CT+ Review and Essentials

The new CT+ Review and Essentials provides you with the comprehensive didactic education you need to succeed, whether you're looking to buildyour general CT knowledge, or preparing to sit for the ARRT (CT) and/or NMTCB (CT) exam(s). This 18 module/17 credit course also includesa post-course mock exam lets you assess what you've learned!Learn More

View Scientific Abstract Oral and Poster Presentations from SNMMI's2017 Annual Meeting.Learn More

Access synchronized slides, audio and embedded video from 100 of the most popular sessions from SNMMIs 2017 Annual Meeting.Learn More

SNMMI's online nuclear medicine review course coversadult and pediatric medicine, PET/CT and nuclear cardiology plus imaging protocols, interpretation and limitation.Learn More

SNMMI/ACNM MRI Case Reviews: AbdominalSNMMI and ACNM have partnered to bring you the first-ever set of online MRI teaching modules as an introduction to interpreting MRI.Learn More

Mid-Winter Meeting CT Case ReviewsThis offering provides a comprehensiveCT Case Reviewfor nuclear medicine professionals. Review and interpret up to 100 CT studies.Learn More

Annual Meeting CT/MRI Case ReviewsRecorded at the Annual Meeting, this online offering provides the opportunity to review and interpret 52 CT studies and 48 MRI case studies.Learn More

Free Journal SAM/CE accessis available exclusively for SNMMI Members. Take advantage of this great benefit and meet your certification requirements.Learn more

Fee recently reduced! The PET Online Review Workshop is designed to prepare technologists for the NMTCB's PET Exam.Learn More

Original post:
Society of Nuclear Medicine and Molecular Imaging (SNMMI)

Posted in Molecular Medicine | Comments Off on Society of Nuclear Medicine and Molecular Imaging (SNMMI)

Regenerative Medicine – AABB

Posted: October 1, 2017 at 10:52 pm

Regenerative medicine may be defined as the process of replacing or "regenerating" human cells, tissues or organs to restore or establish normal function. This field holds the promise of regenerating damaged tissues and organs in the body by replacing damaged tissue or by stimulating the body's own repair mechanisms to heal tissues or organs. Regenerative medicine also may enable scientists to grow tissues and organs in the laboratory and safely implant them when the body is unable to heal itself. Current estimates indicate that approximately one in three Americans could potentially benefit from regenerative medicine.

Regenerative Medicine refers to a group of biomedical approaches to clinical therapies that may involve the use of stem cells. Examples include cell therapies (the injection of stem cells or progenitor cells); immunomodulation therapy (regeneration by biologically active molecules administered alone or as secretions by infused cells); and tissue engineering (transplantation of laboratory grown organs and tissues). While covering a broad range of applications, in practice the latter term is closely associated with applications that repair or replace portions of or whole tissues (i.e., bone, cartilage, blood vessels, bladder, skin). Often, the tissues involved require certain mechanical and structural properties for proper functioning. The term has also been applied to efforts to perform specific biochemical functions using cells within an artificially-created support system (e.g., artificial pancreas or liver).

Cord blood stem cells are being explored in several applications including Type 1 diabetes to determine if the cells can slow the loss of insulin production in children; cardiovascular repair to observe whether cells selectively migrate to injured cardiac tissue, improve function and blood flow at the site of injury and improve overall heart function; and central nervous system applications to assess whether cells migrate to the area of brain injury alleviating mobility related symptoms, and repair damaged brain tissue (such as that experienced with cerebral palsy). Cord blood stem cells likely will be an important resource as medicine advances toward harnessing the body's own cells for treatment. Because a person's own (autologous) stem cells can be infused back into that individual without being rejected by the body's immune system, autologous cord blood stem cells have become an increasingly important focus of regenerative medicine research.

Regenerative medicine has made its way into clinical practice with the use of materials that are able to assist in the healing process by releasing growth factors and cytokines back into the damaged tissue (e.g., (chronic) wound healing). As additional applications are researched, the fields of regenerative medicine and cellular therapies will continue to merge and expand, potentially treating many disease conditions and improving health for a variety of diseases and health conditions.

Follow this link:
Regenerative Medicine - AABB

Posted in Regenerative Medicine | Comments Off on Regenerative Medicine – AABB

Regenerative Medicine – Health Research Authority

Posted: October 1, 2017 at 10:52 pm

Resource page

For the purposes of the information provided on this page we have adopted the definition of the term regenerative medicine that was used in the House of Lords Regenerative Medicine Report (see below). This was:

regenerative medicine is used to refer to methods to replace or regenerate human cells, tissues or organs in order to restore or establish normal function. This includes cell therapies, tissue engineering, gene therapy and biomedical engineering techniques, as well as more traditional treatments involving pharmaceuticals, biologics and devices.

Each regulator has a clear remit and regulates distinct areas of the regenerative medicine process. However, we work closely together to provide effective advice and guidance to support establishments through the regulatory requirements. Each regulator has a core set of standards that apply depending on where you are in the process, from cell derivation to treatment. We are all focused on ensuring that the standards that are applied at one stage of the process do not act as a barrier at another.

The role of each of the regulators in regenerative medicine is set out below:

Health Research Authority (HRA) has a remit to provide an ethics opinion on clinical trials. Those involving gene therapy regenerative medicines are reviewed through the Gene Therapy Advisory Committee (GTAC). Other regenerative medicine studies may be reviewed by other appropriately flagged RECs. It also provides the Integrated Research Application System (IRAS) through which applications and approvals from GTAC/RECs and MHRA for clinical trials involving regenerative medicines can be made.

Human Fertilisation and Embryology Authority (HFEA)[external link] regulates the use of human embryos or human admixed (human-animal) embryos to derive stem cells for use in the treatment of patients.

Human Tissue Authority (HTA) [external link] remit includes regulation of organisations that remove, store and use of human tissue or cells; this includes where they are used as starting materials for Advanced Therapy Medicinal Products (ATMPs). Under the European Union Tissues and Cells Directives (EUTCD), it licenses establishments that remove, test, process, store, and distribute tissues or cells that will (or may) be used to treat patients.

Medicines and Healthcare products Regulatory Agency (MHRA)[external link] remit includes responsibility for granting the appropriate authorisation for the manufacturing site of ATMPs, which are prepared and used under the hospital exemption, and for ATMPs made and supplied under the specials scheme under the relevant provisions in medicines legislation. In the area of clinical trials, the MHRAs remit includes assessment of applications for clinical trial authorisation and the associated manufacturers licence for investigational ATMPs. The National Institute for Biological Standards and Control (NIBSC) [external link], which houses the UK National Stem Cell bank, is part of the MHRA.

Please refer to the Research Community area of the website for information about the approvals for research studies and how to apply to individual review bodies. Further information about GTAC is also provided on this site. Additionally the Stem Cell Toolkit [external link] provides regulatory routemaps that are specific to individual stem cell projects.

Department for the Environment Food and Rural Affairs (DEFRA) [external link] has an Advisory Committee on Releases to the Environment (ACRE) [external link], which advises government on requests for permission to release genetically modified organisms (GMO) into the environment. In 2013, this committee published advice on gene therapy clinical trial for heart disease.

Health and Safety Executive (HSE) [external link] has the Scientific Advisory Committee on Genetically Modified Organisms (Contained Use) SACGM (CU) [external link]. This committee provides technical and scientific advice to the UK Competent Authorities on all aspects of the human and environmental risks, and is responsible for maintaining guidance on the contained use of GMOs.

From 13 October 2014, the MHRAs Innovation Office is the portal for all regulatory queries concerning regenerative medicines. A one stop shop service provides a single point of access from the four regulators in the field, the Human Tissue Authority (HTA), the Human Fertilisation and Embryology Authority (HFEA), Health Research Authority (HRA) and the Medicines and Healthcare products Regulatory Agency (MHRA), who will provide a co-ordinated single response service for free regulatory advice.

Any query relating to the regulation of regenerative medicines, including Advanced Therapeutic Medicinal Products (ATMPs) can be submitted to the MHRAs Innovation Office and will be answered by the relevant experts from the four regulatory bodies.

Individuals or companies who have regulatory questions concerning regenerative medicines and who are unsure which agency to direct their inquiry to, or have a query that impacts several regulators, should use the Innovation Office advice form.

The HRA and others work closely together and will continue to engage with those involved in regenerative medicine, including researchers, the British Society for Gene and Stem Cell Therapy [external link], and the Cell Therapy Catapult [external link] to help clarify the regulatory requirements that apply.

The HRA recently held a regenerative medicine event hosted by the Cell Therapy Catapult to look at changes and discuss issues with the sector, regulators and representative bodies. Additionally in 2012, the MHRA hosted an event on the regulation of regenerative medicine [external link].

As set out in the Government Response to the House of Lords Inquiry [external link] a Regenerative Medicine Expert Group (RMEG) is being established to develop an NHS regenerative medicine delivery readiness strategy and action plan. This group will build on existing initiatives so that the NHS is fully prepared to deliver these innovative treatments. The group will be supported by the Department of Health; members will be drawn from a number of groups and organisations, including the HRA. The remit of the Regenerative Medicine Expert Group will include a role to monitor the effect of regulation on the development of regenerative medicines in the UK.

More generally, the HRA is working in partnership with a range of organisations to improve the environment for research in the UK. Please refer to our projects and plans pages for more information.

During 2012-13, the House of Lords Science and Technology Committee held an inquiry into regenerative medicine in the UK. For more information about the inquiry, the resulting report and the HRAs responses please use the links below:

UK Stem Cell Toolkit [external link]This toolkit is intended to be a reference tool for those who wish to develop a programme of human stem cell research and manufacture, including clinical applications. It applies only to the regulation of human stem cells and their use in the laboratory and clinical settings. The toolkit provides regulatory routemaps that are specific to individual stem cell projects. It does this by using your responses to questions when you start using the toolkit.

Clinical Trials Toolkit [external link]This toolkit provides practical advice to researchers in designing and conducting publicly funded clinical trials in the UK. It provides information on best practice and outlines the current legal and practical requirements for conducting clinical trials. The toolkit is primarily focused on Clinical Trials of Investigational Medicinal Products (CTIMPs) and the regulatory environment and requirements associated with these. However researchers and R&D staff working on trials in other areas will also find useful information and guidance of relevance to the wider trials environment.

Cell Therapy Catapult [external link]The Cell Therapy Catapult was established in 2012 to grow the UK cell therapy industry. It was set up to help businesses take innovative ideas through to commercialisation. The website has specific regulatory resource pages, which include an overview of the relevant regulations for cell therapy.

MHRA Innovation Office [external link]The MHRA Innovation Office helps organisations that are developing innovative medicines, medical devices or using novel manufacturing processes to navigate the regulatory processes in order to be able to progress their products or technologies. Examples of innovative products include Advanced Therapy Medicinal Products (ATMPs), nanotechnology, stratified medicines, novel drug/device combinations, and advanced manufacturing.

UK Regenerative Medicine Platform (UKRMP) [external link]The Medical Research Council (MRC), Biotechnology and Biological Sciences Research Council (BBSRC) and the Engineering and Physical Science Research Council (EPSRC) have established the UKRMP to address the challenges associated with translating scientific discoveries towards clinical impact.

UK Stem Cell Bank [external link]The UK Stem Cell Bank was established to provide a repository of human embryonic, foetal and adult stem cell lines as part of the UK governance for the use of human embryos for research. Its role is to provide quality controlled stocks of these cells that researchers worldwide can rely on to facilitate high quality and standardised research. It also prepares stocks of EUTCD-Grade cell lines for use as starting materials for the development of cellular therapies. The UK Stem Cell Bank is hosted by NIBSC [external link], which is part of the MHRA.

UK Trade & Investment (UKTI) Life Science Investment Organisation (LSIO) [external link]This dedicated unit within UKTI is intended to support overseas companies to invest and expand in the UK from the earliest research and development collaborations through to clinical trials, commercial operations and partnerships.

Knowledge Transfer Network (KTN) Regenerative Medicine Priority Area [external link]This is an official group within the Healthtechnologies and Medicine Knowledge Transfer Network (KTN). Knowledge Transfer Networks have been set up by the Technology Strategy Board (TSB) to facilitate collaboration and stimulate innovation by bringing together people from a range of organisations with a variety of expertise.

DEFRA Advisory Committee on Releases to the Environment (ACRE) [external link]

HSE Scientific Advisory Committee on Genetically Modified Organisms (Contained Use) (SACGM (CU) [external link].

MHRAs Clinical Trials, Biologicals and Vaccines Expert Advisory Group[external link]

Regenerative Medicine Expert Group [external link]

Visit link:
Regenerative Medicine - Health Research Authority

Posted in Regenerative Medicine | Comments Off on Regenerative Medicine – Health Research Authority

Everything You Wanted to know about Stem Cell Therapy …

Posted: October 1, 2017 at 6:48 am

The BIG DAY arrived and I brought Finley in for her appointment. She ate and did everything as normal.I was anxious simply because, I'm a mom. I thought, "What if she has some crazy reaction and dies?!" My husband smiled and said, "No one has ever died from stem cell treatments. It's like getting a huge boost of amino acids injected into your body. They are super nutrients! It's the medicine of the future, we are so lucky to be doing this for Finley- it's awesome!" He's always been the optimistic type. Let it be a testament as to how you can KNOW something is good and still be anxious. That's motherhood at it's finest.

About 30 minutes before the appointment she took a dose of her prescription Diazepam. Which I really hate giving to her, even though it's prescribed for her to be taking nightly (it can help with muscle spasms - but thankfully she doesn't have them). If she were to be doing this in a hospital, it's the same medication they would give her before they administer the IV to be putting her under anesthesia. It brought her to a nice, calm, and happy place.

She was very relaxed, but still watched intently as the staff positioned themselves around her. The Doctor administered the IV. Once everything was situated, I feel like he could sense my heart beating out of my chest. He held the large syringe of Stem Cells and said, "Let's Pray first." It was such a beautiful and calming prayer, his heart for Christ is just so amazing.He administered the Stem Cells into her IV, and then took a small amount and sprayed it into her nose. He told me that studies show how the cells will multiply about a dozen times or more once they are in the body, and that administering through the nasal cavity ensures they penetrate into the brain -where her injury is. (Which he also mentioned in his initial message.)She didn't love that part, but who loves having an odd smelling liquid sprayed up their nose? It does have a very distinct scent.

I asked about side effects again.The only side effect would be if she were allergic to the Sulfa that the cells were stored in. Some patients reported headaches.Sulfa is common in antibiotics, which she's taken- so I brought Benadryl just in case (Mama Bear on duty)- but we were confident she was going to be just fine. (She was. Thank you Lord.)

Go here to read the rest:
Everything You Wanted to know about Stem Cell Therapy ...

Posted in Stem Cell Therapy | Comments Off on Everything You Wanted to know about Stem Cell Therapy …

Turning Skin Cells Into Brain Cells – 06/28/2012

Posted: October 1, 2017 at 6:48 am

Johns Hopkins researchers, working with an international consortium, say they have generated stem cells from skin cells from a person with a severe, early-onset form of Huntingtons disease (HD), and turned them into neurons that degenerate just like those affected by the fatal inherited disorder.

By creating HD in a dish, the researchers say they have taken a major step forward in efforts to better understand what disables and kills the cells in people with HD, and to test the effects of potential drug therapies on cells that are otherwise locked deep in the brain.

Although the autosomal dominant gene mutation responsible for HD was identified in 1993, there is no cure. No treatments are available even to slow its progression.

The research, published in the journal Cell Stem Cell, is the work of a Huntingtons Disease iPSC Consortium, including scientists from the Johns Hopkins University School of Medicine in Baltimore, Cedars-Sinai Medical Center in Los Angeles and the University of California, Irvine, as well as six other groups. The consortium studied several other HD cell lines and control cell lines in order to make sure results were consistent and reproducible in different labs.

The general midlife onset and progressive brain damage of HD are especially cruel, slowly causing jerky, twitch-like movements, lack of muscle control, psychiatric disorders and dementia, and eventually death. In some cases (as in the patient who donated the material for the cells made at Johns Hopkins), the disease can strike earlier, even in childhood.

Having these cells will allow us to screen for therapeutics in a way we havent been able to before in Huntingtons disease, says Christopher A. Ross, M.D., Ph.D., a professor of psychiatry and behavioral sciences, neurology, pharmacology and neuroscience at the Johns Hopkins University School of Medicine and one of the studys lead researchers. For the first time, we will be able to study how drugs work on human HD neurons and hopefully take those findings directly to the clinic.

Ross and his team, as well as other collaborators at Johns Hopkins and Emory University, are already testing small molecules for the ability to block HD iPSC degeneration. These small molecules have the potential to be developed into novel drugs for HD.

The ability to generate from stem cells the same neurons found in Huntingtons disease may also have implications for similar research in other neurodegenerative diseases such as Alzheimers and Parkinsons.

To conduct their experiment, Ross took a skin biopsy from a patient with very early onset HD. When seen by Ross at the HD Center at Hopkins, the patient was just seven years old. She had a very severe form of the disease, which rarely appears in childhood, and of the mutation that causes it. Using cells from a patient with a more rapidly progressing form of the disease gave Ross team the best tools with which to replicate HD in a way that is applicable to patients with all forms of HD.

Her skin cells were grown in culture and then reprogrammed by the lab of Hongjun Song, Ph.D., a professor at Johns Hopkins Institute for Cell Engineering, into induced pluripotent stem cells. A second cell line was generated in an identical fashion in Dr. Rosss lab from someone without HD. Simultaneously, other HD and control iPS cell lines were generated as part of the NINDS funded HD iPS cell consortium.

Scientists at Johns Hopkins and other consortium labs converted those cells into generic neurons and then into medium spiny neurons, a process that took three months. What they found was that the medium spiny neurons deriving from HD cells behaved just as they expected medium spiny neurons from an HD patient would. They showed rapid degeneration when cultured in the lab using basic culture medium without extensive supporting nutrients. By contrast, control cell lines did not show neuronal degeneration.

These HD cells acted just as we were hoping, says Ross, director of the Baltimore Huntington's Disease Center. A lot of people said, Youll never be able to get a model in a dish of a human neurodegenerative disease like this. Now, we have them where we can really study and manipulate them, and try to cure them of this horrible disease. The fact that we are able to do this at all still amazes us.

Specifically, the damage caused by HD is due to a mutation in the huntingtin gene (HTT), which leads to the production of an abnormal and toxic version of the huntingtin protein. Although all of the cells in a person with HD contain the mutation, HD mainly targets the medium spiny neurons in the striatum, part of the brains basal ganglia that coordinates movement, thought and emotion. The ability to work directly with human medium spiny neurons is the best way, researchers believe, to determine why these specific cells are susceptible to cell stress and degeneration and, in turn, to help find a way to halt progression of HD.

Much HD research is conducted in mice. And while mouse models have been helpful in understanding some aspects of the disease, researchers say nothing compares with being able to study actual human neurons affected by HD.

For years, scientists have been excited about the prospect of making breakthroughs in curing disease through the use of stem cells, which have the remarkable potential to develop into many different cell types. In the form of embryonic stem cells, they do so naturally during gestation and early life. In recent years, researchers have been able to produce induced pluripotent stem cells (iPSCs), which are adult cells (like the skin cells used in Rosss experiments) that have been genetically reprogrammed back to the most primitive state. In this state, under the right circumstances, they can then develop into most or all of the 200 cell types in the human body.

The other members of the research consortium include the University of Wisconsin School of Medicine, Massachusetts General Hospital and Harvard Medical School, the University of California, San Francisco, Cardiff University the Universita degli Studi diMilano and the CHDI Foundation.

Primary support for this research came from an American Recovery and Reinvestment Act (ARRA) grant (RC2-NS069422) from the National Institutes of Healths National Institute of Neurological Disorders and Stroke and a grant from the CHDI Foundation, Inc.

Other Johns Hopkins researchers involved in this study include Sergey Akimov, Ph.D.; Nicolas Arbez, Ph.D.; Tarja Juopperi, D.V.M., Ph.D.; Tamara Ratovitski; Jason H. Chiang; Woon Roung Kim; Eka Chighladze, M.S., M.B.A.; Chun Zhong; Georgia Makri; Robert N. Cole; Russell L. Margolis, M.D.; and Guoli Ming, M.D., Ph.D.

Read the original:
Turning Skin Cells Into Brain Cells - 06/28/2012

Posted in Georgia Stem Cells | Comments Off on Turning Skin Cells Into Brain Cells – 06/28/2012

Molecular Genetics and Genomics Program – Wake Forest …

Posted: October 1, 2017 at 6:47 am

The Molecular Genetics and GenomicsProgram in the Wake Forest School of Medicine is an interdisciplinary research and PhD training program composed of a diverse group of investigators employing molecular and genetic approaches to biomedical research.

The Program includes molecular biologists from each of the basicscience departments of the School of Medicine as well as clinical facultyinvolved in laboratory research. Participating investigators include facultyfrom the departments of Biochemistry, Cancer Biology, Neurobiology and Anatomy,Medicine, Microbiology and Immunology, Pathology, Pediatrics, Physiology andPharmacology, and Surgery. Many program faculty are also members of theComprehensive Cancer Center of Wake Forest University.

Part of the first-year Molecular & Cellular Biosciences (MCB)track, the objective of the PhD training program is to provide aninterdisciplinary curriculum that emphasizes the detailed analysis of fundamentalbiological processes using the tools of molecular biology and genetics.Individualized programs of study are designed to train students for independentcareers in research and teaching. The first year MCB curriculum provides broadexposure to the fundamentals of molecular and cellular biology, biochemistry,and microbiology.

After the completion of the first year in the MCB track, studentsthat select a Molecular Genetics & Genomics research advisor beginspecialization in the research area of that laboratory. Areas of activeinvestigation include the genetics of complex diseases, genetic epidemiology,epigenetics, and bioinformatics.

Click here to obtain information on the APPLICATION PROCESS for the Molecular Genetics and GenomicsProgram.

See more here:
Molecular Genetics and Genomics Program - Wake Forest ...

Posted in Molecular Genetics | Comments Off on Molecular Genetics and Genomics Program – Wake Forest …

Adult Stem Cell Therapy in Utah Docere Clinics

Posted: October 1, 2017 at 6:47 am

Stem cells, specifically mesenchymal stem cells (MSCs), have been called patient-specific drug stores for injured tissues because of their broad range of healing abilities. MSCs are directly responsible for healing damaged tissues after injury. Upon encountering damaged tissue, they release proteins that decrease inflammation, kill invading microbes, and trigger the growth of new connective tissues and blood vessels.In the case of severe damage and cell death, MSCs have the ability to turn into healthy versions of damaged or destroyed cells that they encounter.

When we take MSCs from your own bone marrow, from your own fat, or from both, concentrate and/or isolate them, and then inject them directly into your problem area, we trick your body into thinking that there has been a new injury without actually causing any tissue insult, and you get a second chance at healing. In the case of advanced osteoarthritis where the population of stem cells has been depleted, we are repopulating the area with stem cells, and thereby restoring the bodys natural ability to heal itself.

Docere Clinics is an affiliate member of the Cell Surgical Network(CSN).It is the belief of the CSN that the most ethical approach to stem cell therapy is under the umbrella of IRB approved research protocols. An IRB is an Institutional Review Board;an organization of members responsible for approving and overseeing research on humans. IRBs are approved under the auspices of the U.S. Department of Human Research Protection. As such, our patients understand the investigational nature of our activities, are provided appropriate informed consents, and are followed continuously on an online database to chart their progress or any issues of concern. The efforts of the CSN will provide safety data,demonstrate effectiveness of treatments, and help to improve treatment programs going forward.

More here:
Adult Stem Cell Therapy in Utah Docere Clinics

Posted in Utah Stem Cells | Comments Off on Adult Stem Cell Therapy in Utah Docere Clinics