Categories
- Global News Feed
- Uncategorized
- Alabama Stem Cells
- Alaska Stem Cells
- Arkansas Stem Cells
- Arizona Stem Cells
- California Stem Cells
- Colorado Stem Cells
- Connecticut Stem Cells
- Delaware Stem Cells
- Florida Stem Cells
- Georgia Stem Cells
- Hawaii Stem Cells
- Idaho Stem Cells
- Illinois Stem Cells
- Indiana Stem Cells
- Iowa Stem Cells
- Kansas Stem Cells
- Kentucky Stem Cells
- Louisiana Stem Cells
- Maine Stem Cells
- Maryland Stem Cells
- Massachusetts Stem Cells
- Michigan Stem Cells
- Minnesota Stem Cells
- Mississippi Stem Cells
- Missouri Stem Cells
- Montana Stem Cells
- Nebraska Stem Cells
- New Hampshire Stem Cells
- New Jersey Stem Cells
- New Mexico Stem Cells
- New York Stem Cells
- Nevada Stem Cells
- North Carolina Stem Cells
- North Dakota Stem Cells
- Oklahoma Stem Cells
- Ohio Stem Cells
- Oregon Stem Cells
- Pennsylvania Stem Cells
- Rhode Island Stem Cells
- South Carolina Stem Cells
- South Dakota Stem Cells
- Tennessee Stem Cells
- Texas Stem Cells
- Utah Stem Cells
- Vermont Stem Cells
- Virginia Stem Cells
- Washington Stem Cells
- West Virginia Stem Cells
- Wisconsin Stem Cells
- Wyoming Stem Cells
- Biotechnology
- Cell Medicine
- Cell Therapy
- Diabetes
- Epigenetics
- Gene therapy
- Genetics
- Genetic Engineering
- Genetic medicine
- HCG Diet
- Hormone Replacement Therapy
- Human Genetics
- Integrative Medicine
- Molecular Genetics
- Molecular Medicine
- Nano medicine
- Preventative Medicine
- Regenerative Medicine
- Stem Cells
- Stell Cell Genetics
- Stem Cell Research
- Stem Cell Treatments
- Stem Cell Therapy
- Stem Cell Videos
- Testosterone Replacement Therapy
- Testosterone Shots
- Transhumanism
- Transhumanist
Archives
Recommended Sites
Monthly Archives: October 2012
Early Results Show Promise for Stem Cells in Treating Chronic Liver Failure
Posted: October 11, 2012 at 2:19 pm
Stem cell transfusions may someday replace the need for transplants in patients who suffer from liver failure caused by hepatitis B, according to a new study coming out of Beijing. . The results are published in the October issue of STEM CELLS Translational Medicine. Worldwide more than 500,000 people die each year from this condition.
Durham, NC (PRWEB) October 11, 2012
In China, hepatitis B virus (HBV) infection accounts for the highest proportion of liver failure cases. While liver transplantation is considered the standard treatment, it has several drawbacks including a limited number of donors, long waiting lists, high cost and multiple complications. Our study shows that mesenchymal stem cell (MSCs) transfusions might be a good, safe alternative, said Fu-Sheng Wang, Ph.D., M.D., the studys lead author and director of the Research Center for Biological Therapy (RCBT) in Beijing.
Wang along with RCBT colleague, Drs. Ming Shi and Zheng Zhang of the Research Center for Biological Therapy, The Institute of Translational Hepatology led the group of physician-scientists from the centers and Beijing 302 Hospital who conducted the study.
MSC transfusions had already been shown to improve liver function in patients with end-stage liver diseases. This time, the researchers wanted to gauge the safety and initial efficacy of treating acute-on-chronic liver failure (ACLF) with MSCs. The American Association for the Study of Liver Diseases and the European Association for the Study of the Liver define ACLF as an acute deterioration of pre-existing chronic liver disease usually related to a precipitating event and associated with increased mortality at three months due to multisystem organ failure. The short-term mortality rate for this condition is more than 50 percent.
MSCs have self-renewing abilities and the potential to differentiate into various types of cells. More importantly, they can interact with immune cells and cause the immune system to adjust to the desired level.
Of the 43 patients in this pilot study each of whom had liver failure resulting from chronic HBV infection 24 were treated with MSCs taken from donated umbilical cords and 19 were treated with saline as the control group. All received conventional therapy as well. The liver function, adverse events and survival rates were then evaluated during the 48-week or 72-week follow-up period.
Along with increased survival rates, the patients liver function improved and platelet count increased. No significant side effects were observed throughout the treatment and follow-up period.
While the results are preliminary and this pilot study includes a small number of patients, MSC transfusions appear to be safe and may serve as a novel therapeutic approach for HBV-associated ACLF patients, Dr. Shi said.
The study also highlights several key issues that will need to be considered in the design of future clinical studies, such as the optimal type of stem cells that will be infused, the minimum effective number of the cells and the best route of administration, Dr. Wang added.
Read more here:
Early Results Show Promise for Stem Cells in Treating Chronic Liver Failure
Posted in Stem Cells
Comments Off on Early Results Show Promise for Stem Cells in Treating Chronic Liver Failure
10/11/2012 10:05 JAPAN Nobel Prize for Yamanaka, scientific research and ethics must go hand in hand
Posted: October 11, 2012 at 2:19 pm
10/11/2012 10:05 JAPAN Nobel Prize for Yamanaka, scientific research and ethics must go hand in hand by Pino Cazzaniga Research on iPS (induced pluripotent stem cells) can produce stem cells from adult cells, for use in regenerative medicine. Shinya Yamanakas discovery reveals that research on embryonic stem cells is unnecessary, saving the lives of many embryos. The Japanese researcher has searched for new ways driven by ethical question.
Tokyo (AsiaNews) - Shinya Yamanaka, fresh from the Nobel Prize for medicine, states that science and ethics must go hand in hand. Interviewed by the Mainichi Shimbun after the award, he said: "I would like to invite ethical experts as teachers at my laboratory and work to guide iPS [induced pluripotent stem] cell research from that direction as well. The work of a scientific researcher is just one part of the equation. "
Yamanaka, 50, found that adult cells can be transformed into cells in their infancy, stem cells (iPS), which are, so to speak, the raw material for the reconstruction of tissue irreparably damaged by disease. For regenerative medicine the implications of Yamanaka's discovery are obvious. Adult skin cells can for example be reprogrammed and transformed into any other cell that is desired: from the skin to the brain, from the skin to the heart, from the skin to elements that produce insulin.
"Their discovery - says the statement of the jury that awarded him the Nobel Prize on October 8 - has revolutionized our understanding of how cells and organisms develop. Through the programming of human cells, scientists have created new opportunities for the study of diseases and development of methods for the diagnosis and therapy ".
These "opportunities" are not only "scientific", but also "ethical". Much of the scientific research and global investment is in fact launched to design and produce stem cells from embryos, arriving at the point of manipulating and destroying them, facing scientists with enormous ethical problems.
" Ethics are really difficult - Yamanaka explainsto Mainichi - In the United States I began work on mouse experiments, and when I returned to Japan I learned that human embryonic stem cells had been created. I was happy that they would contribute to medical science, but I faced an ethical issue. I started iPS cell research as a way to do good things as a researcher, and I wanted to do what I could to expand the merits of embryonic stem cells. If we make sperm or eggs from iPS cells, however, it leads to the creation of new life, so the work I did on iPS cells led to an ethical problem. If we don't prepare debates for ethical problems in advance, technology will proceed ahead faster than we think.. "
The "ethical question" Yamanaka pushed to find a way to "not keep destroying embryos for our research."
Speaking with his co-workers at the University of Kyoto, immediately after receiving the award, Yamanaka showed dedication and modesty.
"Now - he said - I strongly feel a sense of gratitude and responsibility" gratitude for family and friends who have supported him in a demanding journey of discovery that lasted decades; responsibility for a discovery that gives hope to millions of patients. Now iPS cells can grow into any tissue of the human body allowing regeneration of parts so far irretrievably lost due to illness.
Read the original here:
10/11/2012 10:05 JAPAN Nobel Prize for Yamanaka, scientific research and ethics must go hand in hand
Posted in Stem Cells
Comments Off on 10/11/2012 10:05 JAPAN Nobel Prize for Yamanaka, scientific research and ethics must go hand in hand
Stem Cells Show Early Promise for Rare Brain Disorder
Posted: October 11, 2012 at 2:19 pm
By Emily Underwood, ScienceNOW
Four young boys with a rare, fatal brain condition have made it through a dangerous ordeal. Scientists have safely transplanted human neural stem cells into their brains. Twelve months after the surgeries, the boys have more myelina fatty insulating protein that coats nerve fibers and speeds up electric signals between neuronsand show improved brain function, a new study in Science Translational Medicine reports. The preliminary trial paves the way for future research into potential stem cell treatments for the disorder, which overlaps with more common diseases such as Parkinsons disease and multiple sclerosis.
This is very exciting, says Douglas Fields, a neuroscientist at the National Institutes of Health in Bethesda, Maryland, who was not involved in the work. From these early studies one sees the promise of cell transplant therapy in overcoming disease and relieving suffering.
Without myelin, electrical impulses traveling along nerve fibers in the brain cant travel from neuron to neuron says Nalin Gupta, lead author of the study and a neurosurgeon at the University of California, San Francisco (UCSF). Signals in the brain become scattered and disorganized, he says, comparing them to a pile of lumber. You wouldnt expect lumber to assemble itself into a house, he notes, yet neurons in a newborn babys brain perform a similar feat with the help of myelin-producing cells called oligodendrocytes. Most infants are born with very little myelin and develop it over time. In children with early-onset Pelizaeus-Merzbacher disease, he says, a genetic mutation prevents oligodendrocytes from producing myelin, causing electrical signals to die out before they reach their destinations. This results in serious developmental setbacks, such as the inability to talk, walk, or breathe independently, and ultimately causes premature death.
Although researchers have long dreamed of implanting human neural stem cells to generate healthy oligodendrocytes and replace myelin, it has taken years of research in animals to develop a stem cell that can do the job, says Stephen Huhn, vice president of Newark, California-based StemCells Inc., the biotechnology company that created the cells used in the study and that funded the research. However, he says, a separate study by researchers at Oregon Health & Science University, Portland, found that the StemCell Inc. cells specialized into oligodendrocytes 60% to 70% of the time in mice, producing myelin and improved survival rates in myelin-deficient animals. So the team was able to test the cells safety and efficacy in the boys.
Led by Gupta, the researchers drilled four small holes in each childs skull and then used a fine needle to insert millions of stem cells into white matter deep in their frontal lobes. The scientists administered a drug that suppressed the boys immune systems for 9 months to keep them from rejecting the cells and checked their progress with magnetic resonance imaging and a variety of psychological and motor tests. After a year, each of the boys showed brain changes consistent with increased myelination and no serious side effects such as tumors, says David Rowitch, one of the neuroscientists on the UCSF team. In addition, three of the four boys showed modest improvements in their development. For example, the 5-year-old boythe oldest child in the studyhad begun for the first time to feed himself and walk with minimal assistance.
Although these signs are encouraging, Gupta and Rowitch say, a cure for Pelizaeus-Merzbacher disease is not near. Animal studies strongly support the idea that the stem cells are producing myelin-making oligodendrocytes in the boys, but its possible that the myelination didnt result from the transplant but from a bout of normal growth. Rowitch adds that although such behavioral improvements are unusual for the disease, they could be a fluke. Huhn acknowledges that the study is small and has no control, but hes is still excited. We are for the first time seeing a biological effect of a neural stem cells transplantation into the brain [in humans]. The most important thing, he says, is that the transplants appear safe. This gives the researchers a green light to pursue larger, controlled studies, he says.
It isnt the flashiest thing, but demonstrating that its feasible to transplant these stem cells into childrens brains without negative consequencesat least so faris extremely hopeful, says Timothy Kennedy, a neuroscientist at McGill University in Montreal, Canada.
Although hes concerned that myelination seen in mouse models might not scale up to a disease as severe as Pelizaeus-Merzbacher in humans, Ian Duncan, a neuroscientist at the University of Wisconsin, Madison, describes the study as setting a precedent for translating animal research in stem cells to humans. If you could improve quality of life by targeting key areas of the brain with these cells, he says, that would be a huge advance.
Continue reading here:
Stem Cells Show Early Promise for Rare Brain Disorder
Posted in Stem Cells
Comments Off on Stem Cells Show Early Promise for Rare Brain Disorder
Immunovative, Inc. Announces Issuance of U.S. Patent on Key Scientific Breakthrough
Posted: October 11, 2012 at 2:17 pm
NEW YORK, NY--(Marketwire - Oct 11, 2012) - Immunovative, Inc. ("IMUN" or the "Company") ( OTCBB : IMUN ) has today announced that Immunovative Therapies, Ltd. ("ITL") has been granted a U.S. Patent entitled "METHOD FOR ALLOGENEIC CELL THERAPY," which was issued September 25, 2012, under Patent No. 8,273,377. Foreign versions of this patent are pending around the world. This patent covers the proprietary method that utilizes immune cells from a normal donor to elicit an anti-tumor mechanism that mimics the Graft vs. Tumor (GVT) effect of non-myeloablative allogeneic stem cell transplants ("Mini-Transplant") without the toxicity of Graft vs. Host Disease (GVHD). Harnessing the power of the immune system to treat cancer and infectious disease has long been the goal of physicians and scientists. Unfortunately, cancer vaccines and cell immunotherapy methods have had difficulties in translating the promise of immune control into effect treatments. The most effective anti-cancer mechanism ever discovered is the GVT immune response that occurs after Mini-Transplant procedures. This mechanism can completely destroy chemotherapy-resistant metastatic cancers. Unfortunately, the clinical use of the GVT effect is severely limited due to extreme toxicity of an intimately related GVHD effect. Mini-Transplants are thus only widely used in advanced cases of leukemia, even though the GVT effect has been shown capable of killing many types of solid tumors. The separation of the beneficial GVT effect from the devastating GVHD toxicity has long been the goal of stem cell transplant scientists and is the subject of extensive research around the world.
ITL is believed to be the first to develop an immunotherapy drug product (AlloStim) which enables the harnessing of the power of the GVT mechanism without GVHD side effects. ITL calls the mechanism which enables immune-mediated tumor destruction without GVHD toxicity the "Mirror Effect." The "Mirror Effect" mechanism represents a major breakthrough for treatment of cancer and infectious disease. Early human clinical trials have produced evidence of this technology's capability to stimulate the immune systems of heavily pre-treated metastatic cancer patients to kill widely disseminated metastatic cancers. A potentially pivotal, double-blind, placebo-controlled Phase II/III clinical trial in metastatic breast cancer is being prepared to document these effects in a controlled setting and determine if the immune-mediated tumor debulking provides patients with a survival advantage. This issued US Patent covers the use of intentionally mismatched, activated immune cells for treatment of cancer and infectious diseases. The patent discloses the concepts and methods related to ITL's proprietary "Mirror Effect" technology and describes its lead immunotherapy drug candidate "AlloStim." This patent also describes how AlloStim eliminates the need for a matched tissue donor and chemotherapy pre-conditioning for patients that require a bone marrow or stem cell transplant.
The newly issued patent is part of an intellectual property portfolio from ITL that includes 11 issued patents and numerous patent applications, to which IMUN has exclusive rights in the US and the rest of the world. The licensed patents cover compositions, methods of production, formulation, distribution and uses for treatment of all types of cancer and infectious diseases.
Seth M. Shaw, CEO of IMUN, stated: "The separation of the beneficial GVT effect from the devastating GVHD toxicity has been called the 'Holy Grail' of transplant research. ITL is the first to accomplish this significant scientific milestone. We are confident that ITL's extensive Intellectual Property ("IP") portfolio will provide our products with long-term market exclusivity. This patent is an important component of our growing IP estate, as the allowed claim language is very broad. We are now the exclusive allogeneic cell therapy company in the world. Our strong patent portfolio will now allow us to pursue opportunities for partnering and sub-licensing by indication and territory around the world."
Dr. Michael Har-Noy, CEO, founder of ITL and inventor of the "Mirror Effect" technology stated: "Our patent portfolio is a valuable asset as it not only protects our AlloStim and AlloVax product candidates, but also provides protection of the unique mechanism of action that enables these products to have such powerful potential to debulk treatment-resistant metastatic disease. We are continuing to invest in research activities to improve our current product candidates and develop new products and further expand our patent portfolio. With protection of the novel mechanism of action, ITL and IMUN have the basis for development of a new industry based on powerful, non-toxic immunotherapy products that can work where all current treatment options have failed."
About Immunovative, Inc.: On December 12th, 2011, Immunovative, Inc. ("IMUN") signed an exclusive License Agreement (the "License Agreement") with Immunovative Therapies, Ltd. ("ITL"). Under the terms of the License Agreement, IMUN has been granted an exclusive, worldwide license to commercialize any products covered under ITL's current issued and pending patent application portfolio, as well as the rights to any future patent applications, including improvements or modifications to the existing applications and any corresponding improvements or new versions of the existing products. Please visit IMUN's website at http://www.imun.com.
About Immunovative Therapies, Ltd.:
Immunovative Therapies, Ltd. is an Israeli biopharmaceutical company that was founded in May 2004 with financial support from the Israeli Office of the Chief Scientist. ITL is a graduate of the Misgav Venture Accelerator, a member of the world-renowned Israeli technological incubator program. The company was the Misgav Venture Accelerator's candidate for the prize for the outstanding incubator project of 2006, awarded by the Office of the Chief Scientist. ITL specializes in the development of novel immunotherapy drug products that incorporate living immune cells as the active ingredients for treatment of cancer and infectious disease. Please visit ITL's website at: http://www.immunovative.co.il
DISCLAIMER: Forward-Looking Statements: Except for statements of historical fact, this news release contains certain "forward-looking statements" as defined by the Private Securities Litigation Reform Act of 1995, including, without limitation, expectations, beliefs, plans and objectives regarding the development, use and marketability of products. Such forward-looking statements are based on present circumstances and on IMUN's predictions with respect to events that have not occurred, that may not occur, or that may occur with different consequences and timing than those now assumed or anticipated. Such forward-looking statements involve known and unknown risks, uncertainties and other factors, and are not guarantees of future performance or results and involve risks and uncertainties that could cause actual events or results to differ materially from the events or results expressed or implied by such forward-looking statements. Such factors include general economic and business conditions, the ability to successfully develop and market products, consumer and business consumption habits, the ability to fund operations and other factors over which IMUN has little or no control. Such forward-looking statements are made only as of the date of this release, and IMUN assumes no obligation to update forward-looking statements to reflect subsequent events or circumstances. Readers should not place undue reliance on these forward-looking statements. Risks, uncertainties and other factors are discussed in documents filed from time to time by IMUN with the Securities and Exchange Commission.
Continue reading here:
Immunovative, Inc. Announces Issuance of U.S. Patent on Key Scientific Breakthrough
Posted in Cell Therapy
Comments Off on Immunovative, Inc. Announces Issuance of U.S. Patent on Key Scientific Breakthrough
Nobel Prize for Physiology or Medicine Goes to Stem Cell Researchers
Posted: October 11, 2012 at 2:16 pm
The Nobel Prize for Physiology or Medicine was announced on Monday. The award this year went to Sir John B. Gurdon and Dr. Shinya Yamanaka. The two men were awarded the Nobel Prize jointly, for their individual work in cloning and stem cell research.
Monday's recognition marked the awarding of the first Nobel Prize for 2012. The rest of the Nobel Prize recipients will be announced throughout the next two weeks.
Here is some of the key information regarding Gurdon and Yamanaka's work and Monday's Nobel Prize announcement.
* Yamanaka and Gurdon did not work together or present shared research, even though they both concentrate their studies on a similar area of research.
* Gurdon is actually being honored for work he did back in 1962. According to a New York Times report, he was the first person to clone an animal, a frog, opening the door to further research into stem cells and cloning.
* Gurdon was able to produce live tadpoles from the adult cells of a frog, by removing the nucleus of a frog's egg and putting the adult cells in its place.
* This "reprogramming" by Gurdon laid the groundwork for Yamanaka's work four decades later. Yamanaka's work, which dates back only six years, to 2006, focused on the mechanisms behind Gurdon's results.
* According to the Los Angeles Times, Yamanaka was sharply criticized at first for his own work, in which he sought to discover how cells are able to reprogram themselves the way that Gurdon's work first suggested that they could.
* Ultimately, Yamanaka was able to isolate just four cells that were needed in order to be able to reprogram other cells back to an embryonic state, allowing them to be manipulated into developing into any particular kind of cell that was needed. These cells have now been dubbed "induced pluripotent stem cells," or iPS cells, according to reports by CNN and other media outlets.
* Scientists are reproducing Yamanaka's technique in their own labs to be able to replicate disease cells, like those of Alzheimer's or Parkinson's, in order to study them and even to test the effects of potential new treatments.
Read the original:
Nobel Prize for Physiology or Medicine Goes to Stem Cell Researchers
Posted in Cell Medicine
Comments Off on Nobel Prize for Physiology or Medicine Goes to Stem Cell Researchers
Trial: Transplanted neural stem cells produced myelin
Posted: October 11, 2012 at 3:25 am
SAN FRANCISCO A Phase I clinical trial led by investigators from the University of California, San Francisco and sponsored by Stem Cells Inc., showed that neural stem cells successfully engrafted into the brains of patients and appear to have produced myelin.
The study, published in today's (Oct. 10) issue of Science Translational Medicine, also demonstrated that the neural stem cells were safe in the patients' brains one year post transplant.
The results of the investigation, designed to test safety and preliminary efficacy, are encouraging, said principal investigator David H. Rowitch, M.D., Ph.D., a professor of pediatrics and neurological surgery at UCSF, chief of neonatology at UCSF Benioff Children's Hospital and a Howard Hughes Medical Institute Investigator.
"For the first time, we have evidence that transplanted neural stem cells are able to produce new myelin in patients with a severe myelination disease," said Nalin Gupta, M.D., Ph.D., associate professor of neurological surgery and pediatrics and chief of pediatric neurological surgery at UCSF Benioff Children's Hospital, and co-principal investigator of the PMD clinical trial.
"We also saw modest gains in neurological function, and while these can't necessarily be attributed to the intervention because this was an uncontrolled trial with a small number of patients, the findings represent an important first step that strongly supports further testing of this approach as a means to treat the fundamental pathology in the brain of these patients."
In the trial, human neural stem cells developed by StemCells, Inc., of Newark, Calif., were injected directly into the brains of four young children with an early-onset, fatal form of a condition known as Pelizaeus-Merzbacher disease (PMD).
In PMD, an inherited genetic defect prevents brain cells called oligodendrocytes from making myelin, a fatty material that insulates white matter which serves as a conduit for nervous impulses throughout the brain. Without myelin sheathing, white matter tracts short-circuit like bare electrical wires and are unable to correctly propagate nerve signals, resulting in neurological dysfunction and neurodegeneration. Patients with early-onset PMD cannot walk or talk, often have trouble breathing and undergo progressive neurological deterioration leading to death between ages 10 and 15. The disease usually occurs in males.
Multiple sclerosis and certain forms of cerebral palsy also involve damage to oligodendrocytes and subsequent demyelination.
Before and after the transplant procedures in the children with PMD, which were conducted between 2010-11, the patients were given standard neurological examinations and developmental assessments, and underwent magnetic resonance imaging (MRI). "MRI is the most stringent non-invasive method we have of assessing myelin formation," said Rowitch.
Excerpt from:
Trial: Transplanted neural stem cells produced myelin
Posted in Stem Cell Videos
Comments Off on Trial: Transplanted neural stem cells produced myelin
Study Shows Evidence that Transplanted Neural Stem Cells Produced Myelin
Posted: October 11, 2012 at 3:25 am
Phase I Investigation Demonstrates Signs of Engraftment and Safety at One Year
Newswise A Phase I clinical trial led by investigators from the University of California, San Francisco and sponsored by Stem Cells Inc., showed that neural stem cells successfully engrafted into the brains of patients and appear to have produced myelin.
The study, published in the Oct. 10, 2012 issue of Science Translational Medicine, also demonstrated that the neural stem cells were safe in the patients brains one year post transplant.
The results of the investigation, designed to test safety and preliminary efficacy, are encouraging, said principal investigator David H. Rowitch, MD, PhD, a professor of pediatrics and neurological surgery at UCSF, chief of neonatology at UCSF Benioff Childrens Hospital and a Howard Hughes Medical Institute Investigator.
For the first time, we have evidence that transplanted neural stem cells are able to produce new myelin in patients with a severe myelination disease, said Nalin Gupta, MD, PhD, associate professor of neurological surgery and pediatrics and chief of pediatric neurological surgery at UCSF Benioff Children's Hospital, and co-principal investigator of the PMD clinical trial.
We also saw modestgains in neurological function, and while these cant necessarily be attributed to the intervention because this was an uncontrolled trial with a small number of patients,the findings represent an important first step that strongly supports further testing of this approach as a means to treat the fundamental pathology in the brain of these patients.
In the trial, human neural stem cells developed by StemCells, Inc., of Newark, California, were injected directly into the brains of four young children with an early-onset, fatal form of a condition known as Pelizaeus-Merzbacher disease (PMD).
In PMD, an inherited genetic defect prevents brain cells called oligodendrocytes from making myelin, a fatty material that insulates white matter which serves as a conduit for nervous impulses throughout the brain. Without myelin sheathing, white matter tracts short-circuit like bare electrical wires and are unable to correctly propagate nerve signals, resulting in neurological dysfunction and neurodegeneration. Patients with early-onset PMD cannot walk or talk, often have trouble breathing and undergo progressive neurological deterioration leading to death between ages 10 and 15.The disease usually occurs in males.
Multiple sclerosis and certain forms of cerebral palsy also involve damage to oligodendrocytes and subsequent demyelination.
Before and after the transplant procedures in the children with PMD, which were conducted between 2010-2011, the patients were given standard neurological examinations and developmental assessments, and underwent magnetic resonance imaging (MRI). MRI is the most stringent non-invasive method we have of assessing myelin formation, said Rowitch. The investigators found evidence that the stem cells had successfully engrafted, receiving blood and nutrients from the surrounding tissue and integrating into the brain, a process that Rowitch likened to a plant taking root.
Link:
Study Shows Evidence that Transplanted Neural Stem Cells Produced Myelin
Posted in Stem Cell Videos
Comments Off on Study Shows Evidence that Transplanted Neural Stem Cells Produced Myelin
UCSF study shows evidence that transplanted neural stem cells produced myelin
Posted: October 11, 2012 at 3:24 am
Public release date: 10-Oct-2012 [ | E-mail | Share ]
Contact: Jennifer O'Brien jennifer.obrien@ucsf.edu 415-502-6397 University of California - San Francisco
A Phase I clinical trial led by investigators from the University of California, San Francisco and sponsored by Stem Cells Inc., showed that neural stem cells successfully engrafted into the brains of patients and appear to have produced myelin.
The study, published in the Oct. 10, 2012 issue of Science Translational Medicine, also demonstrated that the neural stem cells were safe in the patients' brains one year post transplant.
The results of the investigation, designed to test safety and preliminary efficacy, are encouraging, said principal investigator David H. Rowitch, MD, PhD, a professor of pediatrics and neurological surgery at UCSF, chief of neonatology at UCSF Benioff Children's Hospital and a Howard Hughes Medical Institute Investigator.
"For the first time, we have evidence that transplanted neural stem cells are able to produce new myelin in patients with a severe myelination disease," said Nalin Gupta, MD, PhD, associate professor of neurological surgery and pediatrics and chief of pediatric neurological surgery at UCSF Benioff Children's Hospital, and co-principal investigator of the PMD clinical trial.
"We also saw modest gains in neurological function, and while these can't necessarily be attributed to the intervention because this was an uncontrolled trial with a small number of patients, the findings represent an important first step that strongly supports further testing of this approach as a means to treat the fundamental pathology in the brain of these patients."
In the trial, human neural stem cells developed by StemCells, Inc., of Newark, California, were injected directly into the brains of four young children with an early-onset, fatal form of a condition known as Pelizaeus-Merzbacher disease (PMD).
In PMD, an inherited genetic defect prevents brain cells called oligodendrocytes from making myelin, a fatty material that insulates white matter which serves as a conduit for nervous impulses throughout the brain. Without myelin sheathing, white matter tracts short-circuit like bare electrical wires and are unable to correctly propagate nerve signals, resulting in neurological dysfunction and neurodegeneration. Patients with early-onset PMD cannot walk or talk, often have trouble breathing and undergo progressive neurological deterioration leading to death between ages 10 and 15.The disease usually occurs in males.
Multiple sclerosis and certain forms of cerebral palsy also involve damage to oligodendrocytes and subsequent demyelination.
Read the original:
UCSF study shows evidence that transplanted neural stem cells produced myelin
Posted in Stem Cell Videos
Comments Off on UCSF study shows evidence that transplanted neural stem cells produced myelin
Transplanted Neural Stem Cells Produced Myelin, UCSF Study Shows
Posted: October 11, 2012 at 3:24 am
David Rowitch, MD, PhD, professor and chief of neonatology, in the NICU.
A Phase I clinical trial led by investigators from the University of California, San Francisco (UCSF) and sponsored by Stem Cells Inc., showed that neural stem cells successfully engrafted into the brains of patients and appear to have produced myelin.
The study, published in Wednesday's issue of Science Translational Medicine, also demonstrated that the neural stem cells were safe in the patients brains one year post transplant.
The results of the investigation, designed to test safety and preliminary efficacy, are encouraging, said principal investigator David H. Rowitch, MD, PhD, a professor of pediatrics and neurological surgery at UCSF, chief of neonatology at UCSF Benioff Childrens Hospital and a Howard Hughes Medical Institute Investigator.
Nalin Gupta, MD, PhD
For the first time, we have evidence that transplanted neural stem cells are able to produce new myelin in patients with a severe myelination disease, said Nalin Gupta, MD, PhD, associate professor of neurological surgery and pediatrics and chief of pediatric neurological surgery at UCSF Benioff Children's Hospital, and co-principal investigator of the PMD clinical trial.
We also saw modestgains in neurological function, and while these cant necessarily be attributed to the intervention because this was an uncontrolled trial with a small number of patients,the findings represent an important first step that strongly supports further testing of this approach as a means to treat the fundamental pathology in the brain of these patients.
The study, one of the first neural stem cell trials ever conducted in the United States, is emblematic of UCSFs pioneering role in the stem cell field. In 1981, Gail Martin, PhD, professor of anatomy, co-discovered embryonic stem cells in mice. In 2001, Roger Pedersen, PhD, professor emeritus of obstetrics, gynecology and reproductive sciences, derived two of the first human embryonic stem cell lines. On Monday, Shinya Yamanaka, MD, PhD, of the UCSF-affiliated Gladstone Institutes and Kyoto University, received the Nobel Prize in Physiology or Medicine for his discovery that adult cells can be reprogrammed to behave like embryonic stem cells.
In the trial, human neural stem cells developed by Stem Cells, Inc., of Newark, California, were injected directly into the brains of four young children with an early-onset, fatal form of a condition known as Pelizaeus-Merzbacher disease (PMD).
This image illustrates direct injection of human neural stem cells into the brain's white matter, which is composed of bundles of nerve axons. There is lack of myelin, an insulating coating, in the severe pediatric condition Pelizaeus-Merzbacher disease (PMD). Over time, some stem cells become myelinating oligodendrocytes as reported in the papers from Uchida et al. and Gupta et al. Image by Kenneth Probst.
See the article here:
Transplanted Neural Stem Cells Produced Myelin, UCSF Study Shows
Posted in Stem Cell Videos
Comments Off on Transplanted Neural Stem Cells Produced Myelin, UCSF Study Shows
StemCells, Inc. Announces Simultaneous Publication of Preclinical and Clinical Results of Its Neural Stem Cells for …
Posted: October 11, 2012 at 3:24 am
NEWARK, Calif., Oct. 10, 2012 (GLOBE NEWSWIRE) -- StemCells, Inc. (STEM) today announced that two papers reporting clinical and preclinical data demonstrating the therapeutic potential of the Company's proprietary HuCNS-SC(R) cells (purified human neural stem cells) for a range of myelination disorders were published in the Oct. 10 edition of Science Translational Medicine, the peer review journal of the American Association for the Advancement of Science (http://stm.sciencemag.org/).
The paper by Gupta, et al. describes the encouraging results of the Company's Phase I clinical trial in Pelizaeus-Merzbacher disease (PMD), a genetic myelination disorder that afflicts children. In the trial, which was completed in February 2012, four patients were transplanted with the Company's HuCNS-SC cells and all showed preliminary evidence of progressive and durable donor cell-derived myelination. Three of the four patients showed modest gains in their neurological function, which suggests a departure from the natural history of the disease; the fourth patient remained stable. Although clinical benefit cannot be confirmed in a trial without control patients, the small but measureable gains in function at one year may represent signals of a clinical effect to be further investigated in a controlled trial with more patients.
The second of the two papers, by Uchida, et al., summarizes extensive preclinical research which demonstrated that transplantation of the Company's neural stem cells in an animal model of severe myelin deficiency results in new myelin which enhanced the conductivity of nerve impulses. Myelin is the substance that insulates nerve axons, and without sufficient myelination, nerve impulses are not properly transmitted and neurological function is impaired. This preclinical data provided the rationale for the PMD clinical trial and supports the Company's cell therapy approach to other myelination disorders, such as transverse myelitis, certain forms of cerebral palsy, and multiple sclerosis.
"For the first time, we have evidence that transplanted neural stem cells are able to produce new myelin in patients with a severe myelination disease," Nalin Gupta, MD, PhD, associate professor of neurological surgery and pediatrics and chief of pediatric neurological surgery at UCSF Benioff Children's Hospital, and co-principal investigator of the PMD clinical trial. "We also saw modest gains in neurological function, and while these can't necessarily be attributed to the intervention because this was an uncontrolled trial with a small number of patients, it is an important first step which provides hope that HuCNS-SC transplantation may be able to address the fundamental pathology in the brain of PMD patients."
Patients with PMD have a defective gene which leads to insufficient myelin in the brain, which leads to a progressive loss of neurological function and death. In the clinical trial, four patients with connatal PMD, the most severe form of the disease, were enrolled and transplanted with HuCNS-SC cells. The patients were followed for twelve months after transplantation, during which time they underwent intensive neurological assessments and magnetic resonance (MR) imaging at regular intervals. The findings from the trial indicate a favorable safety profile for the HuCNS-SC cells and the transplantation procedure. Analysis of the MR imaging data showed changes consistent with increased myelination in the region of the transplantation, and which progressed over time and persisted after the withdrawal of immunosuppression at nine months. The results support the conclusion of durable cell engraftment and donor-derived myelin in the transplanted patients' brains. The development of new myelin signals is unprecedented in patients with connatal PMD. In addition, clinical assessment revealed small but measureable gains in motor and/or cognitive function in three of the four patients; the fourth patient remained clinically stable. While clinical benefit cannot be confirmed without a controlled study, these clinical outcomes suggest the HuCNS-SC cells may be having a beneficial effect on the patients.
The second paper, whose lead author is Nobuko Uchida, Vice President of Stem Cell Biology at StemCells, Inc., describes research which shows that when HuCNS-SC cells were transplanted into the shiverer mouse, a common model of severe central nervous system (CNS) dysmyelination, the cells formed new, functional myelin in the mice. Sophisticated analytical techniques were used to confirm that changes measured by MR images were in fact derived from new human myelin generated by the transplanted HuCNS-SC cells. MR imaging is routinely used in the diagnosis and clinical characterization of demyelinating diseases such as multiple sclerosis, and these results supported the use of similar techniques to detect and evaluate the degree of myelination in the Phase I PMD trial. Moreover, the new myelin was shown to be functional as conductivity of nerve impulses in the mice was enhanced.
"Demonstration of functional myelin formation in animals showing disease symptoms is significant and opens up the potential to treat patients with a range of severe myelin disorders," said Stephen A. Back, MD, PhD, professor of pediatrics and neurology at Oregon Health & Science University Doernbecher Children's Hospital, and senior author of the preclinical paper.
Stephen Huhn, MD, FACS, FAAP, Vice President and Head of the CNS Program at StemCells, Inc., added, "Having these two papers published concurrently illustrates the direct pathway of how we are translating groundbreaking scientific research to the clinical setting. The data in these papers make a powerful statement about the potential of our HuCNS-SC cells to address not only PMD, but a wide spectrum of myelination disorders. We are actively moving forward with our plans to conduct a controlled Phase II clinical study in PMD and evaluating our next steps with respect to other myelination disorders."
Conference Call
StemCells, Inc. will host a live webcast, today, October 10, at 4:30 p.m. Eastern Time (1:30 p.m. Pacific Time) to discuss the data reported in these papers. Interested parties are invited to view the webcast over the Internet via the link at http://www.stemcellsinc.com/News-Events/Events.htm. An archived version of the webcast will be available for replay on the Company's website approximately two hours following the conclusion of the live event and will be available for a period of 30 days.
Read more here:
StemCells, Inc. Announces Simultaneous Publication of Preclinical and Clinical Results of Its Neural Stem Cells for ...
Posted in Stem Cell Videos
Comments Off on StemCells, Inc. Announces Simultaneous Publication of Preclinical and Clinical Results of Its Neural Stem Cells for …