Search Results for: stem cell harvest adipose

Global Stem Cells Group to Hold Practical Adipose-Derived Stem Cell Harvesting, Isolation and Re-integration Training …

Posted: March 20, 2015 at 3:42 am

MIAMI (PRWEB) March 19, 2015

Global Stem Cells Group and its subsidiary, Stem Cells Training, has coordinated with Emil Arroyo, M.D. and Horacio Oliver, M.D. to conduct the first of four stem cell training courses planned for Bolivia in 2015. Devised to meet the increasing demand for regenerative medicine techniques in the region, the first adipose derived harvesting, isolation and re-integration training course will take place April 4 and 5, 2015, in Santa Cruz.

The two-day, hands-on intensive training course was developed for physicians and high-level practitioners to learn the techniques in harvesting and reintegrating stem cells derived from adipose tissue and bone marrow. The objective of the training is to provide physicians with practical stem cell medicine techniques they can use in-office to treat a variety of conditions in their patients.

For more information, visit the Global Stem Cells Group website, email info(at)stemcelltraining(dot)net, or call 305-224-1858.

About Global Stem Cells Group:

Global Stem Cells Group, Inc. is the parent company of six wholly owned operating companies dedicated entirely to stem cell research, training, products and solutions. Founded in 2012, the company combines dedicated researchers, physician and patient educators and solution providers with the shared goal of meeting the growing worldwide need for leading edge stem cell treatments and solutions.

With a singular focus on this exciting new area of medical research, Global Stem Cells Group and its subsidiaries are uniquely positioned to become global leaders in cellular medicine.

Global Stem Cells Groups corporate mission is to make the promise of stem cell medicine a reality for patients around the world. With each of GSCGs six operating companies focused on a separate research-based mission, the result is a global network of state-of-the-art stem cell treatments.

About Stem Cell Training, Inc.:

Stem Cell Training, Inc. is a multi-disciplinary company offering coursework and training in 35 cities worldwide. The coursework offered focuses on minimally invasive techniques for harvesting stem cells from adipose tissue, bone marrow and platelet-rich plasma. By equipping physicians with these techniques, the goal is to enable them to return to their practices, better able to apply these techniques in patient treatments.

Continue reading here:
Global Stem Cells Group to Hold Practical Adipose-Derived Stem Cell Harvesting, Isolation and Re-integration Training ...

Posted in Regenerative Medicine | Comments Off on Global Stem Cells Group to Hold Practical Adipose-Derived Stem Cell Harvesting, Isolation and Re-integration Training …

Global Stem Cells Group to Hold Practical, Hands-on Training Course on Adipose-derived Stem Cell Harvesting, Isolation …

Posted: November 5, 2014 at 11:46 pm

Miami, FL (PRWEB) November 05, 2014

Global Stem Cells Group, its subsidiary Stem Cell Training, Inc. and Dr. J. Victor Garcia have announced plans to conduct the Adipose Derived Harvesting, Isolation and Re-integration Training Course in Barcelona, Spain Nov. 22-23. 2014.

The two-day, hands-on intensive training course, which will be conducted by Garcia, was developed for physicians and high-level practitioners to learn techniques in harvesting and reintegrating stem cells derived from adipose tissue and bone marrow. The objective of the training is to bridge the gap between bench science in the laboratory and the doctors office by teaching effective, in-office regenerative medicine techniques.

For more information, visit the Stem Cell Training, Inc. website, email info(at)stemcelltraining(dot)net, or call 305-224-1858.

About Global Stem Cells Group:

Global Stem Cells Group, Inc. is the parent company of six wholly owned operating companies dedicated entirely to stem cell research, training, products and solutions. Founded in 2012, the company combines dedicated researchers, physician and patient educators and solution providers with the shared goal of meeting the growing worldwide need for leading edge stem cell treatments and solutions.

With a singular focus on this exciting new area of medical research, Global Stem Cells Group and its subsidiaries are uniquely positioned to become global leaders in cellular medicine.

Global Stem Cells Groups corporate mission is to make the promise of stem cell medicine a reality for patients around the world. With each of GSCGs six operating companies focused on a separate research-based mission, the result is a global network of state-of-the-art stem cell treatments.

About Stem Cell Training, Inc.:

Stem Cell Training, Inc. is a multi-disciplinary company offering coursework and training in 35 cities worldwide. Coursework offered focuses on minimally invasive techniques for harvesting stem cells from adipose tissue, bone marrow and platelet-rich plasma. By equipping physicians with these techniques, the goal is to enable them to return to their practices, better able to apply these techniques in patient treatments.

Here is the original post:
Global Stem Cells Group to Hold Practical, Hands-on Training Course on Adipose-derived Stem Cell Harvesting, Isolation ...

Posted in Cell Medicine | Comments Off on Global Stem Cells Group to Hold Practical, Hands-on Training Course on Adipose-derived Stem Cell Harvesting, Isolation …

Adipose stem Cell Harvest for Fat Stem Cell Treatment in Thailand Autologous Harvesting – Video

Posted: January 21, 2013 at 9:44 pm


Adipose stem Cell Harvest for Fat Stem Cell Treatment in Thailand Autologous Harvesting
Adipose stem cells (ASCs) are an attractive and abundant stem cell source with therapeutic applicability in repair and regeneration. thaimedicalvacation.com This is video about hoe doctors in Thailand harvest adipose tissue for combination treatment with bone marrow aspirate for stem cell therapy in Bangkok. adipose tissue stem cell treatments to cartilage stem cells,blood stem cell,bone stem cell,epithelial stem cells,adipose stem cell differentiation,adipose stem cell culture.to learn more please contact us today. for more information about cosmetic surgery in Thailand or one of the dozens of other surgical and non-surgical solutions we offer please contact us email: help@thaimedicalvacation.com SKYPE: Thai.MedicalVacation Telephone THAILAND +66 02 402 6566 AUSTRALIA: 02 8006 1094 EUROPE: +44 20 7979 1977 NORTH AMERICA: 1-888-497-3485 USA LOCAL: 1-347-450-THAI

By: thaimedicalvacation

Link:
Adipose stem Cell Harvest for Fat Stem Cell Treatment in Thailand Autologous Harvesting - Video

Posted in Stem Cell Videos | Comments Off on Adipose stem Cell Harvest for Fat Stem Cell Treatment in Thailand Autologous Harvesting – Video

Adipose harvest for stem cell therapy by Dr Adelson – Video

Posted: March 26, 2012 at 2:18 am

24-03-2012 07:46 This is the harvest of adipose tissue for combination with bone marrow aspirate concentrate for stem cell therapy

Follow this link:
Adipose harvest for stem cell therapy by Dr Adelson - Video

Posted in Cell Therapy | Comments Off on Adipose harvest for stem cell therapy by Dr Adelson – Video

Stem cells: a comprehensive review of origins and emerging clinical …

Posted: March 19, 2024 at 2:38 am

Orthop Rev (Pavia). 2022; 14(3): 37498.

1Department of Anesthesiology, Mount Sinai Medical Center

1Department of Anesthesiology, Mount Sinai Medical Center

2 LSU Health Science Center Shreveport School of Medicine, Shreveport, LA

3 University of Arizona College of Medicine-Phoenix, Phoenix, AZ

3 University of Arizona College of Medicine-Phoenix, Phoenix, AZ

4Department of Emergency Medicine, University of Central Florida

5Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport

5Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport

5Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport

6Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Innovative Pain and Wellness, Creighton University School of Medicine

5Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport

1Department of Anesthesiology, Mount Sinai Medical Center

2 LSU Health Science Center Shreveport School of Medicine, Shreveport, LA

3 University of Arizona College of Medicine-Phoenix, Phoenix, AZ

4Department of Emergency Medicine, University of Central Florida

5Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport

6Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Innovative Pain and Wellness, Creighton University School of Medicine

Corresponding author: Salomon Poliwoda MD; Telephone: 7862716678; email: salomon.pb@gmail.com

Stem cells are types of cells that have unique ability to self-renew and to differentiate into more than one cell lineage. They are considered building blocks of tissues and organs. Over recent decades, they have been studied and utilized for repair and regenerative medicine. One way to classify these cells is based on their differentiation capacity. Totipotent stem cells can give rise to any cell of an embryo but also to extra-embryonic tissue as well. Pluripotent stem cells are limited to any of the three embryonic germ layers; however, they cannot differentiate into extra-embryonic tissue. Multipotent stem cells can only differentiate into one germ line tissue. Oligopotent and unipotent stem cells are seen in adult organ tissues that have committed to a cell lineage. Another way to differentiate these cells is based on their origins. Stem cells can be extracted from different sources, including bone marrow, amniotic cells, adipose tissue, umbilical cord, and placental tissue. Stem cells began their role in modern regenerative medicine in the 1950s with the first bone marrow transplantation occurring in 1956. Stem cell therapies are at present indicated for a range of clinical conditions beyond traditional origins to treat genetic blood diseases and have seen substantial success. In this regard, emerging use for stem cells is their potential to treat pain states and neurodegenerative diseases such as Parkinsons and Alzheimers disease. Stem cells offer hope in neurodegeneration to replace neurons damaged during certain disease states. This review compares stem cells arising from these different sources of origin and include clinical roles for stem cells in modern medical practice.

Keywords: Stem cells, regenerative medicine, bone marrow, umbilical cord, placental tissue

Stem cells are a unique population of cells present in all stages of life that possess the ability to self-renew and differentiate into multiple cell lineages. These cells are key mediators in the development of neonates and in restorative processes after injury or disease as they are the source from which specific cell types within differentiated tissues and organs are derived.1 Within the neonate stage of life stem cells serve to differentiate and proliferate into the multitude of cell types and lineages required for continuing development, while in adults their primary role is regenerative and restorative in nature.2 Stem cells have unique properties that set them apart from terminally differentiated cells allowing for their specific physiological roles. The ability of stem cells to differentiate into multiple cell types is termed potency, and stem cells can be classified by their potential for differentiation as well as by their origin. Totipotent or omnipotent stem cells can form embryonic tissues and can differentiate into all cell lineages required for an adult. Pluripotent stem cells can differentiate into all three germ layers while multipotent stem cells may only differentiate into one kind of germ line tissue. Oligopotent and unipotent stem cells are the type seen in adult organ tissues that have committed to a cell lineage and can only diversify into cell types within that lineage.1 Embryonic stem cells are derived from the inner cell mass of a blastocysts and are totipotent. The range of their use is typically restricted due to legal and ethical factors and for this reason mesenchymal stem cells are typically preferred. Mesenchymal stem cells can be isolated from a variety of both neonate and adult tissues but still maintain the ability to differentiate into multiple cell types allowing for their clinical and research utilization without the ethical issues associated with embryonic stem cells.3

Another key feature of stem cells is their ability to self-renew and proliferate providing a continuous supply of progeny to replace aging or damaged cells. During the developmental phase this proliferation allows for the growth necessary to mature into an adult. After the developmental phase has concluded, this continued proliferation allows for healing and restoration on a cellular level after tissue or organ injury has taken place.2 These physiological and developmental characteristics make stem cells an integral part in the field of regenerative medicine due to their ability to generate entire tissues and organs from just a handful of progenitor cells.

Stem cells began their role in modern regenerative medicine in the 1950s with the first bone marrow transplantation occurring in 1956. This breakthrough shed light on the potential treatments possible in the future with further development and refinement of clinical techniques and paved the way for the stem cell therapies that are now available.4,5 Stem cell therapies are now indicated for a range of clinical conditions beyond traditional origins to treat genetic blood diseases and have seen substantial success where other treatments have fallen short. One emerging use for stem cells is their potential to treat paint states and neurodegenerative diseases such as Parkinsons and Alzheimers disease. Stem cells offer the hope in the setting of neurodegeneration to replace the neurons damaged during the pathogenesis of certain diseases, a goal not achievable utilizing current technologies and methods.6

Organ bioengineering is yet another a rapidly developing and exciting new application for stem cells with both clinical and research implications.7 Immunosuppression free organ transplants are now a possibility with the advancement organ manufacturing utilizing the patients own cells.8 This along with the potential for eliminating organ donor waiting lists is an enticing prospect, but many technological developments are necessary before this technology can be implemented in clinical settings on a wide scale. Research has already benefitted greatly from this field because organ like tissues can be grown in lab settings to model disease progression. This offers the potential to develop new treatments while determining their efficacy on a cellular level without risk to patients.9,10

Currently one of the most prolific clinical uses of stem cells in the field of regenerative medicine is to treat inherited blood diseases. Within these diseases a genetic defect or defects prevents the proper function of cells derived from the hematopoietic stem cell lineage. Treatment includes implantation of genetically normal cells from a healthy donor to serve as a lifelong self-renewing source of normally functioning blood cells. However these treatments are limited by the availability of suitable donors.11

Stem cells can be derived from multiple sources including adult tissues or neonatal tissues such as the umbilical cord or placenta. Embryonic stem cells have been utilized in the past for research, but ethical concerns have led to them being replaced largely by stem cells derived from other origins.12 Common tissues from which adult oligopotent and unipotent stem cells are isolated include bone marrow, adipose tissue, and trabecular bone.13 Bone marrow has traditionally been the most common site from which to extract non neonatal derived stem cells but involves an invasive and painful procedure. Peripheral blood progenitor cells have been utilized to avoid harvesting cells from bone marrow. However, this technique has issues and risks of its own and was initially a less potent source of stem cells. It is also now known that stem cells differ in their proliferative and differentiation potential based on their origin. Cells sourced from umbilical Whartons jelly and adipose tissue were found to proliferate significantly more quickly than cells sourced from bone marrow and placental sources.14,15

A rapidly advancing source of stem cells known as induced pluripotent stem cells (iPSCs) are now being utilized clinically as well. These iPSCs are derived from somatic cells that have been reprogrammed back to a pluripotent state utilizing reprogramming factors and require less invasive techniques to harvest in comparison to traditional sources.16,17 Once returned to a pluripotent state, the cells then undergo a process called directed differentiation in which they are converted into desired cell types. Directed differentiation is achieved by mimicking microenvironments and extracellular signals in vitro in a manner that produces predictable cell types.18 In the future, this technique could provide a novel form of personalized gene therapy in which oligopotent or unipotent cells are procured from tissue, reprogrammed back to a less differentiated state, and then reintroduced into a different location within the patient. Work is also being done to combine this technique with modern gene editing methods to provide an entirely new subset of therapies.19 This method of transplantation would greatly reduce the chance for rejection and does not require a suitable donor, as the cells are sourced from the patient being treated.20,21

Stem cells are required by self-renewing tissues to replace damaged and aging cells because of normal biological processes. Both myeloid and lymphoid lineage cells derived from hematopoietic stem cells are relatively short-lived cell types and require a continuous source of newly differentiated replacement cells.22 Hematopoietic stem cells (HSCs) are those that reside within the bone marrow and provide a source for the multiple types of blood cells required for normal physiological and immunological functions. These cells inhabit a physiological niche which allows them to undergo the process of asymmetric division. When stem cells divide asymmetrically the progeny of the division includes one identical daughter cell but also results in the production of a differentiated daughter cell. Differentiation of these daughter cell into specialized cell types is guided by certain microenvironments, extrinsic cues, and growth factors that the cell comes in contact with.23,24 This mechanism allows for bone marrow stem cell numbers to stay relatively constant despite sustained proliferation and differentiation of progeny taking place.22,25,26

HSCs are the most studied class of adult tissue derived stem cells and their clinical potential was recognized early in the history of regenerative medicine. At the beginning of the 1960s, HSCs were isolated from bone marrow and therapeutic models in mice induced with leukemia were developed in order to show the efficacy of bone marrow derived stem cell treatments. Success in these experiments led to further refinement of techniques and by the 1970s and 80s clinical stem cell transplants were a regular occurrence and began to make the impact on blood diseases that we continue to see today.27,28

Bone marrow has historically been the predominant harvesting site for stem cell collection due to its accessibility, early identification as a source, and lengthy research history. Isolating stem cell from bone marrow involves an invasive and painful surgical procedure and does come with a risk hospitalization or other complications. Patients also report increased post procedural pain and pre-procedural anxiety when compared with other harvesting techniques.29,30 Bone marrow however has proved to be a denser source of cells than other harvesting methods yielding 18 times more cells than peripheral blood progenitor cell harvesting techniques initially. As technology and methods improved however, it was found that treating patients with a cytokine treatment prior to peripheral blood progenitor cell harvesting mobilized many of the desired cells into the blood stream and drastically increased the efficacy of this technique, making it clinically viable.3133 In a double blinded randomized study 40 patients underwent bone marrow and peripheral blood progenitor cell collections and the yield of useable harvested cells were compared. It was found that blood progenitor cell collection yielded significantly more useable stem cells and patients were able to undergo the collection procedure more frequently when compared to the bone marrow harvesting method.32 This, coupled with the invasiveness and risks associated with harvesting stem cells from bone marrow have increased peripheral blood progenitor cell collections popularity.

Overall, bone marrow as a reservoir of stem cells continues to be a clinical and research necessity related to its well understood and documented history as a source of viable stem cells and track record of efficacy. According to the European Group for Blood and Marrow Transplantation, only one fatal event was recorded stemming from the first 27,770 hematopoietic stem cell transplants sourced from bone marrow during the period of 1993-2005.34 This undeniable track record of safety coupled with clinicians experience performing bone marrow transplant procedures guarantees the continued use of bone marrow as a source of HSCs for the near future.

Historically, the two most common types of pluripotent stem cells include embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs).35 However, despite the many research efforts to improve ESC and iPSC technologies, there are still enormous clinical challenges.35 Two significant issues posed by ESC and iPSC technologies include low survival rate of transplanted cells and tumorigenicity.35 Recently, researchers have isolated pluripotent stem cells from gestational tissues such as amniotic fluid and the placental membrane.35 Human amnion-derived stem cells (hADSCs), including amniotic epithelial cells and amniotic mesenchymal cells, are a relatively new stem cell source that have been found to have several advantageous characteristics.35,36

For background, human amniotic stem cells begin emerging during the second week of gestation when a small cavity forms within the blastocyst and primordial cells lining this cavity are differentiated into amnioblasts.36 Human amniotic epithelial stem cells (hAESCs) are formed when epiblasts differentiate into amnioblasts, whereas human amniotic mesenchymal stem cells (hAMSCs) are formed when hypoblasts differentiate into amnioblasts.35,36 This differentiation occurs prior to gastrulation, so amnioblasts do not belong to one of the 3 germ layers, making them theoretically pluripotent.3537

Previously, pluripotency and immunomodulation are qualities that have been thought to be mutually exclusive, as pluripotency has traditionally been regarded as a characteristic limited to embryonic stem cells whereas immunomodulation has been a recognized property of mesenchymal stem cells.36 However, many recent studies have found that these two qualities coexist in hADSCs.35,36

In recent years, hADSCs, including human amniotic epithelial stem cells (hAESCs) and human amniotic mesenchymal stem cells (hAMSCs) have been attractive cell sources for clinical trials and medical research, and have been shown to have advantages over other stem cells types.35,37 These advantages include low immunogenicity and high histocompatibility, no tumorigenicity, immunomodulatory effects, and significant paracrine effects.35 Also, several studies have evaluated the proangiogenic ability of hADSCs.35 Interestingly, they found that hAMSCs were shown to augment blood perfusion and capillary architecture when transplanted into ischemic limbs of mice, suggesting that hAMSCs stimulate neovascularization.35,38 Additionally, another advantage is that hADSCs are easier to obtain compared to other stem cell sources, such as bone marrow stem cells (BMSCs).35

Regarding the low immunogenicity, hADSCs have been shown to have a low expression of major histocompatibility class I antigen (HLA-ABC), and no expression of major histocompatibility class II antigen (HLA-DR), 2 microglobulin, and HLA-ABC costimulatory molecules, including CD40, CD80 and CD8635. Notably, there have been reports of transplantation of hAMSCs into patients with lysosomal diseases who had no obvious rejection.35 Moreover, a recent study demonstrated no hemolysis, allergic reactions, or tumor formations in mice who received intravenous hAESCs.35,39

Additionally, studies have demonstrated that both hAESCs and hAMSCs have great potential to play an important role in regenerative medicine. They both have demonstrated that they can differentiate into several specialized cells, including adipocytes, bone cells, nerve cells, cardiomyocytes, skeletal muscle cells, hepatocytes, hematopoietic cells, endothelial cells, kidney cells, and retinal cells.35

Multiple preclinical studies have revealed the potential for hADSCs to be used in the treatment of several diseases including premature ovarian failure, diabetes mellitus, inflammatory bowel disease, brain/spine diseases, and more.35,40,41 For example, one preclinical study investigated the effect of hAMSC-therapy on ovarian function in natural aging ovaries within mice.40 They found that after the hAMSCs were transplanted into the mice, the hAMSCs significantly improved follicle proliferation and therefore ovarian function.40 Another study investigated the effect of hAESC-therapy on outcomes after stroke in mice.41 They found that, administration of hAESCs after acute (within 1.5 hours) stroke in mice reduced brain infarct development, inflammation, and functional deficits.41 Additionally, they found that after late administration (1-3 days poststroke) of hAESCs, functional recovery in the mice was still improved.41 Overall, they concluded that administration of hAESCs following a stroke in mice showed a significant neuroprotective effect and facilitated repair and recovery of the brain.41

Although a number of preclinical studies, like the ones previously described, have shown considerable promise regarding the use of ADSC-therapy, more studies are needed. Future studies can continue to work toward determining if hADSCs are capable of being used for cell replacement and better elucidate the mechanisms by which hADSCs work.

Although the use of bone marrow stem cells (BMSCs) is now standard, dilemmas regarding harvesting techniques and the potential for low cell yields has driven researchers to search for other mesenchymal stem cell (MSCs) sources.42 One source that has been investigated is human adipose tissue.42

After enzymatic digestion of adipose tissue, a heterogenous group of adipocyte precursors are generated within a group of cells called the stromal vascular fraction (SVF).42 Adipose-derived stem cells (ADSCs) are found in the SVF.42,43 Studies have demonstrated that ADSCs possess properties typically associated with MSCs, and that they have been found to express several CD markers that MSCs characteristically express.43 ADSCs are multipotent and have been shown to differentiate into other cells of mesodermal origin, including osteoblasts, chondroblasts, myocytes, tendocytes, and more, upon in vitro induction.4245 Additionally, ADSCs have demonstrated in vitro capacity for multi-lineage differentiation into specialized cells, like insulin-secreting cells.43,46

A significant advantage of ADSCs over BMSCs is how easy they are to harvest.43,45 White adipose tissue (WAT) contains an abundance of ADSCs.43 The main stores of WAT in humans are subcutaneous stores in the buttocks, thighs, abdomen and visceral depots.43 Due to this, ADSCs can be harvested relatively easily by liposuction procedures from these areas of the body.43,45 Moreover, ADSCs make up as much as 1-2% of the SVF within WAT, sometimes even nearing 30% in some tissues.43,45 This is a significant difference from the .0001-.0002% stem cells present in bone marrow.43 Given this difference in stem cell concentration between the sources, there will be more ADSCs per sample of WAT compared to stem cells per bone marrow sample, further demonstrating an easier acquisition of stem cells when using adipose tissue.

Another advantage of ADSCs is their immune privilege status due to a lack of major histocompatibility complex II (MHC II) and costimulatory molecules.42,43,45,47 Some studies have even demonstrated a higher immunosuppression capacity in ADSCs compared to BMSCs as ADSCs expressed lower levels of human antigen class I (HLA I) antigen.47 They also have a unique secretome and can produce immunomodulatory, anti-apoptotic, hematopoietic, and angiogenic factors that can help with repair of tissues characteristics that may support successful transplantations without the need for immunosuppression.4245 Moreover, ADSCs have the ability to be reprogrammed to induced pluripotent stem (iPS) cells.43

The number of ADSC clinical trials has risen over the past decade, and some have shown significant promise. They have demonstrated abilities to differentiate into multiple cell lines in a reproducible manner and be safe for both autogenetic and allogeneic transplantations.45 Several recent studies have demonstrated that ADSC-therapy may potentially be useful in the treatment of several conditions, including diabetes mellitus, Crohns disease, multiple sclerosis, fistulas, arthritis, ischemic pathologies, cardiac injury, spinal injury, bone injuries and more.4448

One clinical trial conducted in 2013 investigated the therapeutic effect of co-infusion of autologous adipose-derived differentiated insulin-secreting stem cells and hematopoietic stem cells (HSCs) on patients with insulin-dependent diabetes mellitus.46 Ten patients were followed over an average of about thirty-two months, and they found that all the patients had improvement in C-peptide, HbA1c, blood sugar status, and exogenous insulin requirement.46 Notably, there were no unpleasant side effects of the treatment and all ten patients had rehabilitated to a normal, unrestricted diet and lifestyle.46

In another 4-patient clinical trial in which ADSCs were used to heal fistulas in patients with Crohns disease, full healing occurred in 6 out of the 8 fistulas with partial healing in the remaining two.44 No complications were observed in the patients 12 months following the trial.44 Although these results are promising, the mechanism by which the healing took place remains unclear. When considering the properties of ADSCs, there are a number of factors that could have played a role in the healing, such as the result of paracrine expression of angiogenic and/or anti-apoptotic factors, stem cell differentiation, and/or local immunosuppression.44

Other exciting studies have demonstrated a use of ADSCs in the treatment of osteoarthritis (OA). One meta-analysis compared the use of ADSCs and BMSCs in the treatment of osteoarthritis.47 This meta-analysis included 14 studies comprising 461 original patient records.47 Overall, the comparison between treatment of OA didnt show a significant difference in the disease severity score change rate between patients treated with ADSCs and those treated with BMSCs.47 However, there was significantly more variability in the outcomes of those treated with BMSCs with the highest change rate being 79.65% in one study and the lowest being 22.57% in another study.47 Given this, ADSCs may represent a more stable cell source for the treatment of OA.47 Although this study is specific to OA treatment, it is worth acknowledging the possibility that ADSCs may also represent a more stable cell source for treatment of other diseases as well.

Though recent ADSC research, as described above, has been promising, unfortunately reproducible in vivo studies are still lacking in both quality and quantity.42 Therefore, further studies are necessary prior to progression to routine patient administration.42

Umbilical Cord stem cells can be drawn from a variety of locations including umbilical cord blood, umbilical cord perivascular cells, umbilical vein endothelial cells, umbilical lining, chorion, and amnion. Umbilical cord blood can be drawn with minimal risk to the donor, and it has been used since 1988 as a source for hematopoietic stem cells.49 When compared to stem cells obtained from bone marrow, umbilical cord derived stem cells are much more readily available. With a birth rate of more than a 100 million people per year globally, there is a lot of opportunity to use umbilical cord blood as a source for stem cells.

The process of extracting the blood is very simple and involves a venipuncture followed by drainage into a sterile anti-coagulant-filled blood bag. It is then cryopreserved and stored in liquid nitrogen. There are quite a few benefits to utilizing umbilical cord stem cells rather than stem cells drawn from adults. One of the biggest benefits is that the cells are more immature which means that there is a lower chance of rejection after implantation in a host and would lead to decreased rates of graft-versus-host disease. They also can differentiate into a very wide variety of tissues. For example, when compared with bone marrow stem cells or mobilized peripheral blood, umbilical cord blood stem cells have a greater repopulating ability.50 Cord blood derived CD34+ cells have very potent hematopoietic abilities, and this is attributed to the immaturity of the stem cells relative to adult derived cells. Studies have been done that analyze long term survival of children with hematologic disorders who were transplanted with umbilical cord blood from a sibling donor. These studied revealed the same or better survival in the children that received the umbilical cord blood relative to those that got transplantation from bone marrow cells. Furthermore, rates of relapse were the same for both umbilical cord blood and bone marrow transplant.51

One of the unique features of stem cells taken from umbilical cord blood is the potential to differentiate into a wide variety of cell types. There are three different kinds of stem cells that can be found in the umbilical cord blood which include hematopoietic, mesenchymal, and embryonic-like stem cells. Not only can these cell types all renew themselves, but they can differentiate into many different mature cell types through a complex number of signaling pathways. This means that these cells could give rise to not only hematopoietic cells but bone, neural and endothelial cells. There are studies taking place currently to see if umbilical cord blood derived stem cells can be utilized for cardiomyogenic purposes. Several studies have showed the ability to transform umbilical cord blood mesenchymal stem cells into cells of cardiomyogenic lineage utilizing activations of Wnt signaling pathways.52 Studies are also being conducted on the potential of neurological applications. If successful, this could help diseases such as cerebral palsy, stroke, spinal cord injury and neurodegenerative diseases. Given these cells ability to differentiate into tissues from the mesoderm, endoderm and ectoderm, they could be utilized for neurological issues in place of embryonic stem cells that are currently extremely controversial.53 There are currently studies involving in vitro work, pre-clinical animal studies, and patient clinical trials, all for the application of stem cells in neurological applications. There is big potential for the use of umbilical blood stem cells in the future of regenerative medicine.

Placental tissue contains both stem cells and epithelial cells that can differentiate into a wide variety of tissue types which include adipogenic, myogenic, hepatogenic, osteogenic, cardiac, endothelial, pancreatic, pulmonary, and neurological. Placental cells can differentiate in to all these different kinds of tissues due to lineages originating from different parts of the placenta such as the hematopoietic cells that come from the chorion, allantois, and yolk sac while the mesenchymal lineages come from the chorion and the amnion.54 It can be helpful to think of human fetal placental cells as being divided into four different groups: amniotic epithelial cells, amniotic mesenchymal stromal cells, chorionic mesenchymal stromal cells and chorionic trophoblast cells.54

Human amniotic epithelial cells (hAECs) can be obtained from the amnion membrane where they are then enzymatically digested to be separated from the chorion. When cultured under certain settings hAECs have been found to be able to produce neuronal cells that synthesize acetylcholine, norepinephrine as well as dopamine.55,56 This ability would mean they have potential for regenerative purposes in diseases such as Parkinsons Disease, multiple sclerosis, and spinal cord injury. There is also research being done to utilize hAECs for ophthalmological purposes, lung fibrosis, liver disease, metabolic diseases, and familial hypercholesterolemia. Once cultured, hAECs have been shown to produce both albumin and alpha-fetoprotein as well as showing ability to store glycogen. Furthermore, they have been found to metabolize ammonia and testosterone. In more recent studies conducted in mouse models, these cells have been found to have therapeutic efficacy after transplantation for cirrhosis.57

Mesenchymal stem cells are in many different tissues such as the bone marrow, umbilical cord blood, adipose tissue, Whartons jelly, amniotic fluid, lungs, muscle and the placenta. Placental mesenchymal stromal cells specifically originate from the extraembryonic mesoderm. Human amniotic mesenchymal stromal cells (hAMSCs) and chorionic mesenchymal stromal cells (hCMSCs) have both been found to have very low levels of HLA-A,B,C. This means that they have immune privileged profiles for potential transplantation.58,59 Placental derived mesenchymal stem cells have been shown to have expression of CD29, CD44, CD105 and CD166 which is the same as adipose derived mesenchymal stem cells. These markers have been shown to have osteogenic differentiating abilities.57 An interesting element of placental mesenchymal stem cells is that their properties differ depending on the gestational age of the placenta. When cells are harvested at lower gestational ages, they show faster generation doubling times, better proliferative abilities, wider differentiation potential and more phenotypic stability than cells harvested from placental tissue that is considered to be at term.60 Furthermore, they have great potential to be used clinically. Placental mesenchymal stromal cells have been studied for use in treating acute graft-versus-host disease that was refractory to steroid treatment. Studies have shown that the 1-year survival rates in patients treated with placenta derived stromal cells were 73% while retrospective control only showed 6% survival.61 Placenta derived MSCs have also been found to aid in wound healing and could potentially be used to aid with certain inherited skin conditions such as epidermolysis bullosa.62

Stem cells are diverse in their differentiation capacity as well as their source of origin. As we can see from this review, there are similarities and differences when these cells are extracted from different sources. Research has shown initial promise in neurodegenerative diseases such as Alzheimers and Parkinsons Disease. It has also shown to be beneficial in the areas of musculoskeletal regenerative medicine and other pain states. Organ bioengineering for transplantation is another potential benefit that stem cells may offer. For these reasons, extensive research is still needed in this area of medicine to pave the way for new developing therapy modalities.

none

This review is dedicated to Dr.Justine C. Goldberg MD

Read more here:
Stem cells: a comprehensive review of origins and emerging clinical ...

Posted in Stem Cells | Comments Off on Stem cells: a comprehensive review of origins and emerging clinical …

Stem cell – Wikipedia

Posted: December 29, 2023 at 2:36 am

In multicellular organisms, stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. They are the earliest type of cell in a cell lineage.[1] They are found in both embryonic and adult organisms, but they have slightly different properties in each. They are usually distinguished from progenitor cells, which cannot divide indefinitely, and precursor or blast cells, which are usually committed to differentiating into one cell type.

In mammals, roughly 50150 cells make up the inner cell mass during the blastocyst stage of embryonic development, around days 514. These have stem-cell capability. In vivo, they eventually differentiate into all of the body's cell types (making them pluripotent). This process starts with the differentiation into the three germ layers the ectoderm, mesoderm and endoderm at the gastrulation stage. However, when they are isolated and cultured in vitro, they can be kept in the stem-cell stage and are known as embryonic stem cells (ESCs).

Adult stem cells are found in a few select locations in the body, known as niches, such as those in the bone marrow or gonads. They exist to replenish rapidly lost cell types and are multipotent or unipotent, meaning they only differentiate into a few cell types or one type of cell. In mammals, they include, among others, hematopoietic stem cells, which replenish blood and immune cells, basal cells, which maintain the skin epithelium, and mesenchymal stem cells, which maintain bone, cartilage, muscle and fat cells. Adult stem cells are a small minority of cells; they are vastly outnumbered by the progenitor cells and terminally differentiated cells that they differentiate into.[1]

Research into stem cells grew out of findings by Canadian biologists Ernest McCulloch, James Till and Andrew J. Becker at the University of Toronto and the Ontario Cancer Institute in the 1960s.[2][3] As of 2016[update], the only established medical therapy using stem cells is hematopoietic stem cell transplantation,[4] first performed in 1958 by French oncologist Georges Math. Since 1998 however, it has been possible to culture and differentiate human embryonic stem cells (in stem-cell lines). The process of isolating these cells has been controversial, because it typically results in the destruction of the embryo. Sources for isolating ESCs have been restricted in some European countries and Canada, but others such as the UK and China have promoted the research.[5] Somatic cell nuclear transfer is a cloning method that can be used to create a cloned embryo for the use of its embryonic stem cells in stem cell therapy.[6] In 2006, a Japanese team led by Shinya Yamanaka discovered a method to convert mature body cells back into stem cells. These were termed induced pluripotent stem cells (iPSCs).[7]

The term stem cell was coined by Theodor Boveri and Valentin Haecker in late 19th century.[8] Pioneering works in theory of blood stem cell were conducted in the beginning of 20th century by Artur Pappenheim, Alexander Maximow, Franz Ernst Christian Neumann.[8]

The key properties of a stem cell were first defined by Ernest McCulloch and James Till at the University of Toronto and the Ontario Cancer Institute in the early 1960s. They discovered the blood-forming stem cell, the hematopoietic stem cell (HSC), through their pioneering work in mice. McCulloch and Till began a series of experiments in which bone marrow cells were injected into irradiated mice. They observed lumps in the spleens of the mice that were linearly proportional to the number of bone marrow cells injected. They hypothesized that each lump (colony) was a clone arising from a single marrow cell (stem cell). In subsequent work, McCulloch and Till, joined by graduate student Andrew John Becker and senior scientist Louis Siminovitch, confirmed that each lump did in fact arise from a single cell. Their results were published in Nature in 1963. In that same year, Siminovitch was a lead investigator for studies that found colony-forming cells were capable of self-renewal, which is a key defining property of stem cells that Till and McCulloch had theorized.[9]

The first therapy using stem cells was a bone marrow transplant performed by French oncologist Georges Math in 1958 on five workers at the Vina Nuclear Institute in Yugoslavia who had been affected by a criticality accident. The workers all survived.[10]

In 1981, embryonic stem (ES) cells were first isolated and successfully cultured using mouse blastocysts by British biologists Martin Evans and Matthew Kaufman. This allowed the formation of murine genetic models, a system in which the genes of mice are deleted or altered in order to study their function in pathology. By 1998, human embryonic stem cells were first isolated by American biologist James Thomson, which made it possible to have new transplantation methods or various cell types for testing new treatments. In 2006, Shinya Yamanaka's team in Kyoto, Japan converted fibroblasts into pluripotent stem cells by modifying the expression of only four genes. The feat represents the origin of induced pluripotent stem cells, known as iPS cells.[7]

In 2011, a female maned wolf, run over by a truck, underwent stem cell treatment at the Zoo Braslia, this being the first recorded case of the use of stem cells to heal injuries in a wild animal.[11][12]

The classical definition of a stem cell requires that it possesses two properties:

Two mechanisms ensure that a stem cell population is maintained (doesn't shrink in size):

1. Asymmetric cell division: a stem cell divides into one mother cell, which is identical to the original stem cell, and another daughter cell, which is differentiated.

When a stem cell self-renews, it divides and does not disrupt the undifferentiated state. This self-renewal demands control of cell cycle as well as upkeep of multipotency or pluripotency, which all depends on the stem cell.[13]

2. Stochastic differentiation: when one stem cell grows and divides into two differentiated daughter cells, another stem cell undergoes mitosis and produces two stem cells identical to the original.

Stem cells use telomerase, a protein that restores telomeres, to protect their DNA and extend their cell division limit (the Hayflick limit).[14]

Potency specifies the differentiation potential (the potential to differentiate into different cell types) of the stem cell.[15]

In practice, stem cells are identified by whether they can regenerate tissue. For example, the defining test for bone marrow or hematopoietic stem cells (HSCs) is the ability to transplant the cells and save an individual without HSCs. This demonstrates that the cells can produce new blood cells over a long term. It should also be possible to isolate stem cells from the transplanted individual, which can themselves be transplanted into another individual without HSCs, demonstrating that the stem cell was able to self-renew.

Properties of stem cells can be illustrated in vitro, using methods such as clonogenic assays, in which single cells are assessed for their ability to differentiate and self-renew.[18][19] Stem cells can also be isolated by their possession of a distinctive set of cell surface markers. However, in vitro culture conditions can alter the behavior of cells, making it unclear whether the cells shall behave in a similar manner in vivo. There is considerable debate as to whether some proposed adult cell populations are truly stem cells.[20]

Embryonic stem cells (ESCs) are the cells of the inner cell mass of a blastocyst, formed prior to implantation in the uterus.[21] In human embryonic development the blastocyst stage is reached 45 days after fertilization, at which time it consists of 50150 cells. ESCs are pluripotent and give rise during development to all derivatives of the three germ layers: ectoderm, endoderm and mesoderm. In other words, they can develop into each of the more than 200 cell types of the adult body when given sufficient and necessary stimulation for a specific cell type. They do not contribute to the extraembryonic membranes or to the placenta.

During embryonic development the cells of the inner cell mass continuously divide and become more specialized. For example, a portion of the ectoderm in the dorsal part of the embryo specializes as 'neurectoderm', which will become the future central nervous system.[22] Later in development, neurulation causes the neurectoderm to form the neural tube. At the neural tube stage, the anterior portion undergoes encephalization to generate or 'pattern' the basic form of the brain. At this stage of development, the principal cell type of the CNS is considered a neural stem cell.

The neural stem cells self-renew and at some point transition into radial glial progenitor cells (RGPs). Early-formed RGPs self-renew by symmetrical division to form a reservoir group of progenitor cells. These cells transition to a neurogenic state and start to divide asymmetrically to produce a large diversity of many different neuron types, each with unique gene expression, morphological, and functional characteristics. The process of generating neurons from radial glial cells is called neurogenesis. The radial glial cell, has a distinctive bipolar morphology with highly elongated processes spanning the thickness of the neural tube wall. It shares some glial characteristics, most notably the expression of glial fibrillary acidic protein (GFAP).[23][24] The radial glial cell is the primary neural stem cell of the developing vertebrate CNS, and its cell body resides in the ventricular zone, adjacent to the developing ventricular system. Neural stem cells are committed to the neuronal lineages (neurons, astrocytes, and oligodendrocytes), and thus their potency is restricted.[22]

Nearly all research to date has made use of mouse embryonic stem cells (mES) or human embryonic stem cells (hES) derived from the early inner cell mass. Both have the essential stem cell characteristics, yet they require very different environments in order to maintain an undifferentiated state. Mouse ES cells are grown on a layer of gelatin as an extracellular matrix (for support) and require the presence of leukemia inhibitory factor (LIF) in serum media. A drug cocktail containing inhibitors to GSK3B and the MAPK/ERK pathway, called 2i, has also been shown to maintain pluripotency in stem cell culture.[25] Human ESCs are grown on a feeder layer of mouse embryonic fibroblasts and require the presence of basic fibroblast growth factor (bFGF or FGF-2).[26] Without optimal culture conditions or genetic manipulation,[27] embryonic stem cells will rapidly differentiate.

A human embryonic stem cell is also defined by the expression of several transcription factors and cell surface proteins. The transcription factors Oct-4, Nanog, and Sox2 form the core regulatory network that ensures the suppression of genes that lead to differentiation and the maintenance of pluripotency.[28] The cell surface antigens most commonly used to identify hES cells are the glycolipids stage specific embryonic antigen 3 and 4, and the keratan sulfate antigens Tra-1-60 and Tra-1-81. The molecular definition of a stem cell includes many more proteins and continues to be a topic of research.[29]

By using human embryonic stem cells to produce specialized cells like nerve cells or heart cells in the lab, scientists can gain access to adult human cells without taking tissue from patients. They can then study these specialized adult cells in detail to try to discern complications of diseases, or to study cell reactions to proposed new drugs.

Because of their combined abilities of unlimited expansion and pluripotency, embryonic stem cells remain a theoretically potential source for regenerative medicine and tissue replacement after injury or disease.,[30] however, there are currently no approved treatments using ES cells. The first human trial was approved by the US Food and Drug Administration in January 2009.[31] However, the human trial was not initiated until October 13, 2010 in Atlanta for spinal cord injury research. On November 14, 2011 the company conducting the trial (Geron Corporation) announced that it will discontinue further development of its stem cell programs.[32] Differentiating ES cells into usable cells while avoiding transplant rejection are just a few of the hurdles that embryonic stem cell researchers still face.[33] Embryonic stem cells, being pluripotent, require specific signals for correct differentiation if injected directly into another body, ES cells will differentiate into many different types of cells, causing a teratoma. Ethical considerations regarding the use of unborn human tissue are another reason for the lack of approved treatments using embryonic stem cells. Many nations currently have moratoria or limitations on either human ES cell research or the production of new human ES cell lines.

Mesenchymal stem cells (MSC) or mesenchymal stromal cells, also known as medicinal signaling cells are known to be multipotent, which can be found in adult tissues, for example, in the muscle, liver, bone marrow and adipose tissue. Mesenchymal stem cells usually function as structural support in various organs as mentioned above, and control the movement of substances. MSC can differentiate into numerous cell categories as an illustration of adipocytes, osteocytes, and chondrocytes, derived by the mesodermal layer.[34] Where the mesoderm layer provides an increase to the body's skeletal elements, such as relating to the cartilage or bone. The term "meso" means middle, infusion originated from the Greek, signifying that mesenchymal cells are able to range and travel in early embryonic growth among the ectodermal and endodermal layers. This mechanism helps with space-filling thus, key for repairing wounds in adult organisms that have to do with mesenchymal cells in the dermis (skin), bone, or muscle.[35]

Mesenchymal stem cells are known to be essential for regenerative medicine. They are broadly studied in clinical trials. Since they are easily isolated and obtain high yield, high plasticity, which makes able to facilitate inflammation and encourage cell growth, cell differentiation, and restoring tissue derived from immunomodulation and immunosuppression. MSC comes from the bone marrow, which requires an aggressive procedure when it comes to isolating the quantity and quality of the isolated cell, and it varies by how old the donor. When comparing the rates of MSC in the bone marrow aspirates and bone marrow stroma, the aspirates tend to have lower rates of MSC than the stroma. MSC are known to be heterogeneous, and they express a high level of pluripotent markers when compared to other types of stem cells, such as embryonic stem cells.[34] MSCs injection leads to wound healing primarily through stimulation of angiogenesis.[36]

Embryonic stem cells (ESCs) have the ability to divide indefinitely while keeping their pluripotency, which is made possible through specialized mechanisms of cell cycle control.[37] Compared to proliferating somatic cells, ESCs have unique cell cycle characteristicssuch as rapid cell division caused by shortened G1 phase, absent G0 phase, and modifications in cell cycle checkpointswhich leaves the cells mostly in S phase at any given time.[37][38] ESCs' rapid division is demonstrated by their short doubling time, which ranges from 8 to 10 hours, whereas somatic cells have doubling time of approximately 20 hours or longer.[39] As cells differentiate, these properties change: G1 and G2 phases lengthen, leading to longer cell division cycles. This suggests that a specific cell cycle structure may contribute to the establishment of pluripotency.[37]

Particularly because G1 phase is the phase in which cells have increased sensitivity to differentiation, shortened G1 is one of the key characteristics of ESCs and plays an important role in maintaining undifferentiated phenotype. Although the exact molecular mechanism remains only partially understood, several studies have shown insight on how ESCs progress through G1and potentially other phasesso rapidly.[38]

The cell cycle is regulated by complex network of cyclins, cyclin-dependent kinases (Cdk), cyclin-dependent kinase inhibitors (Cdkn), pocket proteins of the retinoblastoma (Rb) family, and other accessory factors.[39] Foundational insight into the distinctive regulation of ESC cell cycle was gained by studies on mouse ESCs (mESCs).[38] mESCs showed a cell cycle with highly abbreviated G1 phase, which enabled cells to rapidly alternate between M phase and S phase. In a somatic cell cycle, oscillatory activity of Cyclin-Cdk complexes is observed in sequential action, which controls crucial regulators of the cell cycle to induce unidirectional transitions between phases: Cyclin D and Cdk4/6 are active in the G1 phase, while Cyclin E and Cdk2 are active during the late G1 phase and S phase; and Cyclin A and Cdk2 are active in the S phase and G2, while Cyclin B and Cdk1 are active in G2 and M phase.[39] However, in mESCs, this typically ordered and oscillatory activity of Cyclin-Cdk complexes is absent. Rather, the Cyclin E/Cdk2 complex is constitutively active throughout the cycle, keeping retinoblastoma protein (pRb) hyperphosphorylated and thus inactive. This allows for direct transition from M phase to the late G1 phase, leading to absence of D-type cyclins and therefore a shortened G1 phase.[38] Cdk2 activity is crucial for both cell cycle regulation and cell-fate decisions in mESCs; downregulation of Cdk2 activity prolongs G1 phase progression, establishes a somatic cell-like cell cycle, and induces expression of differentiation markers.[40]

In human ESCs (hESCs), the duration of G1 is dramatically shortened. This has been attributed to high mRNA levels of G1-related Cyclin D2 and Cdk4 genes and low levels of cell cycle regulatory proteins that inhibit cell cycle progression at G1, such as p21CipP1, p27Kip1, and p57Kip2.[37][41] Furthermore, regulators of Cdk4 and Cdk6 activity, such as members of the Ink family of inhibitors (p15, p16, p18, and p19), are expressed at low levels or not at all. Thus, similar to mESCs, hESCs show high Cdk activity, with Cdk2 exhibiting the highest kinase activity. Also similar to mESCs, hESCs demonstrate the importance of Cdk2 in G1 phase regulation by showing that G1 to S transition is delayed when Cdk2 activity is inhibited and G1 is arrest when Cdk2 is knocked down.[37] However unlike mESCs, hESCs have a functional G1 phase. hESCs show that the activities of Cyclin E/Cdk2 and Cyclin A/Cdk2 complexes are cell cycle-dependent and the Rb checkpoint in G1 is functional.[39]

ESCs are also characterized by G1 checkpoint non-functionality, even though the G1 checkpoint is crucial for maintaining genomic stability. In response to DNA damage, ESCs do not stop in G1 to repair DNA damages but instead, depend on S and G2/M checkpoints or undergo apoptosis. The absence of G1 checkpoint in ESCs allows for the removal of cells with damaged DNA, hence avoiding potential mutations from inaccurate DNA repair.[37] Consistent with this idea, ESCs are hypersensitive to DNA damage to minimize mutations passed onto the next generation.[39]

The primitive stem cells located in the organs of fetuses are referred to as fetal stem cells.[42]

There are two types of fetal stem cells:

Adult stem cells, also called somatic (from Greek , "of the body") stem cells, are stem cells which maintain and repair the tissue in which they are found.[44] They can be found in children, as well as adults.[45]

There are three known accessible sources of autologous adult stem cells in humans:

Stem cells can also be taken from umbilical cord blood just after birth. Of all stem cell types, autologous harvesting involves the least risk. By definition, autologous cells are obtained from one's own body, just as one may bank their own blood for elective surgical procedures.[citation needed]

Pluripotent adult stem cells are rare and generally small in number, but they can be found in umbilical cord blood and other tissues.[49] Bone marrow is a rich source of adult stem cells,[50] which have been used in treating several conditions including liver cirrhosis,[51] chronic limb ischemia[52] and endstage heart failure.[53] The quantity of bone marrow stem cells declines with age and is greater in males than females during reproductive years.[54] Much adult stem cell research to date has aimed to characterize their potency and self-renewal capabilities.[55] DNA damage accumulates with age in both stem cells and the cells that comprise the stem cell environment. This accumulation is considered to be responsible, at least in part, for increasing stem cell dysfunction with aging (see DNA damage theory of aging).[56]

Most adult stem cells are lineage-restricted (multipotent) and are generally referred to by their tissue origin (mesenchymal stem cell, adipose-derived stem cell, endothelial stem cell, dental pulp stem cell, etc.).[57][58] Muse cells (multi-lineage differentiating stress enduring cells) are a recently discovered pluripotent stem cell type found in multiple adult tissues, including adipose, dermal fibroblasts, and bone marrow. While rare, muse cells are identifiable by their expression of SSEA-3, a marker for undifferentiated stem cells, and general mesenchymal stem cells markers such as CD90, CD105. When subjected to single cell suspension culture, the cells will generate clusters that are similar to embryoid bodies in morphology as well as gene expression, including canonical pluripotency markers Oct4, Sox2, and Nanog.[59]

Adult stem cell treatments have been successfully used for many years to treat leukemia and related bone/blood cancers through bone marrow transplants.[60] Adult stem cells are also used in veterinary medicine to treat tendon and ligament injuries in horses.[61]

The use of adult stem cells in research and therapy is not as controversial as the use of embryonic stem cells, because the production of adult stem cells does not require the destruction of an embryo. Additionally, in instances where adult stem cells are obtained from the intended recipient (an autograft), the risk of rejection is essentially non-existent. Consequently, more US government funding is being provided for adult stem cell research.[62]

With the increasing demand of human adult stem cells for both research and clinical purposes (typically 15 million cells per kg of body weight are required per treatment) it becomes of utmost importance to bridge the gap between the need to expand the cells in vitro and the capability of harnessing the factors underlying replicative senescence. Adult stem cells are known to have a limited lifespan in vitro and to enter replicative senescence almost undetectably upon starting in vitro culturing.[63]

Hematopoietic stem cells (HSCs) are vulnerable to DNA damage and mutations that increase with age.[64] This vulnerability may explain the increased risk of slow growing blood cancers (myeloid malignancies) in the elderly.[64] Several factors appear to influence HSC aging including responses to the production of reactive oxygen species that may cause DNA damage and genetic mutations as well as altered epigenetic profiling.[65]

Also called perinatal stem cells, these multipotent stem cells are found in amniotic fluid and umbilical cord blood. These stem cells are very active, expand extensively without feeders and are not tumorigenic. Amniotic stem cells are multipotent and can differentiate in cells of adipogenic, osteogenic, myogenic, endothelial, hepatic and also neuronal lines.[66] Amniotic stem cells are a topic of active research.

Use of stem cells from amniotic fluid overcomes the ethical objections to using human embryos as a source of cells. Roman Catholic teaching forbids the use of embryonic stem cells in experimentation; accordingly, the Vatican newspaper "Osservatore Romano" called amniotic stem cells "the future of medicine".[67]

It is possible to collect amniotic stem cells for donors or for autologous use: the first US amniotic stem cells bank[68][69] was opened in 2009 in Medford, MA, by Biocell Center Corporation[70][71][72] and collaborates with various hospitals and universities all over the world.[73]

Adult stem cells have limitations with their potency; unlike embryonic stem cells (ESCs), they are not able to differentiate into cells from all three germ layers. As such, they are deemed multipotent.

However, reprogramming allows for the creation of pluripotent cells, induced pluripotent stem cells (iPSCs), from adult cells. These are not adult stem cells, but somatic cells (e.g. epithelial cells) reprogrammed to give rise to cells with pluripotent capabilities. Using genetic reprogramming with protein transcription factors, pluripotent stem cells with ESC-like capabilities have been derived.[74][75][76] The first demonstration of induced pluripotent stem cells was conducted by Shinya Yamanaka and his colleagues at Kyoto University.[77] They used the transcription factors Oct3/4, Sox2, c-Myc, and Klf4 to reprogram mouse fibroblast cells into pluripotent cells.[74][78] Subsequent work used these factors to induce pluripotency in human fibroblast cells.[79] Junying Yu, James Thomson, and their colleagues at the University of WisconsinMadison used a different set of factors, Oct4, Sox2, Nanog and Lin28, and carried out their experiments using cells from human foreskin.[74][80] However, they were able to replicate Yamanaka's finding that inducing pluripotency in human cells was possible.

Induced pluripotent stem cells differ from embryonic stem cells. They share many similar properties, such as pluripotency and differentiation potential, the expression of pluripotency genes, epigenetic patterns, embryoid body and teratoma formation, and viable chimera formation,[77][78] but there are many differences within these properties. The chromatin of iPSCs appears to be more "closed" or methylated than that of ESCs.[77][78] Similarly, the gene expression pattern between ESCs and iPSCs, or even iPSCs sourced from different origins.[77] There are thus questions about the "completeness" of reprogramming and the somatic memory of induced pluripotent stem cells. Despite this, inducing somatic cells to be pluripotent appears to be viable.

As a result of the success of these experiments, Ian Wilmut, who helped create the first cloned animal Dolly the Sheep, has announced that he will abandon somatic cell nuclear transfer as an avenue of research.[81]

IPSCs has helped the field of medicine significantly by finding numerous ways to cure diseases. Since human IPSCc has given the advantage to make in vitro models to study toxins and pathogenesis.[82]

Furthermore, induced pluripotent stem cells provide several therapeutic advantages. Like ESCs, they are pluripotent. They thus have great differentiation potential; theoretically, they could produce any cell within the human body (if reprogramming to pluripotency was "complete").[77] Moreover, unlike ESCs, they potentially could allow doctors to create a pluripotent stem cell line for each individual patient.[83] Frozen blood samples can be used as a valuable source of induced pluripotent stem cells.[84] Patient specific stem cells allow for the screening for side effects before drug treatment, as well as the reduced risk of transplantation rejection.[83] Despite their current limited use therapeutically, iPSCs hold great potential for future use in medical treatment and research.

The key factors controlling the cell cycle also regulate pluripotency. Thus, manipulation of relevant genes can maintain pluripotency and reprogram somatic cells to an induced pluripotent state.[39] However, reprogramming of somatic cells is often low in efficiency and considered stochastic.[85]

With the idea that a more rapid cell cycle is a key component of pluripotency, reprogramming efficiency can be improved. Methods for improving pluripotency through manipulation of cell cycle regulators include: overexpression of Cyclin D/Cdk4, phosphorylation of Sox2 at S39 and S253, overexpression of Cyclin A and Cyclin E, knockdown of Rb, and knockdown of members of the Cip/Kip family or the Ink family.[39] Furthermore, reprogramming efficiency is correlated with the number of cell divisions happened during the stochastic phase, which is suggested by the growing inefficiency of reprogramming of older or slow diving cells.[86]

Lineage is an important procedure to analyze developing embryos. Since cell lineages shows the relationship between cells at each division. This helps in analyzing stem cell lineages along the way which helps recognize stem cell effectiveness, lifespan, and other factors. With the technique of cell lineage mutant genes can be analyzed in stem cell clones that can help in genetic pathways. These pathways can regulate how the stem cell perform.[87]

To ensure self-renewal, stem cells undergo two types of cell division (see Stem cell division and differentiation diagram). Symmetric division gives rise to two identical daughter cells both endowed with stem cell properties. Asymmetric division, on the other hand, produces only one stem cell and a progenitor cell with limited self-renewal potential. Progenitors can go through several rounds of cell division before terminally differentiating into a mature cell. It is possible that the molecular distinction between symmetric and asymmetric divisions lies in differential segregation of cell membrane proteins (such as receptors) between the daughter cells.[88]

An alternative theory is that stem cells remain undifferentiated due to environmental cues in their particular niche. Stem cells differentiate when they leave that niche or no longer receive those signals. Studies in Drosophila germarium have identified the signals decapentaplegic and adherens junctions that prevent germarium stem cells from differentiating.[89][90]

In the United States, Executive Order 13505 established that federal money can be used for research in which approved human embryonic stem-cell (hESC) lines are used, but it cannot be used to derive new lines.[91] The National Institutes of Health (NIH) Guidelines on Human Stem Cell Research, effective July 7, 2009, implemented the Executive Order 13505 by establishing criteria which hESC lines must meet to be approved for funding.[92] The NIH Human Embryonic Stem Cell Registry can be accessed online and has updated information on cell lines eligible for NIH funding.[93] There are 486 approved lines as of January 2022.[94]

Stem cell therapy is the use of stem cells to treat or prevent a disease or condition. Bone marrow transplant is a form of stem cell therapy that has been used for many years because it has proven to be effective in clinical trials.[95][96] Stem cell implantation may help in strengthening the left-ventricle of the heart, as well as retaining the heart tissue to patients who have suffered from heart attacks in the past.[97]

For over 90 years, hematopoietic stem cell transplantation (HSCT) has been used to treat people with conditions such as leukaemia and lymphoma; this is the only widely practiced form of stem-cell therapy.[98][99][100] As of 2016[update], the only established therapy using stem cells is hematopoietic stem cell transplantation.[101] This usually takes the form of a bone-marrow transplantation, but the cells can also be derived from umbilical cord blood. Research is underway to develop various sources for stem cells as well as to apply stem-cell treatments for neurodegenerative diseases[102][103][104] and conditions such as diabetes and heart disease.

Stem cell treatments may lower symptoms of the disease or condition that is being treated. The lowering of symptoms may allow patients to reduce the drug intake of the disease or condition. Stem cell treatment may also provide knowledge for society to further stem cell understanding and future treatments.[105] The physicians' creed would be to do no injury, and stem cells make that simpler than ever before. Surgical processes by their character are harmful. Tissue has to be dropped as a way to reach a successful outcome. One may prevent the dangers of surgical interventions using stem cells. Additionally, there's a possibility of disease, and whether the procedure fails, further surgery may be required. Risks associated with anesthesia can also be eliminated with stem cells.[106] On top of that, stem cells have been harvested from the patient's body and redeployed in which they're wanted. Since they come from the patient's own body, this is referred to as an autologous treatment. Autologous remedies are thought to be the safest because there's likely zero probability of donor substance rejection.

Stem cell treatments may require immunosuppression because of a requirement for radiation before the transplant to remove the person's previous cells, or because the patient's immune system may target the stem cells. One approach to avoid the second possibility is to use stem cells from the same patient who is being treated.

Pluripotency in certain stem cells could also make it difficult to obtain a specific cell type. It is also difficult to obtain the exact cell type needed, because not all cells in a population differentiate uniformly. Undifferentiated cells can create tissues other than desired types.[107]

Some stem cells form tumors after transplantation;[108] pluripotency is linked to tumor formation especially in embryonic stem cells, fetal proper stem cells, induced pluripotent stem cells. Fetal proper stem cells form tumors despite multipotency.[109]

Ethical concerns are also raised about the practice of using or researching embryonic stem cells. Harvesting cells from the blastocyst result in the death of the blastocyst. The concern is whether or not the blastocyst should be considered as a human life.[110] The debate on this issue is mainly a philosophical one, not a scientific one.

Stem cell tourism is the part of the medical tourism industry in which patients travel to obtain stem cell procedures.[111]

The United States has had an explosion of "stem cell clinics".[112] Stem cell procedures are highly profitable for clinics. The advertising sounds authoritative but the efficacy and safety of the procedures is unproven. Patients sometimes experience complications, such as spinal tumors[113] and death. The high expense can also lead to financial problems.[113] According to researchers, there is a need to educate the public, patients, and doctors about this issue.[114]

According to the International Society for Stem Cell Research, the largest academic organization that advocates for stem cell research, stem cell therapies are under development and cannot yet be said to be proven.[115][116] Doctors should inform patients that clinical trials continue to investigate whether these therapies are safe and effective but that unethical clinics present them as proven.[117]

Some of the fundamental patents covering human embryonic stem cells are owned by the Wisconsin Alumni Research Foundation (WARF) they are patents 5,843,780, 6,200,806, and 7,029,913 invented by James A. Thomson. WARF does not enforce these patents against academic scientists, but does enforce them against companies.[118]

In 2006, a request for the US Patent and Trademark Office (USPTO) to re-examine the three patents was filed by the Public Patent Foundation on behalf of its client, the non-profit patent-watchdog group Consumer Watchdog (formerly the Foundation for Taxpayer and Consumer Rights).[118] In the re-examination process, which involves several rounds of discussion between the USPTO and the parties, the USPTO initially agreed with Consumer Watchdog and rejected all the claims in all three patents,[119] however in response, WARF amended the claims of all three patents to make them more narrow, and in 2008 the USPTO found the amended claims in all three patents to be patentable. The decision on one of the patents (7,029,913) was appealable, while the decisions on the other two were not.[120][121] Consumer Watchdog appealed the granting of the '913 patent to the USPTO's Board of Patent Appeals and Interferences (BPAI) which granted the appeal, and in 2010 the BPAI decided that the amended claims of the '913 patent were not patentable.[122] However, WARF was able to re-open prosecution of the case and did so, amending the claims of the '913 patent again to make them more narrow, and in January 2013 the amended claims were allowed.[123]

In July 2013, Consumer Watchdog announced that it would appeal the decision to allow the claims of the '913 patent to the US Court of Appeals for the Federal Circuit (CAFC), the federal appeals court that hears patent cases.[124] At a hearing in December 2013, the CAFC raised the question of whether Consumer Watchdog had legal standing to appeal; the case could not proceed until that issue was resolved.[125]

Diseases and conditions where stem cell treatment is being investigated include:

Research is underway to develop various sources for stem cells, and to apply stem cell treatments for neurodegenerative diseases and conditions, diabetes, heart disease, and other conditions.[146] Research is also underway in generating organoids using stem cells, which would allow for further understanding of human development, organogenesis, and modeling of human diseases.[147]

In more recent years, with the ability of scientists to isolate and culture embryonic stem cells, and with scientists' growing ability to create stem cells using somatic cell nuclear transfer and techniques to create induced pluripotent stem cells, controversy has crept in, both related to abortion politics and to human cloning.

Hepatotoxicity and drug-induced liver injury account for a substantial number of failures of new drugs in development and market withdrawal, highlighting the need for screening assays such as stem cell-derived hepatocyte-like cells, that are capable of detecting toxicity early in the drug development process.[148]

In August 2021, researchers in the Princess Margaret Cancer Centre at the University Health Network published their discovery of a dormancy mechanism in key stem cells which could help develop cancer treatments in the future.[149]

Read more from the original source:
Stem cell - Wikipedia

Posted in Stem Cell Research | Comments Off on Stem cell – Wikipedia

Stem Cells Applications in Regenerative Medicine and Disease …

Posted: November 16, 2022 at 2:34 am

Int J Cell Biol. 2016; 2016: 6940283.

Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066, India

Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066, India

Academic Editor: Paul J. Higgins

Received 2016 Mar 13; Accepted 2016 Jun 5.

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Regenerative medicine, the most recent and emerging branch of medical science, deals with functional restoration of tissues or organs for the patient suffering from severe injuries or chronic disease. The spectacular progress in the field of stem cell research has laid the foundation for cell based therapies of disease which cannot be cured by conventional medicines. The indefinite self-renewal and potential to differentiate into other types of cells represent stem cells as frontiers of regenerative medicine. The transdifferentiating potential of stem cells varies with source and according to that regenerative applications also change. Advancements in gene editing and tissue engineering technology have endorsed the ex vivo remodelling of stem cells grown into 3D organoids and tissue structures for personalized applications. This review outlines the most recent advancement in transplantation and tissue engineering technologies of ESCs, TSPSCs, MSCs, UCSCs, BMSCs, and iPSCs in regenerative medicine. Additionally, this review also discusses stem cells regenerative application in wildlife conservation.

Regenerative medicine, the most recent and emerging branch of medical science, deals with functional restoration of specific tissue and/or organ of the patients suffering with severe injuries or chronic disease conditions, in the state where bodies own regenerative responses do not suffice [1]. In the present scenario donated tissues and organs cannot meet the transplantation demands of aged and diseased populations that have driven the thrust for search for the alternatives. Stem cells are endorsed with indefinite cell division potential, can transdifferentiate into other types of cells, and have emerged as frontline regenerative medicine source in recent time, for reparation of tissues and organs anomalies occurring due to congenital defects, disease, and age associated effects [1]. Stem cells pave foundation for all tissue and organ system of the body and mediates diverse role in disease progression, development, and tissue repair processes in host. On the basis of transdifferentiation potential, stem cells are of four types, that is, (1) unipotent, (2) multipotent, (3) pluripotent, and (4) totipotent [2]. Zygote, the only totipotent stem cell in human body, can give rise to whole organism through the process of transdifferentiation, while cells from inner cells mass (ICM) of embryo are pluripotent in their nature and can differentiate into cells representing three germ layers but do not differentiate into cells of extraembryonic tissue [2]. Stemness and transdifferentiation potential of the embryonic, extraembryonic, fetal, or adult stem cells depend on functional status of pluripotency factors like OCT4, cMYC, KLF44, NANOG, SOX2, and so forth [35]. Ectopic expression or functional restoration of endogenous pluripotency factors epigenetically transforms terminally differentiated cells into ESCs-like cells [3], known as induced pluripotent stem cells (iPSCs) [3, 4]. On the basis of regenerative applications, stem cells can be categorized as embryonic stem cells (ESCs), tissue specific progenitor stem cells (TSPSCs), mesenchymal stem cells (MSCs), umbilical cord stem cells (UCSCs), bone marrow stem cells (BMSCs), and iPSCs (; ). The transplantation of stem cells can be autologous, allogenic, and syngeneic for induction of tissue regeneration and immunolysis of pathogen or malignant cells. For avoiding the consequences of host-versus-graft rejections, tissue typing of human leucocyte antigens (HLA) for tissue and organ transplant as well as use of immune suppressant is recommended [6]. Stem cells express major histocompatibility complex (MHC) receptor in low and secret chemokine that recruitment of endothelial and immune cells is enabling tissue tolerance at graft site [6]. The current stem cell regenerative medicine approaches are founded onto tissue engineering technologies that combine the principles of cell transplantation, material science, and microengineering for development of organoid; those can be used for physiological restoration of damaged tissue and organs. The tissue engineering technology generates nascent tissue on biodegradable 3D-scaffolds [7, 8]. The ideal scaffolds support cell adhesion and ingrowths, mimic mechanics of target tissue, support angiogenesis and neovascularisation for appropriate tissue perfusion, and, being nonimmunogenic to host, do not require systemic immune suppressant [9]. Stem cells number in tissue transplant impacts upon regenerative outcome [10]; in that case prior ex vivo expansion of transplantable stem cells is required [11]. For successful regenerative outcomes, transplanted stem cells must survive, proliferate, and differentiate in site specific manner and integrate into host circulatory system [12]. This review provides framework of most recent (; Figures ) advancement in transplantation and tissue engineering technologies of ESCs, TSPSCs, MSCs, UCSCs, BMSCs, and iPSCs in regenerative medicine. Additionally, this review also discusses stem cells as the tool of regenerative applications in wildlife conservation.

Promises of stem cells in regenerative medicine: the six classes of stem cells, that is, embryonic stem cells (ESCs), tissue specific progenitor stem cells (TSPSCs), mesenchymal stem cells (MSCs), umbilical cord stem cells (UCSCs), bone marrow stem cells (BMSCs), and induced pluripotent stem cells (iPSCs), have many promises in regenerative medicine and disease therapeutics.

ESCs in regenerative medicine: ESCs, sourced from ICM of gastrula, have tremendous promises in regenerative medicine. These cells can differentiate into more than 200 types of cells representing three germ layers. With defined culture conditions, ESCs can be transformed into hepatocytes, retinal ganglion cells, chondrocytes, pancreatic progenitor cells, cone cells, cardiomyocytes, pacemaker cells, eggs, and sperms which can be used in regeneration of tissue and treatment of disease in tissue specific manner.

TSPSCs in regenerative medicine: tissue specific stem and progenitor cells have potential to differentiate into other cells of the tissue. Characteristically inner ear stem cells can be transformed into auditory hair cells, skin progenitors into vascular smooth muscle cells, mesoangioblasts into tibialis anterior muscles, and dental pulp stem cells into serotonin cells. The 3D-culture of TSPSCs in complex biomaterial gives rise to tissue organoids, such as pancreatic organoid from pancreatic progenitor, intestinal tissue organoids from intestinal progenitor cells, and fallopian tube organoids from fallopian tube epithelial cells. Transplantation of TSPSCs regenerates targets tissue such as regeneration of tibialis muscles from mesoangioblasts, cardiac tissue from AdSCs, and corneal tissue from limbal stem cells. Cell growth and transformation factors secreted by TSPSCs can change cells fate to become other types of cell, such that SSCs coculture with skin, prostate, and intestine mesenchyme transforms these cells from MSCs into epithelial cells fate.

MSCs in regenerative medicine: mesenchymal stem cells are CD73+, CD90+, CD105+, CD34, CD45, CD11b, CD14, CD19, and CD79a cells, also known as stromal cells. These bodily MSCs represented here do not account for MSCs of bone marrow and umbilical cord. Upon transplantation and transdifferentiation these bodily MSCs regenerate into cartilage, bones, and muscles tissue. Heart scar formed after heart attack and liver cirrhosis can be treated from MSCs. ECM coating provides the niche environment for MSCs to regenerate into hair follicle, stimulating hair growth.

UCSCs in regenerative medicine: umbilical cord, the readily available source of stem cells, has emerged as futuristic source for personalized stem cell therapy. Transplantation of UCSCs to Krabbe's disease patients regenerates myelin tissue and recovers neuroblastoma patients through restoring tissue homeostasis. The UCSCs organoids are readily available tissue source for treatment of neurodegenerative disease. Peritoneal fibrosis caused by long term dialysis, tendon tissue degeneration, and defective hyaline cartilage can be regenerated by UCSCs. Intravenous injection of UCSCs enables treatment of diabetes, spinal myelitis, systemic lupus erythematosus, Hodgkin's lymphoma, and congenital neuropathies. Cord blood stem cells banking avails long lasting source of stem cells for personalized therapy and regenerative medicine.

BMSCs in regenerative medicine: bone marrow, the soft sponge bone tissue that consisted of stromal, hematopoietic, and mesenchymal and progenitor stem cells, is responsible for blood formation. Even halo-HLA matched BMSCs can cure from disease and regenerate tissue. BMSCs can regenerate craniofacial tissue, brain tissue, diaphragm tissue, and liver tissue and restore erectile function and transdifferentiation monocytes. These multipotent stem cells can cure host from cancer and infection of HIV and HCV.

iPSCs in regenerative medicine: using the edge of iPSCs technology, skin fibroblasts and other adult tissues derived, terminally differentiated cells can be transformed into ESCs-like cells. It is possible that adult cells can be transformed into cells of distinct lineages bypassing the phase of pluripotency. The tissue specific defined culture can transform skin cells to become trophoblast, heart valve cells, photoreceptor cells, immune cells, melanocytes, and so forth. ECM complexation with iPSCs enables generation of tissue organoids for lung, kidney, brain, and other organs of the body. Similar to ESCs, iPSCs also can be transformed into cells representing three germ layers such as pacemaker cells and serotonin cells.

Stem cells in wildlife conservation: tissue biopsies obtained from dead and live wild animals can be either cryopreserved or transdifferentiated to other types of cells, through culture in defined culture medium or in vivo maturation. Stem cells and adult tissue derived iPSCs have great potential of regenerative medicine and disease therapeutics. Gonadal tissue procured from dead wild animals can be matured, ex vivo and in vivo for generation of sperm and egg, which can be used for assistive reproductive technology oriented captive breeding of wild animals or even for resurrection of wildlife.

Application of stem cells in regenerative medicine: stem cells (ESCs, TSPSCs, MSCs, UCSCs, BMSCs, and iPSCs) have diverse applications in tissue regeneration and disease therapeutics.

For the first time in 1998, Thomson isolated human ESCs (hESCs) [13]. ESCs are pluripotent in their nature and can give rise to more than 200 types of cells and promises for the treatment of any kinds of disease [13]. The pluripotency fate of ESCs is governed by functional dynamics of transcription factors OCT4, SOX2, NANOG, and so forth, which are termed as pluripotency factors. The two alleles of the OCT4 are held apart in pluripotency state in ESCs; phase through homologues pairing during embryogenesis and transdifferentiation processes [14] has been considered as critical regulatory switch for lineage commitment of ESCs. The diverse lineage commitment potential represents ESCs as ideal model for regenerative therapeutics of disease and tissue anomalies. This section of review on ESCs discusses transplantation and transdifferentiation of ESCs into retinal ganglion, hepatocytes, cardiomyocytes, pancreatic progenitors, chondrocytes, cones, egg sperm, and pacemaker cells (; ). Infection, cancer treatment, and accidents can cause spinal cord injuries (SCIs). The transplantation of hESCs to paraplegic or quadriplegic SCI patients improves body control, balance, sensation, and limbal movements [15], where transplanted stem cells do homing to injury sites. By birth, humans have fixed numbers of cone cells; degeneration of retinal pigment epithelium (RPE) of macula in central retina causes age-related macular degeneration (ARMD). The genomic incorporation of COCO gene (expressed during embryogenesis) in the developing embryo leads lineage commitment of ESCs into cone cells, through suppression of TGF, BMP, and Wnt signalling pathways. Transplantation of these cone cells to eye recovers individual from ARMD phenomenon, where transplanted cone cells migrate and form sheet-like structure in host retina [16]. However, establishment of missing neuronal connection of retinal ganglion cells (RGCs), cones, and PRE is the most challenging aspect of ARMD therapeutics. Recently, Donald Z Jacks group at John Hopkins University School of Medicine has generated RGCs from CRISPER-Cas9-m-Cherry reporter ESCs [17]. During ESCs transdifferentiation process, CRIPER-Cas9 directs the knock-in of m-Cherry reporter into 3UTR of BRN3B gene, which is specifically expressed in RGCs and can be used for purification of generated RGCs from other cells [17]. Furthermore, incorporation of forskolin in transdifferentiation regime boosts generation of RGCs. Coaxing of these RGCs into biomaterial scaffolds directs axonal differentiation of RGCs. Further modification in RGCs generation regime and composition of biomaterial scaffolds might enable restoration of vision for ARMD and glaucoma patients [17]. Globally, especially in India, cardiovascular problems are a more common cause of human death, where biomedical therapeutics require immediate restoration of heart functions for the very survival of the patient. Regeneration of cardiac tissue can be achieved by transplantation of cardiomyocytes, ESCs-derived cardiovascular progenitors, and bone marrow derived mononuclear cells (BMDMNCs); however healing by cardiomyocytes and progenitor cells is superior to BMDMNCs but mature cardiomyocytes have higher tissue healing potential, suppress heart arrhythmias, couple electromagnetically into hearts functions, and provide mechanical and electrical repair without any associated tumorigenic effects [18, 19]. Like CM differentiation, ESCs derived liver stem cells can be transformed into Cytp450-hepatocytes, mediating chemical modification and catabolism of toxic xenobiotic drugs [20]. Even today, availability and variability of functional hepatocytes are a major a challenge for testing drug toxicity [20]. Stimulation of ESCs and ex vivo VitK12 and lithocholic acid (a by-product of intestinal flora regulating drug metabolism during infancy) activates pregnane X receptor (PXR), CYP3A4, and CYP2C9, which leads to differentiation of ESCs into hepatocytes; those are functionally similar to primary hepatocytes, for their ability to produce albumin and apolipoprotein B100 [20]. These hepatocytes are excellent source for the endpoint screening of drugs for accurate prediction of clinical outcomes [20]. Generation of hepatic cells from ESCs can be achieved in multiple ways, as serum-free differentiation [21], chemical approaches [20, 22], and genetic transformation [23, 24]. These ESCs-derived hepatocytes are long lasting source for treatment of liver injuries and high throughput screening of drugs [20, 23, 24]. Transplantation of the inert biomaterial encapsulated hESCs-derived pancreatic progenitors (CD24+, CD49+, and CD133+) differentiates into -cells, minimizing high fat diet induced glycemic and obesity effects in mice [25] (). Addition of antidiabetic drugs into transdifferentiation regime can boost ESCs conservation into -cells [25], which theoretically can cure T2DM permanently [25]. ESCs can be differentiated directly into insulin secreting -cells (marked with GLUT2, INS1, GCK, and PDX1) which can be achieved through PDX1 mediated epigenetic reprogramming [26]. Globally, osteoarthritis affects millions of people and occurs when cartilage at joints wears away, causing stiffness of the joints. The available therapeutics for arthritis relieve symptoms but do not initiate reverse generation of cartilage. For young individuals and athletes replacement of joints is not feasible like old populations; in that case transplantation of stem cells represents an alternative for healing cartilage injuries [27]. Chondrocytes, the cartilage forming cells derived from hESC, embedded in fibrin gel effectively heal defective cartilage within 12 weeks, when transplanted to focal cartilage defects of knee joints in mice without any negative effect [27]. Transplanted chondrocytes form cell aggregates, positive for SOX9 and collagen II, and defined chondrocytes are active for more than 12wks at transplantation site, advocating clinical suitability of chondrocytes for treatment of cartilage lesions [27]. The integrity of ESCs to integrate and differentiate into electrophysiologically active cells provides a means for natural regulation of heart rhythm as biological pacemaker. Coaxing of ESCs into inert biomaterial as well as propagation in defined culture conditions leads to transdifferentiation of ESCs to become sinoatrial node (SAN) pacemaker cells (PCs) [28]. Genomic incorporation TBox3 into ESCs ex vivo leads to generation of PCs-like cells; those express activated leukocyte cells adhesion molecules (ALCAM) and exhibit similarity to PCs for gene expression and immune functions [28]. Transplantation of PCs can restore pacemaker functions of the ailing heart [28]. In summary, ESCs can be transdifferentiated into any kinds of cells representing three germ layers of the body, being most promising source of regenerative medicine for tissue regeneration and disease therapy (). Ethical concerns limit the applications of ESCs, where set guidelines need to be followed; in that case TSPSCs, MSCs, UCSCs, BMSCs, and iPSCs can be explored as alternatives.

TSPSCs maintain tissue homeostasis through continuous cell division, but, unlike ESCs, TSPSCs retain stem cells plasticity and differentiation in tissue specific manner, giving rise to few types of cells (). The number of TSPSCs population to total cells population is too low; in that case their harvesting as well as in vitro manipulation is really a tricky task [29], to explore them for therapeutic scale. Human body has foundation from various types of TSPSCs; discussing the therapeutic application for all types is not feasible. This section of review discusses therapeutic application of pancreatic progenitor cells (PPCs), dental pulp stem cells (DPSCs), inner ear stem cells (IESCs), intestinal progenitor cells (IPCs), limbal progenitor stem cells (LPSCs), epithelial progenitor stem cells (EPSCs), mesoangioblasts (MABs), spermatogonial stem cells (SSCs), the skin derived precursors (SKPs), and adipose derived stem cells (AdSCs) (; ). During embryogenesis PPCs give rise to insulin-producing -cells. The differentiation of PPCs to become -cells is negatively regulated by insulin [30]. PPCs require active FGF and Notch signalling; growing more rapidly in community than in single cell populations advocates the functional importance of niche effect in self-renewal and transdifferentiation processes. In 3D-scaffold culture system, mice embryo derived PPCs grow into hollow organoid spheres; those finally differentiate into insulin-producing -cell clusters [29]. The DSPSCs, responsible for maintenance of teeth health status, can be sourced from apical papilla, deciduous teeth, dental follicle, and periodontal ligaments, have emerged as regenerative medicine candidate, and might be explored for treatment of various kinds of disease including restoration neurogenic functions in teeth [31, 32]. Expansion of DSPSCs in chemically defined neuronal culture medium transforms them into a mixed population of cholinergic, GABAergic, and glutaminergic neurons; those are known to respond towards acetylcholine, GABA, and glutamine stimulations in vivo. These transformed neuronal cells express nestin, glial fibrillary acidic protein (GFAP), III-tubulin, and voltage gated L-type Ca2+ channels [32]. However, absence of Na+ and K+ channels does not support spontaneous action potential generation, necessary for response generation against environmental stimulus. All together, these primordial neuronal stem cells have possible therapeutic potential for treatment of neurodental problems [32]. Sometimes, brain tumor chemotherapy can cause neurodegeneration mediated cognitive impairment, a condition known as chemobrain [33]. The intrahippocampal transplantation of human derived neuronal stem cells to cyclophosphamide behavioural decremented mice restores cognitive functions in a month time. Here the transplanted stem cells differentiate into neuronal and astroglial lineage, reduce neuroinflammation, and restore microglial functions [33]. Furthermore, transplantation of stem cells, followed by chemotherapy, directs pyramidal and granule-cell neurons of the gyrus and CA1 subfields of hippocampus which leads to reduction in spine and dendritic cell density in the brain. These findings suggest that transplantation of stem cells to cranium restores cognitive functions of the chemobrain [33]. The hair cells of the auditory system produced during development are not postmitotic; loss of hair cells cannot be replaced by inner ear stem cells, due to active state of the Notch signalling [34]. Stimulation of inner ear progenitors with -secretase inhibitor ({"type":"entrez-nucleotide","attrs":{"text":"LY411575","term_id":"1257853995","term_text":"LY411575"}}LY411575) abrogates Notch signalling through activation of transcription factor atonal homologue 1 (Atoh1) and directs transdifferentiation of progenitors into cochlear hair cells [34]. Transplantation of in vitro generated hair cells restores acoustic functions in mice, which can be the potential regenerative medicine candidates for the treatment of deafness [34]. Generation of the hair cells also can be achieved through overexpression of -catenin and Atoh1 in Lrg5+ cells in vivo [35]. Similar to ear progenitors, intestine of the digestive tract also has its own tissue specific progenitor stem cells, mediating regeneration of the intestinal tissue [34, 36]. Dysregulation of the common stem cells signalling pathways, Notch/BMP/TGF-/Wnt, in the intestinal tissue leads to disease. Information on these signalling pathways [37] is critically important in designing therapeutics. Coaxing of the intestinal tissue specific progenitors with immune cells (macrophages), connective tissue cells (myofibroblasts), and probiotic bacteria into 3D-scaffolds of inert biomaterial, crafting biological environment, is suitable for differentiation of progenitors to occupy the crypt-villi structures into these scaffolds [36]. Omental implementation of these crypt-villi structures to dogs enhances intestinal mucosa through regeneration of goblet cells containing intestinal tissue [36]. These intestinal scaffolds are close approach for generation of implantable intestinal tissue, divested by infection, trauma, cancer, necrotizing enterocolitis (NEC), and so forth [36]. In vitro culture conditions cause differentiation of intestinal stem cells to become other types of cells, whereas incorporation of valproic acid and CHIR-99021 in culture conditions avoids differentiation of intestinal stem cells, enabling generation of indefinite pool of stem cells to be used for regenerative applications [38]. The limbal stem cells of the basal limbal epithelium, marked with ABCB5, are essential for regeneration and maintenance of corneal tissue [39]. Functional status of ABCB5 is critical for survival and functional integrity of limbal stem cells, protecting them from apoptotic cell death [39]. Limbal stem cells deficiency leads to replacement of corneal epithelium with visually dead conjunctival tissue, which can be contributed by burns, inflammation, and genetic factors [40]. Transplanted human cornea stem cells to mice regrown into fully functional human cornea, possibly supported by blood eye barrier phenomena, can be used for treatment of eye diseases, where regeneration of corneal tissue is critically required for vision restoration [39]. Muscle degenerative disease like duchenne muscular dystrophy (DMD) can cause extensive thrashing of muscle tissue, where tissue engineering technology can be deployed for functional restoration of tissue through regeneration [41]. Encapsulation of mouse or human derived MABs (engineered to express placental derived growth factor (PDGF)) into polyethylene glycol (PEG) fibrinogen hydrogel and their transplantation beneath the skin at ablated tibialis anterior form artificial muscles, which are functionally similar to those of normal tibialis anterior muscles [41]. The PDGF attracts various cell types of vasculogenic and neurogenic potential to the site of transplantation, supporting transdifferentiation of mesoangioblasts to become muscle fibrils [41]. The therapeutic application of MABs in skeletal muscle regeneration and other therapeutic outcomes has been reviewed by others [42]. One of the most important tissue specific stem cells, the male germline stem cells or spermatogonial stem cells (SSCs), produces spermatogenic lineage through mesenchymal and epithets cells [43] which itself creates niche effect on other cells. In vivo transplantation of SSCs with prostate, skin, and uterine mesenchyme leads to differentiation of these cells to become epithelia of the tissue of origin [43]. These newly formed tissues exhibit all physical and physiological characteristics of prostate and skin and the physical characteristics of prostate, skin, and uterus, express tissue specific markers, and suggest that factors secreted from SSCs lead to lineage conservation which defines the importance of niche effect in regenerative medicine [43]. According to an estimate, more than 100 million people are suffering from the condition of diabetic retinopathy, a progressive dropout of vascularisation in retina that leads to loss of vision [44]. The intravitreal injection of adipose derived stem cells (AdSCs) to the eye restores microvascular capillary bed in mice. The AdSCs from healthy donor produce higher amounts of vasoprotective factors compared to glycemic mice, enabling superior vascularisation [44]. However use of AdSCs for disease therapeutics needs further standardization for cell counts in dose of transplant and monitoring of therapeutic outcomes at population scale [44]. Apart from AdSCs, other kinds of stem cells also have therapeutic potential in regenerative medicine for treatment of eye defects, which has been reviewed by others [45]. Fallopian tubes, connecting ovaries to uterus, are the sites where fertilization of the egg takes place. Infection in fallopian tubes can lead to inflammation, tissue scarring, and closure of the fallopian tube which often leads to infertility and ectopic pregnancies. Fallopian is also the site where onset of ovarian cancer takes place. The studies on origin and etiology of ovarian cancer are restricted due to lack of technical advancement for culture of epithelial cells. The in vitro 3D organoid culture of clinically obtained fallopian tube epithelial cells retains their tissue specificity, keeps cells alive, which differentiate into typical ciliated and secretory cells of fallopian tube, and advocates that ectopic examination of fallopian tube in organoid culture settings might be the ideal approach for screening of cancer [46]. The sustained growth and differentiation of fallopian TSPSCs into fallopian tube organoid depend both on the active state of the Wnt and on paracrine Notch signalling [46]. Similar to fallopian tube stem cells, subcutaneous visceral tissue specific cardiac adipose (CA) derived stem cells (AdSCs) have the potential of differentiation into cardiovascular tissue [47]. Systemic infusion of CA-AdSCs into ischemic myocardium of mice regenerates heart tissue and improves cardiac function through differentiation to endothelial cells, vascular smooth cells, and cardiomyocytes and vascular smooth cells. The differentiation and heart regeneration potential of CA-AdSCs are higher than AdSCs [48], representing CA-AdSCs as potent regenerative medicine candidates for myocardial ischemic therapy [47]. The skin derived precursors (SKPs), the progenitors of dermal papilla/hair/hair sheath, give rise to multiple tissues of mesodermal and/or ectodermal origin such as neurons, Schwann cells, adipocytes, chondrocytes, and vascular smooth muscle cells (VSMCs). VSMCs mediate wound healing and angiogenesis process can be derived from human foreskin progenitor SKPs, suggesting that SKPs derived VSMCs are potential regenerative medicine candidates for wound healing and vasculature injuries treatments [49]. In summary, TSPSCs are potentiated with tissue regeneration, where advancement in organoid culture (; ) technologies defines the importance of niche effect in tissue regeneration and therapeutic outcomes of ex vivo expanded stem cells.

MSCs, the multilineage stem cells, differentiate only to tissue of mesodermal origin, which includes tendons, bone, cartilage, ligaments, muscles, and neurons [50]. MSCs are the cells which express combination of markers: CD73+, CD90+, CD105+, CD11b, CD14, CD19, CD34, CD45, CD79a, and HLA-DR, reviewed elsewhere [50]. The application of MSCs in regenerative medicine can be generalized from ongoing clinical trials, phasing through different state of completions, reviewed elsewhere [90]. This section of review outlines the most recent representative applications of MSCs (; ). The anatomical and physiological characteristics of both donor and receiver have equal impact on therapeutic outcomes. The bone marrow derived MSCs (BMDMSCs) from baboon are morphologically and phenotypically similar to those of bladder stem cells and can be used in regeneration of bladder tissue. The BMDMSCs (CD105+, CD73+, CD34, and CD45), expressing GFP reporter, coaxed with small intestinal submucosa (SIS) scaffolds, augment healing of degenerated bladder tissue within 10wks of the transplantation [51]. The combinatorial CD characterized MACs are functionally active at transplantation site, which suggests that CD characterization of donor MSCs yields superior regenerative outcomes [51]. MSCs also have potential to regenerate liver tissue and treat liver cirrhosis, reviewed elsewhere [91]. The regenerative medicinal application of MSCs utilizes cells in two formats as direct transplantation or first transdifferentiation and then transplantation; ex vivo transdifferentiation of MSCs deploys retroviral delivery system that can cause oncogenic effect on cells. Nonviral, NanoScript technology, comprising utility of transcription factors (TFs) functionalized gold nanoparticles, can target specific regulatory site in the genome effectively and direct differentiation of MSCs into another cell fate, depending on regime of TFs. For example, myogenic regulatory factor containing NanoScript-MRF differentiates the adipose tissue derived MSCs into muscle cells [92]. The multipotency characteristics represent MSCs as promising candidate for obtaining stable tissue constructs through coaxed 3D organoid culture; however heterogeneous distribution of MSCs slows down cell proliferation, rendering therapeutic applications of MSCs. Adopting two-step culture system for MSCs can yield homogeneous distribution of MSCs in biomaterial scaffolds. For example, fetal-MSCs coaxed in biomaterial when cultured first in rotating bioreactor followed with static culture lead to homogeneous distribution of MSCs in ECM components [7]. Occurrence of dental carries, periodontal disease, and tooth injury can impact individual's health, where bioengineering of teeth can be the alternative option. Coaxing of epithelial-MSCs with dental stem cells into synthetic polymer gives rise to mature teeth unit, which consisted of mature teeth and oral tissue, offering multiple regenerative therapeutics, reviewed elsewhere [52]. Like the tooth decay, both human and animals are prone to orthopedic injuries, affecting bones, joint, tendon, muscles, cartilage, and so forth. Although natural healing potential of bone is sufficient to heal the common injuries, severe trauma and tumor-recession can abrogate germinal potential of bone-forming stem cells. In vitro chondrogenic, osteogenic, and adipogenic potential of MSCs advocates therapeutic applications of MSCs in orthopedic injuries [53]. Seeding of MSCs, coaxed into biomaterial scaffolds, at defective bone tissue, regenerates defective bone tissues, within fourwks of transplantation; by the end of 32wks newly formed tissues integrate into old bone [54]. Osteoblasts, the bone-forming cells, have lesser actin cytoskeleton compared to adipocytes and MSCs. Treatment of MSCs with cytochalasin-D causes rapid transportation of G-actin, leading to osteogenic transformation of MSCs. Furthermore, injection of cytochalasin-D to mice tibia also promotes bone formation within a wk time frame [55]. The bone formation processes in mice, dog, and human are fundamentally similar, so outcomes of research on mice and dogs can be directional for regenerative application to human. Injection of MSCs to femur head of Legg-Calve-Perthes suffering dog heals the bone very fast and reduces the injury associated pain [55]. Degeneration of skeletal muscle and muscle cramps are very common to sledge dogs, animals, and individuals involved in adventurous athletics activities. Direct injection of adipose tissue derived MSCs to tear-site of semitendinosus muscle in dogs heals injuries much faster than traditional therapies [56]. Damage effect treatment for heart muscle regeneration is much more complex than regeneration of skeletal muscles, which needs high grade fine-tuned coordination of neurons with muscles. Coaxing of MSCs into alginate gel increases cell retention time that leads to releasing of tissue repairing factors in controlled manner. Transplantation of alginate encapsulated cells to mice heart reduces scar size and increases vascularisation, which leads to restoration of heart functions. Furthermore, transplanted MSCs face host inhospitable inflammatory immune responses and other mechanical forces at transplantation site, where encapsulation of cells keeps them away from all sorts of mechanical forces and enables sensing of host tissue microenvironment, and respond accordingly [57]. Ageing, disease, and medicine consumption can cause hair loss, known as alopecia. Although alopecia has no life threatening effects, emotional catchments can lead to psychological disturbance. The available treatments for alopecia include hair transplantation and use of drugs, where drugs are expensive to afford and generation of new hair follicle is challenging. Dermal papillary cells (DPCs), the specialized MSCs localized in hair follicle, are responsible for morphogenesis of hair follicle and hair cycling. The layer-by-layer coating of DPCs, called GAG coating, consists of coating of geletin as outer layer, middle layer of fibroblast growth factor 2 (FGF2) loaded alginate, and innermost layer of geletin. GAG coating creates tissue microenvironment for DPCs that can sustain immunological and mechanical obstacles, supporting generation of hair follicle. Transplantation of GAG-coated DPCs leads to abundant hair growth and maturation of hair follicle, where GAG coating serves as ECM, enhancing intrinsic therapeutic potential of DPCs [58]. During infection, the inflammatory cytokines secreted from host immune cells attract MSCs to the site of inflammation, which modulates inflammatory responses, representing MSCs as key candidate of regenerative medicine for infectious disease therapeutics. Coculture of macrophages (M) and adipose derived MSCs from Leishmania major (LM) susceptible and resistant mice demonstrates that AD-MSCs educate M against LM infection, differentially inducing M1 and M2 phenotype that represents AD-MSC as therapeutic agent for leishmanial therapy [93]. In summary, the multilineage differentiation potential of MSCs, as well as adoption of next-generation organoid culture system, avails MSCs as ideal regenerative medicine candidate.

Umbilical cord, generally thrown at the time of child birth, is the best known source for stem cells, procured in noninvasive manner, having lesser ethical constraints than ESCs. Umbilical cord is rich source of hematopoietic stem cells (HSCs) and MSCs, which possess enormous regeneration potential [94] (; ). The HSCs of cord blood are responsible for constant renewal of all types of blood cells and protective immune cells. The proliferation of HSCs is regulated by Musashi-2 protein mediated attenuation of Aryl hydrocarbon receptor (AHR) signalling in stem cells [95]. UCSCs can be cryopreserved at stem cells banks (; ), in operation by both private and public sector organization. Public stem cells banks operate on donation formats and perform rigorous screening for HLA typing and donated UCSCs remain available to anyone in need, whereas private stem cell banks operation is more personalized, availing cells according to donor consent. Stem cell banking is not so common, even in developed countries. Survey studies find that educated women are more eager to donate UCSCs, but willingness for donation decreases with subsequent deliveries, due to associated cost and safety concerns for preservation [96]. FDA has approved five HSCs for treatment of blood and other immunological complications [97]. The amniotic fluid, drawn during pregnancy for standard diagnostic purposes, is generally discarded without considering its vasculogenic potential. UCSCs are the best alternatives for those patients who lack donors with fully matched HLA typing for peripheral blood and PBMCs and bone marrow [98]. One major issue with UCSCs is number of cells in transplant, fewer cells in transplant require more time for engraftment to mature, and there are also risks of infection and mortality; in that case ex vivo propagation of UCSCs can meet the demand of desired outcomes. There are diverse protocols, available for ex vivo expansion of UCSCs, reviewed elsewhere [99]. Amniotic fluid stem cells (AFSCs), coaxed to fibrin (required for blood clotting, ECM interactions, wound healing, and angiogenesis) hydrogel and PEG supplemented with vascular endothelial growth factor (VEGF), give rise to vascularised tissue, when grafted to mice, suggesting that organoid cultures of UCSCs have promise for generation of biocompatible tissue patches, for treating infants born with congenital heart defects [59]. Retroviral integration of OCT4, KLF4, cMYC, and SOX2 transforms AFSCs into pluripotency stem cells known as AFiPSCs which can be directed to differentiate into extraembryonic trophoblast by BMP2 and BMP4 stimulation, which can be used for regeneration of placental tissues [60]. Wharton's jelly (WJ), the gelatinous substance inside umbilical cord, is rich in mucopolysaccharides, fibroblast, macrophages, and stem cells. The stem cells from UCB and WJ can be transdifferentiated into -cells. Homogeneous nature of WJ-SCs enables better differentiation into -cells; transplantation of these cells to streptozotocin induced diabetic mice efficiently brings glucose level to normal [7]. Easy access and expansion potential and plasticity to differentiate into multiple cell lineages represent WJ as an ideal candidate for regenerative medicine but cells viability changes with passages with maximum viable population at 5th-6th passages. So it is suggested to perform controlled expansion of WJ-MSCS for desired regenerative outcomes [9]. Study suggests that CD34+ expression leads to the best regenerative outcomes, with less chance of host-versus-graft rejection. In vitro expansion of UCSCs, in presence of StemRegenin-1 (SR-1), conditionally expands CD34+ cells [61]. In type I diabetic mellitus (T1DM), T-cell mediated autoimmune destruction of pancreatic -cells occurs, which has been considered as tough to treat. Transplantation of WJ-SCs to recent onset-T1DM patients restores pancreatic function, suggesting that WJ-MSCs are effective in regeneration of pancreatic tissue anomalies [62]. WJ-MSCs also have therapeutic importance for treatment of T2DM. A non-placebo controlled phase I/II clinical trial demonstrates that intravenous and intrapancreatic endovascular injection of WJ-MSCs to T2DM patients controls fasting glucose and glycated haemoglobin through improvement of -cells functions, evidenced by enhanced c-peptides and reduced inflammatory cytokines (IL-1 and IL-6) and T-cells counts [63]. Like diabetes, systematic lupus erythematosus (SLE) also can be treated with WJ-MSCs transplantation. During progression of SLE host immune system targets its own tissue leading to degeneration of renal, cardiovascular, neuronal, and musculoskeletal tissues. A non-placebo controlled follow-up study on 40 SLE patients demonstrates that intravenous infusion of WJ-MSC improves renal functions and decreases systematic lupus erythematosus disease activity index (SLEDAI) and British Isles Lupus Assessment Group (BILAG), and repeated infusion of WJ-MSCs protects the patient from relapse of the disease [64]. Sometimes, host inflammatory immune responses can be detrimental for HSCs transplantation and blood transfusion procedures. Infusion of WJ-MSC to patients, who had allogenic HSCs transplantation, reduces haemorrhage inflammation (HI) of bladder, suggesting that WJ-MSCs are potential stem cells adjuvant in HSCs transplantation and blood transfusion based therapies [100]. Apart from WJ, umbilical cord perivascular space and cord vein are also rich source for obtaining MSCs. The perivascular MSCs of umbilical cord are more primitive than WJ-MSCs and other MSCs from cord suggest that perivascular MSCs might be used as alternatives for WJ-MSCs for regenerative therapeutics outcome [101]. Based on origin, MSCs exhibit differential in vitro and in vivo properties and advocate functional characterization of MSCs, prior to regenerative applications. Emerging evidence suggests that UCSCs can heal brain injuries, caused by neurodegenerative diseases like Alzheimer's, Krabbe's disease, and so forth. Krabbe's disease, the infantile lysosomal storage disease, occurs due to deficiency of myelin synthesizing enzyme (MSE), affecting brain development and cognitive functions. Progression of neurodegeneration finally leads to death of babies aged two. Investigation shows that healing of peripheral nervous system (PNS) and central nervous system (CNS) tissues with Krabbe's disease can be achieved by allogenic UCSCs. UCSCs transplantation to asymptomatic infants with subsequent monitoring for 46 years reveals that UCSCs recover babies from MSE deficiency, improving myelination and cognitive functions, compared to those of symptomatic babies. The survival rate of transplanted UCSCs in asymptomatic and symptomatic infants was 100% and 43%, respectively, suggesting that early diagnosis and timely treatment are critical for UCSCs acceptance for desired therapeutic outcomes. UCSCs are more primitive than BMSCs, so perfect HLA typing is not critically required, representing UCSCs as an excellent source for treatment of all the diseases involving lysosomal defects, like Krabbe's disease, hurler syndrome, adrenoleukodystrophy (ALD), metachromatic leukodystrophy (MLD), Tay-Sachs disease (TSD), and Sandhoff disease [65]. Brain injuries often lead to cavities formation, which can be treated from neuronal parenchyma, generated ex vivo from UCSCs. Coaxing of UCSCs into human originated biodegradable matrix scaffold and in vitro expansion of cells in defined culture conditions lead to formation of neuronal organoids, within threewks' time frame. These organoids structurally resemble brain tissue and consisted of neuroblasts (GFAP+, Nestin+, and Ki67+) and immature stem cells (OCT4+ and SOX2+). The neuroblasts of these organoids further can be differentiated into mature neurons (MAP2+ and TUJ1+) [66]. Administration of high dose of drugs in divesting neuroblastoma therapeutics requires immediate restoration of hematopoiesis. Although BMSCs had been promising in restoration of hematopoiesis UCSCs are sparely used in clinical settings. A case study demonstrates that neuroblastoma patients who received autologous UCSCs survive without any associated side effects [12]. During radiation therapy of neoplasm, spinal cord myelitis can occur, although occurrence of myelitis is a rare event and usually such neurodegenerative complication of spinal cord occurs 624 years after exposure to radiations. Transplantation of allogenic UC-MSCs in laryngeal patients undergoing radiation therapy restores myelination [102]. For treatment of neurodegenerative disease like Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), traumatic brain injuries (TBI), Parkinson's, SCI, stroke, and so forth, distribution of transplanted UCSCs is critical for therapeutic outcomes. In mice and rat, injection of UCSCs and subsequent MRI scanning show that transplanted UCSCs migrate to CNS and multiple peripheral organs [67]. For immunomodulation of tumor cells disease recovery, transplantation of allogenic DCs is required. The CD11c+DCs, derived from UCB, are morphologically and phenotypically similar to those of peripheral blood derived CTLs-DCs, suggesting that UCB-DCs can be used for personalized medicine of cancer patient, in need for DCs transplantation [103]. Coculture of UCSCs with radiation exposed human lung fibroblast stops their transdifferentiation, which suggests that factors secreted from UCSCs may restore niche identity of fibroblast, if they are transplanted to lung after radiation therapy [104]. Tearing of shoulder cuff tendon can cause severe pain and functional disability, whereas ultrasound guided transplantation of UCB-MSCs in rabbit regenerates subscapularis tendon in fourwks' time frame, suggesting that UCB-MSCs are effective enough to treat tendons injuries when injected to focal points of tear-site [68]. Furthermore, transplantation of UCB-MSCs to chondral cartilage injuries site in pig knee along with HA hydrogel composite regenerates hyaline cartilage [69], suggesting that UCB-MSCs are effective regenerative medicine candidate for treating cartilage and ligament injuries. Physiologically circulatory systems of brain, placenta, and lungs are similar. Infusion of UCB-MSCs to preeclampsia (PE) induced hypertension mice reduces the endotoxic effect, suggesting that UC-MSCs are potential source for treatment of endotoxin induced hypertension during pregnancy, drug abuse, and other kinds of inflammatory shocks [105]. Transplantation of UCSCs to severe congenital neutropenia (SCN) patients restores neutrophils count from donor cells without any side effect, representing UCSCs as potential alternative for SCN therapy, when HLA matched bone marrow donors are not accessible [106]. In clinical settings, the success of myocardial infarction (MI) treatment depends on ageing, systemic inflammation in host, and processing of cells for infusion. Infusion of human hyaluronan hydrogel coaxed UCSCs in pigs induces angiogenesis, decreases scar area, improves cardiac function at preclinical level, and suggests that the same strategy might be effective for human [107]. In stem cells therapeutics, UCSCs transplantation can be either autologous or allogenic. Sometimes, the autologous UCSCs transplants cannot combat over tumor relapse, observed in Hodgkin's lymphoma (HL), which might require second dose transplantation of allogenic stem cells, but efficacy and tolerance of stem cells transplant need to be addressed, where tumor replace occurs. A case study demonstrates that second dose allogenic transplants of UCSCs effective for HL patients, who had heavy dose in prior transplant, increase the long term survival chances by 30% [10]. Patients undergoing long term peritoneal renal dialysis are prone to peritoneal fibrosis and can change peritoneal structure and failure of ultrafiltration processes. The intraperitoneal (IP) injection of WJ-MSCs prevents methylglyoxal induced programmed cell death and peritoneal wall thickening and fibrosis, suggesting that WJ-MSCs are effective in therapeutics of encapsulating peritoneal fibrosis [70]. In summary, UCB-HSCs, WJ-MSCs, perivascular MSCs, and UCB-MSCs have tissue regeneration potential.

Bone marrow found in soft spongy bones is responsible for formation of all peripheral blood and comprises hematopoietic stem cells (producing blood cells) and stromal cells (producing fat, cartilage, and bones) [108] (; ). Visually bone marrow has two types, red marrow (myeloid tissue; producing RBC, platelets, and most of WBC) and yellow marrow (producing fat cells and some WBC) [108]. Imbalance in marrow composition can culminate to the diseased condition. Since 1980, bone marrow transplantation is widely accepted for cancer therapeutics [109]. In order to avoid graft rejection, HLA typing of donors is a must, but completely matched donors are limited to family members, which hampers allogenic transplantation applications. Since matching of all HLA antigens is not critically required, in that case defining the critical antigens for haploidentical allogenic donor for patients, who cannot find fully matched donor, might relieve from donor constraints. Two-step administration of lymphoid and myeloid BMSCs from haploidentical donor to the patients of aplastic anaemia and haematological malignancies reconstructs host immune system and the outcomes are almost similar to fully matched transplants, which recommends that profiling of critically important HLA is sufficient for successful outcomes of BMSCs transplantation. Haploidentical HLA matching protocol is the major process for minorities and others who do not have access to matched donor [71]. Furthermore, antigen profiling is not the sole concern for BMSCs based therapeutics. For example, restriction of HIV1 (human immune deficiency virus) infection is not feasible through BMSCs transplantation because HIV1 infection is mediated through CD4+ receptors, chemokine CXC motif receptor 4 (CXCR4), and chemokine receptor 5 (CCR5) for infecting and propagating into T helper (Th), monocytes, macrophages, and dendritic cells (DCs). Genetic variation in CCR2 and CCR5 receptors is also a contributory factor; mediating protection against infection has been reviewed elsewhere [110]. Engineering of hematopoietic stem and progenitor cells (HSPCs) derived CD4+ cells to express HIV1 antagonistic RNA, specifically designed for targeting HIV1 genome, can restrict HIV1 infection, through immune elimination of latently infected CD4+ cells. A single dose infusion of genetically modified (GM), HIV1 resistant HSPCs can be the alternative of HIV1 retroviral therapy. In the present scenario stem cells source, patient selection, transplantation-conditioning regimen, and postinfusion follow-up studies are the major factors, which can limit application of HIV1 resistant GM-HSPCs (CD4+) cells application in AIDS therapy [72, 73]. Platelets, essential for blood clotting, are formed from megakaryocytes inside the bone marrow [74]. Due to infection, trauma, and cancer, there are chances of bone marrow failure. To an extent, spongy bone marrow microenvironment responsible for lineage commitment can be reconstructed ex vivo [75]. The ex vivo constructed 3D-scaffolds consisted of microtubule and silk sponge, flooded with chemically defined organ culture medium, which mimics bone marrow environment. The coculture of megakaryocytes and embryonic stem cells (ESCs) in this microenvironment leads to generation of functional platelets from megakaryocytes [75]. The ex vivo 3D-scaffolds of bone microenvironment can stride the path for generation of platelets in therapeutic quantities for regenerative medication of burns [75] and blood clotting associated defects. Accidents, traumatic injuries, and brain stroke can deplete neuronal stem cells (NSCs), responsible for generation of neurons, astrocytes, and oligodendrocytes. Brain does not repopulate NSCs and heal traumatic injuries itself and transplantation of BMSCs also can heal neurodegeneration alone. Lipoic acid (LA), a known pharmacological antioxidant compound used in treatment of diabetic and multiple sclerosis neuropathy when combined with BMSCs, induces neovascularisation at focal cerebral injuries, within 8wks of transplantation. Vascularisation further attracts microglia and induces their colonization into scaffold, which leads to differentiation of BMSCs to become brain tissue, within 16wks of transplantation. In this approach, healing of tissue directly depends on number of BMSCs in transplantation dose [76]. Dental caries and periodontal disease are common craniofacial disease, often requiring jaw bone reconstruction after removal of the teeth. Traditional therapy focuses on functional and structural restoration of oral tissue, bone, and teeth rather than biological restoration, but BMSCs based therapies promise for regeneration of craniofacial bone defects, enabling replacement of missing teeth in restored bones with dental implants. Bone marrow derived CD14+ and CD90+ stem and progenitor cells, termed as tissue repair cells (TRC), accelerate alveolar bone regeneration and reconstruction of jaw bone when transplanted in damaged craniofacial tissue, earlier to oral implants. Hence, TRC therapy reduces the need of secondary bone grafts, best suited for severe defects in oral bone, skin, and gum, resulting from trauma, disease, or birth defects [77]. Overall, HSCs have great value in regenerative medicine, where stem cells transplantation strategies explore importance of niche in tissue regeneration. Prior to transplantation of BMSCs, clearance of original niche from target tissue is necessary for generation of organoid and organs without host-versus-graft rejection events. Some genetic defects can lead to disorganization of niche, leading to developmental errors. Complementation with human blastocyst derived primary cells can restore niche function of pancreas in pigs and rats, which defines the concept for generation of clinical grade human pancreas in mice and pigs [111]. Similar to other organs, diaphragm also has its own niche. Congenital defects in diaphragm can affect diaphragm functions. In the present scenario functional restoration of congenital diaphragm defects by surgical repair has risk of reoccurrence of defects or incomplete restoration [8]. Decellularization of donor derived diaphragm offers a way for reconstruction of new and functionally compatible diaphragm through niche modulation. Tissue engineering technology based decellularization of diaphragm and simultaneous perfusion of bone marrow mesenchymal stem cells (BM-MSCs) facilitates regeneration of functional scaffolds of diaphragm tissues [8]. In vivo replacement of hemidiaphragm in rats with reseeded scaffolds possesses similar myography and spirometry as it has in vivo in donor rats. These scaffolds retaining natural architecture are devoid of immune cells, retaining intact extracellular matrix that supports adhesion, proliferation, and differentiation of seeded cells [8]. These findings suggest that cadaver obtained diaphragm, seeded with BM-MSCs, can be used for curing patients in need for restoration of diaphragm functions (; ). However, BMSCs are heterogeneous population, which might result in differential outcomes in clinical settings; however clonal expansion of BMSCs yields homogenous cells population for therapeutic application [8]. One study also finds that intracavernous delivery of single clone BMSCs can restore erectile function in diabetic mice [112] and the same strategy might be explored for adult human individuals. The infection of hepatitis C virus (HCV) can cause liver cirrhosis and degeneration of hepatic tissue. The intraparenchymal transplantation of bone marrow mononuclear cells (BMMNCs) into liver tissue decreases aspartate aminotransferase (AST), alanine transaminase (ALT), bilirubin, CD34, and -SMA, suggesting that transplanted BMSCs restore hepatic functions through regeneration of hepatic tissues [113]. In order to meet the growing demand for stem cells transplantation therapy, donor encouragement is always required [8]. The stem cells donation procedure is very simple; with consent donor gets an injection of granulocyte-colony stimulating factor (G-CSF) that increases BMSCs population. Bone marrow collection is done from hip bone using syringe in 4-5hrs, requiring local anaesthesia and within a wk time frame donor gets recovered donation associated weakness.

The field of iPSCs technology and research is new to all other stem cells research, emerging in 2006 when, for the first time, Takahashi and Yamanaka generated ESCs-like cells through genetic incorporation of four factors, Sox2, Oct3/4, Klf4, and c-Myc, into skin fibroblast [3]. Due to extensive nuclear reprogramming, generated iPSCs are indistinguishable from ESCs, for their transcriptome profiling, epigenetic markings, and functional competence [3], but use of retrovirus in transdifferentiation approach has questioned iPSCs technology. Technological advancement has enabled generation of iPSCs from various kinds of adult cells phasing through ESCs or direct transdifferentiation. This section of review outlines most recent advancement in iPSC technology and regenerative applications (; ). Using the new edge of iPSCs technology, terminally differentiated skin cells directly can be transformed into kidney organoids [114], which are functionally and structurally similar to those of kidney tissue in vivo. Up to certain extent kidneys heal themselves; however natural regeneration potential cannot meet healing for severe injuries. During kidneys healing process, a progenitor stem cell needs to become 20 types of cells, required for waste excretion, pH regulation, and restoration of water and electrolytic ions. The procedure for generation of kidney organoids ex vivo, containing functional nephrons, has been identified for human. These ex vivo kidney organoids are similar to fetal first-trimester kidneys for their structure and physiology. Such kidney organoids can serve as model for nephrotoxicity screening of drugs, disease modelling, and organ transplantation. However generation of fully functional kidneys is a far seen event with today's scientific technologies [114]. Loss of neurons in age-related macular degeneration (ARMD) is the common cause of blindness. At preclinical level, transplantation of iPSCs derived neuronal progenitor cells (NPCs) in rat limits progression of disease through generation of 5-6 layers of photoreceptor nuclei, restoring visual acuity [78]. The various approaches of iPSCs mediated retinal regeneration including ARMD have been reviewed elsewhere [79]. Placenta, the cordial connection between mother and developing fetus, gets degenerated in certain pathophysiological conditions. Nuclear programming of OCT4 knock-out (KO) and wild type (WT) mice fibroblast through transient expression of GATA3, EOMES, TFAP2C, and +/ cMYC generates transgene independent trophoblast stem-like cells (iTSCs), which are highly similar to blastocyst derived TSCs for DNA methylation, H3K7ac, nucleosome deposition of H2A.X, and other epigenetic markings. Chimeric differentiation of iTSCs specifically gives rise to haemorrhagic lineages and placental tissue, bypassing pluripotency phase, opening an avenue for generation of fully functional placenta for human [115]. Neurodegenerative disease like Alzheimer's and obstinate epilepsies can degenerate cerebrum, controlling excitatory and inhibitory signals of the brain. The inhibitory tones in cerebral cortex and hippocampus are accounted by -amino butyric acid secreting (GABAergic) interneurons (INs). Loss of these neurons often leads to progressive neurodegeneration. Genomic integration of Ascl1, Dlx5, Foxg1, and Lhx6 to mice and human fibroblast transforms these adult cells into GABAergic-INs (iGABA-INs). These cells have molecular signature of telencephalic INs, release GABA, and show inhibition to host granule neuronal activity [81]. Transplantation of these INs in developing embryo cures from genetic and acquired seizures, where transplanted cells disperse and mature into functional neuronal circuits as local INs [82]. Dorsomorphin and SB-431542 mediated inhibition of TGF- and BMP signalling direct transformation of human iPSCs into cortical spheroids. These cortical spheroids consisted of both peripheral and cortical neurons, surrounded by astrocytes, displaying transcription profiling and electrophysiology similarity with developing fetal brain and mature neurons, respectively [83]. The underlying complex biology and lack of clear etiology and genetic reprogramming and difficulty in recapitulation of brain development have barred understanding of pathophysiology of autism spectrum disorder (ASD) and schizophrenia. 3D organoid cultures of ASD patient derived iPSC generate miniature brain organoid, resembling fetal brain few months after gestation. The idiopathic conditions of these organoids are similar with brain of ASD patients; both possess higher inhibitory GABAergic neurons with imbalanced neuronal connection. Furthermore these organoids express forkhead Box G1 (FOXG1) much higher than normal brain tissue, which explains that FOXG1 might be the leading cause of ASD [84]. Degeneration of other organs and tissues also has been reported, like degeneration of lungs which might occur due to tuberculosis infection, fibrosis, and cancer. The underlying etiology for lung degeneration can be explained through organoid culture. Coaxing of iPSC into inert biomaterial and defined culture leads to formation of lung organoids that consisted of epithelial and mesenchymal cells, which can survive in culture for months. These organoids are miniature lung, resemble tissues of large airways and alveoli, and can be used for lung developmental studies and screening of antituberculosis and anticancer drugs [87]. The conventional multistep reprogramming for iPSCs consumes months of time, while CRISPER-Cas9 system based episomal reprogramming system that combines two steps together enables generation of ESCs-like cells in less than twowks, reducing the chances of culture associated genetic abrasions and unwanted epigenetic [80]. This approach can yield single step ESCs-like cells in more personalized way from adults with retinal degradation and infants with severe immunodeficiency, involving correction for genetic mutation of OCT4 and DNMT3B [80]. The iPSCs expressing anti-CCR5-RNA, which can be differentiated into HIV1 resistant macrophages, have applications in AIDS therapeutics [88]. The diversified immunotherapeutic application of iPSCs has been reviewed elsewhere [89]. The -1 antitrypsin deficiency (A1AD) encoded by serpin peptidase inhibitor clade A member 1 (SERPINA1) protein synthesized in liver protects lungs from neutrophils elastase, the enzyme causing disruption of lungs connective tissue. A1AD deficiency is common cause of both lung and liver disease like chronic obstructive pulmonary disease (COPD) and liver cirrhosis. Patient specific iPSCs from lung and liver cells might explain pathophysiology of A1AD deficiency. COPD patient derived iPSCs show sensitivity to toxic drugs which explains that actual patient might be sensitive in similar fashion. It is known that A1AD deficiency is caused by single base pair mutation and correction of this mutation fixes the A1AD deficiency in hepatic-iPSCs [85]. The high order brain functions, like emotions, anxiety, sleep, depression, appetite, breathing heartbeats, and so forth, are regulated by serotonin neurons. Generation of serotonin neurons occurs prior to birth, which are postmitotic in their nature. Any sort of developmental defect and degeneration of serotonin neurons might lead to neuronal disorders like bipolar disorder, depression, and schizophrenia-like psychiatric conditions. Manipulation of Wnt signalling in human iPSCs in defined culture conditions leads to an in vitro differentiation of iPSCs to serotonin-like neurons. These iPSCs-neurons primarily localize to rhombomere 2-3 segment of rostral raphe nucleus, exhibit electrophysiological properties similar to serotonin neurons, express hydroxylase 2, the developmental marker, and release serotonin in dose and time dependent manner. Transplantation of these neurons might cure from schizophrenia, bipolar disorder, and other neuropathological conditions [116]. The iPSCs technology mediated somatic cell reprogramming of ventricular monocytes results in generation of cells, similar in morphology and functionality with PCs. SA note transplantation of PCs to large animals improves rhythmic heart functions. Pacemaker needs very reliable and robust performance so understanding of transformation process and site of transplantation are the critical aspect for therapeutic validation of iPSCs derived PCs [28]. Diabetes is a major health concern in modern world, and generation of -cells from adult tissue is challenging. Direct reprogramming of skin cells into pancreatic cells, bypassing pluripotency phase, can yield clinical grade -cells. This reprogramming strategy involves transformation of skin cells into definitive endodermal progenitors (cDE) and foregut like progenitor cells (cPF) intermediates and subsequent in vitro expansion of these intermediates to become pancreatic -cells (cPB). The first step is chemically complex and can be understood as nonepisomal reprogramming on day one with pluripotency factors (OCT4, SOX2, KLF4, and hair pin RNA against p53), then supplementation with GFs and chemical supplements on day seven (EGF, bFGF, CHIR, NECA, NaB, Par, and RG), and two weeks later (Activin-A, CHIR, NECA, NaB, and RG) yielding DE and cPF [86]. Transplantation of cPB yields into glucose stimulated secretion of insulin in diabetic mice defines that such cells can be explored for treatment of T1DM and T2DM in more personalized manner [86]. iPSCs represent underrated opportunities for drug industries and clinical research laboratories for development of therapeutics, but safety concerns might limit transplantation applications (; ) [117]. Transplantation of human iPSCs into mice gastrula leads to colonization and differentiation of cells into three germ layers, evidenced with clinical developmental fat measurements. The acceptance of human iPSCs by mice gastrula suggests that correct timing and appropriate reprogramming regime might delimit human mice species barrier. Using this fact of species barrier, generation of human organs in closely associated primates might be possible, which can be used for treatment of genetic factors governed disease at embryo level itself [118]. In summary, iPSCs are safe and effective for treatment of regenerative medicine.

The unstable growth of human population threatens the existence of wildlife, through overexploitation of natural habitats and illegal killing of wild animals, leading many species to face the fate of being endangered and go for extinction. For wildlife conservation, the concept of creation of frozen zoo involves preservation of gene pool and germ plasm from threatened and endangered species (). The frozen zoo tissue samples collection from dead or live animal can be DNA, sperms, eggs, embryos, gonads, skin, or any other tissue of the body [119]. Preserved tissue can be reprogrammed or transdifferentiated to become other types of tissues and cells, which opens an avenue for conservation of endangered species and resurrection of life (). The gonadal tissue from young individuals harbouring immature tissue can be matured in vivo and ex vivo for generation of functional gametes. Transplantation of SSCs to testis of male from the same different species can give rise to spermatozoa of donor cells [120], which might be used for IVF based captive breeding of wild animals. The most dangerous fact in wildlife conservation is low genetic diversity, too few reproductively capable animals which cannot maintain adequate genetic diversity in wild or captivity. Using the edge of iPSC technology, pluripotent stem cells can be generated from skin cells. For endangered drill, Mandrillus leucophaeus, and nearly extinct white rhinoceros, Ceratotherium simum cottoni, iPSC has been generated in 2011 [121]. The endangered animal drill (Mandrillus leucophaeus) is genetically very close to human and often suffers from diabetes, while rhinos are genetically far removed from other primates. The progress in iPSCs, from the human point of view, might be transformed for animal research for recapturing reproductive potential and health in wild animals. However, stem cells based interventions in wild animals are much more complex than classical conservation planning and biomedical research has to face. Conversion of iPSC into egg or sperm can open the door for generation of IVF based embryo; those might be transplanted in womb of live counterparts for propagation of population. Recently, iPSCs have been generated for snow leopard (Panthera uncia), native to mountain ranges of central Asia, which belongs to cat family; this breakthrough has raised the possibilities for cryopreservation of genetic material for future cloning and other assisted reproductive technology (ART) applications, for the conservation of cat species and biodiversity. Generation of leopard iPSCs has been achieved through retroviral-system based genomic integration of OCT4, SOX2, KLF4, cMYC, and NANOG. These iPSCs from snow leopard also open an avenue for further transformation of iPSCs into gametes [122]. The in vivo maturation of grafted tissue depends both on age and on hormonal status of donor tissue. These facts are equally applicable to accepting host. Ectopic xenografts of cryopreserved testis tissue from Indian spotted deer (Moschiola indica) to nude mice yielded generation of spermatocytes [123], suggesting that one-day procurement of functional sperm from premature tissue might become a general technique in wildlife conservation. In summary, tissue biopsies from dead or live animals can be used for generation of iPSCs and functional gametes; those can be used in assisted reproductive technology (ART) for wildlife conservation.

The spectacular progress in the field of stem cells research represents great scope of stem cells regenerative therapeutics. It can be estimated that by 2020 or so we will be able to produce wide array of tissue, organoid, and organs from adult stem cells. Inductions of pluripotency phenotypes in terminally differentiated adult cells have better therapeutic future than ESCs, due to least ethical constraints with adult cells. In the coming future, there might be new pharmaceutical compounds; those can activate tissue specific stem cells, promote stem cells to migrate to the side of tissue injury, and promote their differentiation to tissue specific cells. Except few countries, the ongoing financial and ethical hindrance on ESCs application in regenerative medicine have more chance for funding agencies to distribute funding for the least risky projects on UCSCs, BMSCs, and TSPSCs from biopsies. The existing stem cells therapeutics advancements are more experimental and high in cost; due to that application on broad scale is not feasible in current scenario. In the near future, the advancements of medical science presume using stem cells to treat cancer, muscles damage, autoimmune disease, and spinal cord injuries among a number of impairments and diseases. It is expected that stem cells therapies will bring considerable benefits to the patients suffering from wide range of injuries and disease. There is high optimism for use of BMSCs, TSPSCs, and iPSCs for treatment of various diseases to overcome the contradictions associated with ESCs. For advancement of translational application of stem cells, there is a need of clinical trials, which needs funding rejoinder from both public and private organizations. The critical evaluation of regulatory guidelines at each phase of clinical trial is a must to comprehend the success and efficacy in time frame.

Dr. Anuradha Reddy from Centre for Cellular and Molecular Biology Hyderabad and Mrs. Sarita Kumari from Department of Yoga Science, BU, Bhopal, India, are acknowledged for their critical suggestions and comments on paper.

There are no competing interests associated with this paper.

See the original post here:
Stem Cells Applications in Regenerative Medicine and Disease ...

Posted in Regenerative Medicine | Comments Off on Stem Cells Applications in Regenerative Medicine and Disease …

Stem Cell Therapy Market worth $558 million by 2027 Exclusive Report by MarketsandMarkets – Benzinga

Posted: September 16, 2022 at 2:12 am

Chicago, Sept. 14, 2022 (GLOBE NEWSWIRE) -- Stem Cell Therapy Marketis projected to reach USD 558 million by 2027 from USD 257 million in 2022, at a CAGR of 16.8% during the forecast period, according to a new report by MarketsandMarkets. Key drivers of the stem cell therapy market include increase in stem cell research funding, expanding number of clinical trials related to stem cell therapies, and growing number of GMP-certified cell therapy production facilities. However, high costs associated with the development of stem cell therapy along with the ethical concerns related to embryonic stem cells are likely to hamper the market growth to a certain extent.

Download PDF Brochure: https://www.marketsandmarkets.com/pdfdownloadNew.asp?id=48

Browse in-depth TOC on "Stem Cell Therapy Market"155 Tables 43 Figures 166 Pages

The adipose tissue-derived MSCs segment dominates the cell source market in the stem cell therapy through 2020-2027.

The global stem cell therapy market is segmented into adipose tissue-derived MSCs (mesenchymal stem cells), bone marrow-derived MSCs, placenta/umbilical cord-derived MSCs, and other cell sources. Adipose-derived stem cell tissues can be obtained easily and also possess a variety of the regenerative properties similar to other mesenchymal stem cells/tissues. These cells are multipotent and are easy to isolate & harvest; these qualities have collectively rendered the adipose tissue-derived MSCs segment highest revenue in 2021.

In 2021, the musculoskeletal disorders ranked first in terms of revenue in the stem cell therapy market.

Based on therapeutic application, the global stem cell therapy market is segmented into musculoskeletal disorders, wounds & injuries, cardiovascular diseases, surgeries, inflammatory & autoimmune diseases, neurological disorders, and other therapeutic applications. In 2021, the musculoskeletal disorders application segment accounted for the largest share of the stem cell therapy market. Increasing market availability of stem cell-based therapeutic products across major markets and the growing patient preference for effective & early treatment strategies are driving the growth of this segment.

Request Sample Pages: https://www.marketsandmarkets.com/requestsampleNew.asp?id=48

The Asia Pacific region is the fastest-growing region of the stem cell therapy market in 2021.

The Asia Pacific region is estimated to grow at the highest CAGR in the stem cell therapy market during the forecast period. Japan and South Korea are the key revenue contributors of the Asia Pacific stem cell therapy market. Favorable government support for product approvals and the presence of major players in these countries are anticipated to drive the regional market growth.

The stem cell therapy market is consolidated in nature with prominent players in the stem cell therapy market include Smith+Nephew (UK), MEDIPOST Co., Ltd. (South Korea), Anterogen Co., Ltd. (South Korea), CORESTEM (South Korea), Pharmicell Co., Ltd. (South Korea), NuVasive, Inc. (US), RTI Surgical (US), AlloSource (US), JCR Pharmaceuticals Co., Ltd. (Japan), Takeda Pharmaceutical Company Limited (Japan), Holostem Terapie Avanzate Srl (Italy), Orthofix (US), Regrow Biosciences Pvt Ltd. (India), and STEMPEUTICS RESEARCH PVT LTD. (India).

Get 10% Free Customization on this Report: https://www.marketsandmarkets.com/requestCustomizationNew.asp?id=48

Related Reports:

Stem Cell Manufacturing Market by Product (Consumables, Instrument, HSCs, MSCs, iPSCs, ESCs), Application (Research, Clinical (Autologous, Allogenic), Cell & Tissue Banking), End User (Pharma & Biotech, Hospitals, Tissue Bank) - Global Forecast to 2026

More:
Stem Cell Therapy Market worth $558 million by 2027 Exclusive Report by MarketsandMarkets - Benzinga

Posted in Stem Cell Therapy | Comments Off on Stem Cell Therapy Market worth $558 million by 2027 Exclusive Report by MarketsandMarkets – Benzinga

Stem Cell Therapy Market worth $558 million by 2027 Exclusive Report by MarketsandMarkets – GlobeNewswire

Posted: September 16, 2022 at 2:12 am

Chicago, Sept. 14, 2022 (GLOBE NEWSWIRE) -- Stem Cell Therapy Marketis projected to reach USD 558 million by 2027 from USD 257 million in 2022, at a CAGR of 16.8% during the forecast period, according to a new report by MarketsandMarkets. Key drivers of the stem cell therapy market include increase in stem cell research funding, expanding number of clinical trials related to stem cell therapies, and growing number of GMP-certified cell therapy production facilities. However, high costs associated with the development of stem cell therapy along with the ethical concerns related to embryonic stem cells are likely to hamper the market growth to a certain extent.

Download PDF Brochure: https://www.marketsandmarkets.com/pdfdownloadNew.asp?id=48

Browse in-depth TOC on "Stem Cell Therapy Market155 Tables 43 Figures 166 Pages

The adipose tissue-derived MSCs segment dominates the cell source market in the stem cell therapy through 2020-2027.

The global stem cell therapy market is segmented into adipose tissue-derived MSCs (mesenchymal stem cells), bone marrow-derived MSCs, placenta/umbilical cord-derived MSCs, and other cell sources. Adipose-derived stem cell tissues can be obtained easily and also possess a variety of the regenerative properties similar to other mesenchymal stem cells/tissues. These cells are multipotent and are easy to isolate & harvest; these qualities have collectively rendered the adipose tissue-derived MSCs segment highest revenue in 2021.

In 2021, the musculoskeletal disorders ranked first in terms of revenue in the stem cell therapy market.

Based on therapeutic application, the global stem cell therapy market is segmented into musculoskeletal disorders, wounds & injuries, cardiovascular diseases, surgeries, inflammatory & autoimmune diseases, neurological disorders, and other therapeutic applications. In 2021, the musculoskeletal disorders application segment accounted for the largest share of the stem cell therapy market. Increasing market availability of stem cell-based therapeutic products across major markets and the growing patient preference for effective & early treatment strategies are driving the growth of this segment.

Request Sample Pages: https://www.marketsandmarkets.com/requestsampleNew.asp?id=48

The Asia Pacific region is the fastest-growing region of the stem cell therapy market in 2021.

The Asia Pacific region is estimated to grow at the highest CAGR in the stem cell therapy market during the forecast period. Japan and South Korea are the key revenue contributors of the Asia Pacific stem cell therapy market. Favorable government support for product approvals and the presence of major players in these countries are anticipated to drive the regional market growth.

The stem cell therapy market is consolidated in nature with prominent players in the stem cell therapy market include Smith+Nephew (UK), MEDIPOST Co., Ltd. (South Korea), Anterogen Co., Ltd. (South Korea), CORESTEM (South Korea), Pharmicell Co., Ltd. (South Korea), NuVasive, Inc. (US), RTI Surgical (US), AlloSource (US), JCR Pharmaceuticals Co., Ltd. (Japan), Takeda Pharmaceutical Company Limited (Japan), Holostem Terapie Avanzate Srl (Italy), Orthofix (US), Regrow Biosciences Pvt Ltd. (India), and STEMPEUTICS RESEARCH PVT LTD. (India).

Get 10% Free Customization on this Report: https://www.marketsandmarkets.com/requestCustomizationNew.asp?id=48

Related Reports:

Stem Cell Manufacturing Market by Product (Consumables, Instrument, HSCs, MSCs, iPSCs, ESCs), Application (Research, Clinical (Autologous, Allogenic), Cell & Tissue Banking), End User (Pharma & Biotech, Hospitals, Tissue Bank) - Global Forecast to 2026

See original here:
Stem Cell Therapy Market worth $558 million by 2027 Exclusive Report by MarketsandMarkets - GlobeNewswire

Posted in Stem Cell Therapy | Comments Off on Stem Cell Therapy Market worth $558 million by 2027 Exclusive Report by MarketsandMarkets – GlobeNewswire

Top Beverly Hills Plastic Surgeon, Dr. John Anastasatos, Explores Cell-Assisted Lipotransfer (CAL) with Breast Augmentation in New Publication -…

Posted: June 4, 2022 at 2:39 am

The article titled "Cell-Assisted Lipotransfer in Breast Augmentation Surgery: Clinical Outcomes and Considerations for Future Research" was recently published on the Cureus medical site.

LOS ANGELES, June 3, 2022 /PRNewswire-PRWeb/ -- Dr. John Anastasatos is a well-respected, board-certified plastic surgeon in Beverly Hills, CA, who recently co-authored the peer-reviewed article titled, "Cell-Assisted Lipotransfer in Breast Augmentation Surgery: Clinical Outcomes and Considerations for Future Research," which was published on March 2, 2022. Autologous fat transfer is a widely used surgical technique for breast augmentation surgery, but it has been associated with various complications, including post-surgical fat resorption. In the article, Dr. Anastasatos contributes his knowledge on state-of-the-art methods used to harvest, process, optimize and utilize fat for breast augmentation and reconstruction purposes and techniques to optimize fat grafting longevity and increase survival of the fat where it is placed. Dr. Anastasatos' study explores a novel technique, referred to as cell-assisted lipotransfer, or CAL, and how it has shown promising results in terms of reducing fat resorption. The informative article explores the ways in which cell-assisted lipotransfer is different from the autologous fat transfer, as well as how and why adipose-derived stem cells may contribute towards limiting fat resorption.

Link to Article: Cureus | Cell-Assisted Lipotransfer in Breast Augmentation Surgery: Clinical Outcomes and Considerations for Future Research

"Our study determined that CAL may still be a new technique, but its promising results, through the prism of multiple isolation systems, highlight the great potential for use in clinical practice," says Dr. John Anastasatos.

More about Dr. John Anastasatos:

At Los Angeles Plastic Surgery, Dr. John Anastasatos is highly regarded for his extraordinary skill in cosmetic, reconstructive, and revision procedures, including gold-standard facelifts, breast augmentations, body lift procedures, liposuction and non-surgical treatments. Raised in the United States but with family roots in Athens, Greece, Dr. Anastasatos attended Brown University and was accepted to their medical school. He then completed general surgical training at Columbia-Presbyterian Hospital, an affiliate of Columbia University. After finishing his cosmetic and reconstructive residency at the University of Alabama, Birmingham, he completed a fellowship in hand surgery, upper extremity, and microsurgery. During this time, Dr. Anastasatos served as an attending surgeon at UAB Hospitals, The Children's Hospital, and VA Hospital. He established his own practice in Southern California in 2007 and opened a second location in Athens, Greece. To schedule a consultation with Dr. John Anastasatos or for more information about his practice locations in Beverly Hills, CA, or Athens, Greece, please call (310) 888-4048, or visit his website http://www.LosAngelesPlasticSurgery.com.

Media Contact

Dr. John Anastasatos, Los Angeles Plastic Surgery, (310) 888-4048, drjohnanastasatos@gmail.com

SOURCE Los Angeles Plastic Surgery

Read the original here:
Top Beverly Hills Plastic Surgeon, Dr. John Anastasatos, Explores Cell-Assisted Lipotransfer (CAL) with Breast Augmentation in New Publication -...

Posted in California Stem Cells | Comments Off on Top Beverly Hills Plastic Surgeon, Dr. John Anastasatos, Explores Cell-Assisted Lipotransfer (CAL) with Breast Augmentation in New Publication -…